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THE HESSE PENCIL OF PLANE CUBIC CURVES

by Michela ARTEBANI*) and Igor DOLGACHEV ¥)

ABSTRACT. This is a survey of the classical geometry of the Hesse configuration
of 12 lines in the projective plane with relation to the inflection points of a plane cubic
curve. We also study two K3 surfaces with Picard number 20 which arise naturally
in connection with this configuration.

1. INTRODUCTION

In this paper we discuss some old and new results about the widely known
Hesse configuration of 9 points and 12 lines in the projective plane P2(k) :
each point lies on 4 lines and each line contains 3 points, giving an abstract
configuration (125,9,). Through most of the paper we will assume that & 1s
the field of complex numbers C although the configuration can be defined
over any field containing three cubic roots of umity. The Hesse configuration
can be realized by the 9 inflection points of a nonsingular projective plane
curve of degree 3. This discovery is attributed to C. Maclaurin (1698-1746)
(see [40], p.384), however the configuration') is named after O. Hesse who
was the first to study its properties in [24], [25]. In particular, he proved that
the nine inflection pomts of a plane cubic curve form one orbit with respect
to the projective group of the plane and can be taken as common inflection

*) The first author was supported in part by PRIN 2005: Spazi di moduli e teoria di Lie,
Indam (GNSAGA), and by NSERC Discovery Grant of Noriko Yui at Queen’s University, Canada.

) The second author was supported in part by NSF grant 0245203

1) Not to be confused with another Hesse configuration (124, 163), also related to plane cubic
curves, see [15].
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points of a pencil of cubic curves generated by the curve and its Hessian
curve. In approprate projective coordinates the Hesse pencil 1s given by the
equation

A+ +2)+ pxyz =0,

The pencil was classically known as the syzygetic pencil?) of cubic curves
(see [9], p-230 or [16], p.274), the name attributed to I.. Cremona. We do
not know who 1s responsible for renaming the pencil, but apparently the new
terminology 1s widely accepted in modern literature (see, for example, [4]).

Recently Hesse pencils have become popular among number-theorists in
connection with computational problems in the arithmetic of elliptic curves
(see, for example, [51]), and also among theoretical physicists, for example in
connection with homological mirror symmetry for elliptic curves (see [56]).

FIGURE 1

The Hesse pencil

The group of projective automorphisms which transform the Hesse pencil
mto itself 1s a group G,y of order 216 1somorphic to the group of affine
transformations with determinant 1 of the projective plane over the field Fs.

2) The term “syzygy” was used in astronomy to describe the alignment of three celestial
bodies along a straight line. Sylvester adopted this word to express a linear relation between the
covariants of a form. We will see later that the pencil contains the Hesse covariant of each of
its members.
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This group was discovered in 1878 by C. Jordan [31], who called it the
Hessian group. Its invariants were described i 1889 by H. Maschke [36].
A detailed historical account and the first figure of the Hesse pencil can be
found in [21].

The projective action of the Hessian group comes from a linear action of a
complex reflection group G5 of order 648 (no.25 in the Shephard-Todd list
[48]) whose set of reflection hyperplanes consists of the 12 inflection lines
of the Hesse configuration. The algebra of invariant polynomials of the group
Ga16 is freely generated by three polynomials of degrees 6, 9, 12 (see [36]). An
invariant polynomial of degree 6 defines a nonsingular plane sextic curve Cg.
The double cover of the plane branched along the sextic curve Cg is a K3
surface X on which G, acts as a group of automorphisms. Its subgroup
H = T3 x Qg, where Qg is the Sylow 2-subgroup of SI(2,F3) isomorphic to
the quaternion group of order 8, acts on the surface as a group of symplectic
automorphisms. In fact, the group F2 X Qg can be found in Mukai’s list [41]
of finite groups which can be realized as maximal finite groups of symplectic
automorphisms of a complex K3 surface.

The linear system of plane sextics with double points at 8 inflection
points of a plane cubic 1s of projective dimension 3. The stabilizer H of
the ninth remaining inflection point in Gyy6 1s isomorphic to SIL(2,F3) and
acts on this space by projective transformations. There 1s a unique invariant
sextic Cy for this action, having cuspidal singularities at the inflection points.
The double cover of the plane branched along Cf is birational to another
K3 surface X’ and the action of H can be lifted to X’. We show that
X’ is birationally isomorphic to the quotient of X by the subgroup F3
and that the induced action of the quotient group Giis /F% = SL(2,F3)
coincides with the action of H on X’. Both K3 surfaces X and X’ are
singular in the sense of Shioda, i.e. the subgroup of algebraic cycles in
the second cohomology group is of maximal possible rank, equal to 20.
We compute the intersection form defined by the cup-product on these
subgroups.

The invanant sextic Cg cuts out a set of 18 points on each nonsingular
member of the pencil. We explain its geometric meaning, a result which we
were unable to find in the classical literature.

It is a pleasure to thank Bert van Geemen who kindly provided us with
his mformal notes on this topic and made many useful comments on our
manuscript. We thank Noam FElkies and Matthias Schuett for their help in the
proof of Theorem 7.10. We are also indebted to Thierry Vust for his numerous
suggestions for improving the exposition of the paper.
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2. THE HESSE PENCIL

Let k& be an algebraically closed field of characteristic different from 3
and E be a nonsingular cubic in the projective plane P?(k) defined by a
homogeneous equation F(x,y,z) = 0 of degree 3. The Hessian curve He(F)
of E 1s the plane cubic curve defined by the equation He(F) = 0, where
He(F) is the determinant of the matrix of the second partial derivatives of F.
The nine points in £ M He(E) are the inflection points of E. Fixing one of
the inflection points p, defines a commutative group law & on E with pg
equal to the zero: p P g 1s the unique point r such that py,r and the third
point of intersection in p,¢ M E lie on a line. It follows from this definition
of the group law that each inflection point is a 3-torsion point and that the
group E[3] of 3-torsion points on E is isomorphic to (Z/3Z)*. Any line p, g
through two inflection points intersects £ at another inflection point r such
that p,qg,r form a coset with respect to some subgroup of E[3]. Since we
have 4 subgroups of order 3 in (Z/3Z)* we find 12 lines, each containing 3
inflection points. They are called the inflection lines (or the Maclaurin lines
[16]) of E. Since each element in (Z/3Z)* is contained in 4 cosels, we see
that each inflection point 1s contained in four inflection lines. This gives the
famous Hesse configuration (123,94) of 12 lines and 9 points in the projective
plane. It is easy to see that this configuration is independent of the choice of
the point pg.

The Hesse pencil 1s the one-dimensional linear system of plane cubic
curves given by

(1) | o +y +2)+txyz=0, (to,t1) €PL.

We use the affine parameter A = #;/fp and denote Ein by E,; the curve
xyz = 0 1s denoted by E.. . Since the pencil is generated by the Fermat cubic
Ey and its Hessian, its nine base points are in the Hesse configuration. In fact,
they are the inflection points of any smooth curve in the pencil. In coordinates
they are:

pO:(())l?_l): P1 :(07 17_6)7 p2:(0717_€2)7
P3 :(1507_1)7 p4:(1707_62)7 p5:(1707 _6)7
p6:(1>_170)7 p7:(17_670)7 p8:(1>_€270)7

where € denotes a primitive third root of 1.
If we fix the group law by choosing the point py to be the zero point, then
the set of inflection points is the group of 3-torsion points of each member
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of the Hesse pencil. Hence we can define an isomorphism
a: Ex[3ly, — (Z/3Z)

by sending the point p; = (0,1, —¢) to (1,0) and the point p; = (1,0, —1)
to (0,1). Under this isomorphism we can identify the nine base points with
elements of (Z/3Z)* as follows:

Po P11 P2 0,00 (1,0) 2,0
(2) ps pa ps = O (1,1) @21
Ps P71 P8 0,2) (1,2) 2,2).

It is now easy to see that any triple of base points which represents a row, a
column, or a term in the expansion of the determinant of matrix (2) spans an
inflection line (cf. [38], p.335).

The existence of an isomorphism « not depending on the member of
the pencil can be interpreted by saying that the Hesse pencil is a family of
elliptic curves together with a 3-level structure (i.e. a basis in the subgroup
of 3-torsion points). In fact, in the following lemma we will prove that any
smooth plane cubic is projectively isomorphic to a member of the Hesse
pencil. Tt follows (see [4]) that its parameter space can be naturally identified
with a smooth compactification of the fine moduli space A;(3) of elliptic
curves with a 3-level structure (when k = C this is the modular curve X(3)
of principal level 3).

LEMMA 2.1.  Any nonsingular cubic in P*(k) is projectively equivalent to
a member of the Hesse pencil, i.e. it admits a Hesse?) canonical form :

Y4y 42+ yz=0.

Proof. We will follow the arguments from [55]. Let £ be a nonsingular
plane cubic. Given two inflection tangent lines for £ we can choose projective
coordinates such that their equations are x = 0 and y = 0. Then it is easy to
see that the equation of £ can be written in the form

3) F(x,y,2) = xy(ax + by + ¢y +d2> =0,

where ax + by + cz = 0 is a third inflection tangent line. Suppose ¢ = 0,
then ab # 0 since otherwise the curve would be singular. Since a binary form
of degree 3 with no multiple roots can be reduced, by a linear change of
variables, to the form x> +y>, the equation takes the form x° +y* +dz°> = 0.

3) Called the second canonical form in [47], the first one being the Weierstrass form.




240 M. ARTEBANI AND I. DOLGACHEV

After scaling the coordinate z, we arrive at a Hesse equation. So we may
assume that ¢ # 0 and, after scaling the coordinate z, that ¢ =3. Let ¢ be a
primitive 3rd root of unity and define new coordinates u,v by the formulae

ax+ 7 = eu + €*v, by +z=¢u+ev.
Then
abF(x,y,z) = (eu + v — )(Eu+ ev — 2)(—u — v + 2) + dz°
= -0+ @+ 1) -3uwz=0.

Since the curve is nonsingular we have d # —1. Therefore, after scaling the
coordinate z, we get a Hesse equation for E:

X+y +2+ yz=0.

Assume additionally that the characteristic of the field & is not equal to 2.
Recall that a plane nonsingular cubic also admits the Weierstrass canonical
form

V2 =x 4+ ax? + b2, da® +270* £ 0.,

Projecting from the point py we exhibit each curve of the Hesse pencil as a
double cover of P! branched at 4 points. By a standard procedure, this allows
one to compute the Weierstrass form of any curve from the Hesse pencil :

C)) V2 =2+ Alto,t1) x2° + Blto, 1) 7,
where
) At 11) = 12010 — 113)

B(fo, 1) = 2(u$ — 20ugu; — 8ud),
and (fo,t1) = (up, 6uy). The discriminant of the cubic curve given by (4) is
A =4A% + 27B* = 273w}l + 8u3)

its zeros describe the singular members of the pencil. The zeros of the
binary form A(#,t;) define the curves from the Hesse pencil which admit
an automorphism of order 6 with a fixed point (equianharmonic cubics). For
example, the Fermat curve Eg: x> +y® +2z° = 0 is one of them. The zeros of
the binary form B(1y,#) define the curves from the Hesse pencil which admait
an automorphism of order 4 with a fixed point (harmonic cubics). The map

j Pl — P (fo, 1) — (443 443 + 27B%)
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coincides (up to a scalar factor) with the map assigning to the elliptic curve
Ey 1its j-mnvariant, which distinguishes the projective equivalence classes of
cubic curves.

The Hesse pencil naturally defines a rational map

PP—— P, (@y,2) e (g, + Y+ D)
which is not defined at the nine base points. Let
7 SB3) — P?

be the blowing up of the base points. This is a rational surface such that the
composition of rational maps S3) — P?2——— P! is a regular map

(6) é: S3) — P!

whose fibres are isomorphic to the members of the Hesse pencil. The map ¢
defines a structure of a minimal elliptic surface on S(3). Here and later we
refer to [5], [18], [39] or [10] for the theory of elliptic fibrations on algebraic
surfaces. The surface S(3) 1s a special case of an elliptic modular surface
S(n) of level n (see [4], [49]), isomorphic to the universal family of elliptic
curves with an n-level.

There are four singular members in the Hesse pencil, each is the union of
three lines:

Es : xyz =0,

E_3: GHy+da+ey+ )+ ey+e) =0,
E_s.: x+ey+r+eEly+EDx+y+e)=0,
E_ 3. Gt eEyLxtey+edx+y+e)=0.

We will call these singular members the triangles and denote them by
Ty....,T4, respectively. The singular points of the triangles will be called
the vertices of the triangles. They are

'UO=(1307O)> /Ul=(03170)> U2=(0,0, 1)7
(7) U3 :(17171)7 U4:(176762)7 Vs :(176276)7
062(67171)7 U7:(17€71)7 US:(171>€)7

vo=(,1,1), wvo=(€e,1D, wvy=(,1¢).
The 12 lines forming the triangles are the inflection lines of the Hesse
configuration. If we fix a point p; as the origin in the group law of a
nonsingular member of the pencil, then the side of a triangle T7; passing
through p; contains 3 base points forming a subgroup of order 3, while
the other sides of 7; contain the cosets with respect to this subgroup. The

triangles obviously give four singular fibres of Kodaira’s type I3 of the elliptic
fibration ¢.
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REMARK 2.2. The Hesse pencil makes sense over a field of any charac-
teristic. It 1s popular in number-theory and cryptography for finding explicit
algorithms to compute the number of points of an elliptic curve over a finite
field of characteristic 3 (see [22], [51]). We are grateful to Kristian Ranestad
for this comment.

The proof of the existence of a Hesse equation for an elliptic curve E over
a field of characteristic 3 goes through if we assume that £ 1s an ordinary
elliptic curve with rational 3-torsion points. We find equation (3) and check
that it defines a nonsingular curve only if abe # 0. By scaling the variables
we may assume that a = b= —1, ¢ = 1. Next we use the variable change
Z=u-+x+y to transform the equation to the Hesse form

xyu+d(u—|—x+y)3 :xyu+d(u3+x3+y3)20.

The Hesse pencil (1) in characteristic 3 has two singular members: (x+y+z)° =
0 and xyz = 0. It has three base points (1, —1,0), (0,1, —1), (1,0, —1), each
of multiplicity 3, which are the inflection points of all nonsingular members of
the pencil. Blowing up the base points, including infinitely near base points,
we get a rational elliptic surface. It has two singular fibres of Kodaira’s types
IV* and I. The fibre of type IV* has the invariant ¢ of wild ramification
equal to 1. This gives an example of a rational elliptic surface in characteristic
3 with finite Mordell-Weil group of sections (these surfaces are classified in
[35]). The Mordell-Weil group of our surface 1s of order 3.

The Hesse configuration of 12 lines with 9 points of multiplicity 4 can
also be defined over a finite field of 9 elements (see [26], Lemma 20.3.7).
It 1s formed by four reducible members of a pencil of cuspidal cubics with
9 base points. The blow-up of the base points defines a rational quasi-elliptic
surface in characteristic 3 with 4 singular fibres of Kodaira’s type 111.

3. THE HESSIAN AND THE CAYLEYAN OF A PLANE CUBIC

The first polar of a plane curve E with equation F = 0 with respect to a
point g = (a,b,c) € P? is the curve P,(E) defined by aF, + bF, + cF, = 0.
It 1s casy to see that the Hessian curve He(E) of a plane cubic £ coincides
with the locus of points ¢ such that the polar conic P, (£) =0 is reducible.

If £y 1s a member of the Hesse pencil, we find that He(£,) 1s the member
Epny of the Hesse pencil, where

108 + A3

(8) hd) = - 3z
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Let p; = (a,b,c) be one of the base points of the Hesse pencil. By computing
the polar P, (Ey) we find that it 1s equal to the union of the inflection tangent
line T, (E)) to the curve at the point p; and the line L; : ax + by + ¢z = 0.
The lines Ly,...,Lg are called the harmonic polars. It follows easily from
the known properties of the first polars (which can be checked directly in
our case) that the line Z; intersects the curve £, at 3 points ¢; such that
the tangent to the curve at g; contains p;. Together with p; they form the
group of 2-torsion points in the group law on the curve in which the origin
is chosen to be the point p;.

The harmonic polars, considered as points in the dual plane P2, give the
set of base points of a Hesse pencil in P?. Its inflection lines are the lines
dual to the vertices of the inflection triangles given in (7). If we identify the
plane with its dual by means of the quadratic form x* + y* 1 7%, the equation
of the dual Hesse pencil coincides with the equation of the original pencil. For
any nonsingular member of the Hesse pencil its nine tangents at the inflection
points, considered as points in the dual plane, determine uniquely a member
of the dual Hesse pencil.

REMARK 3.1. In the theory of line arrangements, the Hesse pencil defines
two different arrangements (see [6] and [27]). The Hesse arrangement consists
of 12 lines (the inflection lines), it has 9 points of multiplicity 4 (the base
points) and no other multiple points. The second arrangement is the dual of
the Hesse arrangement, denoted by AJ(3). It consists of 9 lines (the harmonic
polars) and has 12 multiple points of multiplicity 3. Together these two
arrangements form an abstract configuration (123,94) which is a special case
of a modular configuration (see [15]). In [27] Hirzebruch constructs certain
finite covers of the plane with abelian Galois groups ramified over the lines
of the Hesse configuration or its dual configuration. One of them, for each
configuration, 1s a surface of general type with universal cover isomorphic to
a complex ball.

PROPOSITION 3.2. Let Ex be a nonsingular member of the Hesse pencil.
Let LiNEx = {q1,q2,q3} and let Ey, j = 1,2,3, be the curve from the
Hesse pencil whose tangent at p; contains g;. Then He(E,) = Ey if and only
{l.f IS {)\1,)\2,/\3}.

Proof. 1t is a straightforward computation. Because of the symmetry of
the Hesse configuration, it is enough to consider the case when i = 0, i.e.
pi=(0,1,—1). We have that Ly: y—z=0 and Ly N E, 1s equal to the set
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of points ¢; = (1,y;,y;) satisfying 1+2yj3 - )\yjz = 0. The line pg,q; has the
equation —2y;x +y+z=0. The curve E, from the Hesse pencil 1s tangent
to this line at the point (0,1, —1) if and only if (—y,3,3) = (-2, 1,1), i.e.
y; = p/6. Thus

1+2y 108+ 4°
i 3u*

Comparing with formula (8), we see that h(x) = A. This proves the
assertion.

Let £ be a smooth plane cubic curve which is not equianharmonic. Then
He(£) is smooth and, for any g € He(E), the polar conic P,(E) has one
1solated singular pomt s,. In fact, s, lies on He(E) and the map g — 54 1s
a fixed point free involution on He(E) (see, for example, [14]). If we fix a
group law on He(E) with zero at p;, then the map g+ s, is the translation
by a non-trivial 2-torsion point 7. In the previous proposition this 2-torsion
point 1s one of the intersection points of the harmonic polar L; with He(FE)
such that £ is tangent to the line connecting this point with the inflection
point p;.

The quotient He(E)/{n) is isomorphic to the cubic curve in the dual
plane P? parametrizing the lines q,54. This curve is classically known as the
Cayleyan curve of E. One can show that the Cayleyan curve also parametrizes
the line components of reducible polar conics of E. In fact, the line g,s, is
a component of the polar conic P,(F), where a is the intersection point of
the tangents of He(£) at g and s, .

PROPOSITION 3.3. If E = E) is a member of the Hesse pencil, then its
Cayleyan curve Ca(E)) is the member of the dual Hesse pencil corresponding
to the parameter

54 — )3
oN

Proof. To see this, following [9], p.245, we write the equation of the
polar conic P;(Eg,) with respect to a point g = (u,v,w) :

©) ¢(\) =

u(x” + 2pyz) + v(* + 2px2) + w(@® + 2pxy) = 0.
It is a reducible conic if the equation decomposes into linear factors, say

u(x® + 24yz) + v(7* + 2pxz) + w(@ + 2pxy) = (ax + by + cz)ax + Gy + z2).
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This happens if and only if

u 2uw 2uv ac a3 + ba ay + ca
2pw v 2pu ) = | af + b bs cf3 + by
2uv 2pu w ay + co cB+ by cy

Considering this as a system of linear equations in the variables u, v, w,a,b, ¢
we get the condition of solvability as the vanishing of the determunant

—1 0 0O o 0 O
0 -1 0 0 8 0
0 0 -1 0 0 ~ 5. 5 o B
0 -2 0 ~ 0 «
0 0 2y f a O

If we take («,3,7) as the coordinates in the dual plane, this equation
represents the equation of the Cayleyan curve because the line ax + By + 7z
is an irreducible component of a singular polar conic. Setting 1 = \/6, we

get (9).

Note that the Cayleyan curve Ca(E)) = He(E))/{(n) comes with a
distinguished nontrivial 2-torsion point, which is the image of the nontrivial
coset of 2-torsion points on He(Ey). This shows that Ca(E),) = He(EL) for a
uniquely defined member EL of the dual Hesse pencil. The map a: P! — P!,
A — i gives an isomorphism between the spaces of parameters of the Hesse
pencil and of its dual pencil such that h(a(A)) = ¢(A). One checks that

H(—18/X) = c()).

REMARK 3.4. The Hesse pencil in the dual plane should not be confused
with the (non-linear) pencil of the dual curves of members of the Hesse pencil.
The dual curve of a nonsingular member £, = E,; 3, of the Hesse pencil
is a plane curve of degree 6 with 9 cusps given by the equation

(10)  mg(Xg + X7 + X3) — moQmg + 32m)(XoX] + XoX; + X5X7)

— 24mim* XX X0 (X5 + X5+ X5) — Qdmmy + Bm XXX = 0.
This equation defines a surface V in P! x P? of bi-degree (4, 6), the universal
family of the pencil. The projection to the first factor has fibres isomorphic

to the dual curves of the members of the Hesse pencil, where the dual of a
triangle becomes a triangle taken with multiplicity 2. The base points p; of
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the Hesse pencil define 9 lines £, in the dual plane and each of the 9 cusps
of an irreducible member from (10) lies on one of these lines. The unique
cubic passing through the nine cusps is the Cayleyan curve of the dual cubic.
If (m,x) € V, then the curve E, has the line £, (dual to x) as its tangent
line. For a general point x, there will be 4 curves in the Hesse pencil tangent
to this line, in fact the degree of the second projection V — P? is equal
to 4. Each line ¢, lies in the branch locus of this map and its preimage in
V has an irreducible component ¢, contained in the ramification locus. The
surface V 1is singular along the curves IZ,i and at the points corresponding to
the vertices of the double triangles. One can show that a nonsingular minimal
relative model of the elliptic surface V — P! is a rational elliptic surface
isomorphic to S(3). Thus, the dual of the Hesse pencil is the original Hesse
pencil in disguise.

REMARK 3.5. The iterations of the maps h: P! — P! and ¢: P! — P!
given by (8) and (9) were studied in [28]. They give interesting examples
of complex dynamics in one complex variable. The critical points of h are
the four equianharmonic cubics and its critical values correspond to the four
triangles. Note that the set of triangles is invariant under this map. The set
of critical points of ¢ is the set of triangles and it coincides with the set
of critical values. The equianharmonic cubics are mapped to critical points.
This shows that both maps are critically finite maps in the sense of Thurston
(see [37]).

4. TUe HESSIAN GROUP

The Hessian group is the subgroup Gz of Aut(P?) = PGL(3,C)
preserving the Hesse pencil*). The Hessian group acts on the space P! of
parameters of the Hesse pencil, hence defines a homomorphism

(11) a: Gag — Aut(Pl).

Its kernel K is generated by the transformations
90(x7 Y, Z) = (x,Z,y),
gl(x,y,z) = (V,Z,X),
92(x7 Y, Z) = (-x7 €y, 622) ’

*) Not to be confused with the Hesse group isomorphic to Sp(6,Fy) which is related to the
28 bitangents of a plane quartic.
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and contains a normal subgroup of index 2
T = (g1, 9:) = (Z/3Z)".

If we use the group law with zero py on a nonsingular member of the pencil,
then g; induces the translation by the 3-torsion point p; and g, that by the
point py .

The image of the homomorphism (11) is clearly contained in a finite
subgroup of Aut(P') isomorphic to the permutation group Sj. Note that it
leaves invariant the zeros of the binary forms A(fy,t), B(fg,t;) from (5). It
is known that the group S, acts on P! as an octahedral group, with orbits
of cardinalities 24,12,8, 6, so it cannot leave invariant the zeros of a binary
form of degree 4. However, its subgroup A4 acts as a tetrahedral group with
orbits of cardinalities 12, 6,4, 4. This suggests that the image of (11) 1s indeed
isomorphic to Ay4. In order to see that it is, it suffices to exhibit transformations
from G, which are mapped to generators of A; of orders 2 and 3. They
are

1 1 1 1 0 0
a={1 ¢ &, g=|0 ¢ 0
1 & & 0 0 €

The group generated by go, g3, g4 18 a central extension of degree two of
Ay . Tt is isomorphic to the binary tetrahedral group and to the group SL(2,F3).
Note that g3 = go so

Gats = (91, 92, 93, 94) -

It is clear that the order of Gai16 18 equal to the order of K multiplied by
that of A4, making 1t equal to 216. Hence the notation.

PROPOSITION 4.1.  The Hessian group Gy is isomorphic to the semi-direct

product
I x SL(2, F3),

where SI(2,Fs) acts on T = (Z/3Z)* via the natural linear representation.

The Hessian group clearly acts on the set of nine points p;, giving a
natural homomorphism from G, to Aff,(3), the affine group of F%, In fact,
the Hessian group is the subgroup of index 2 of Aff,(3) of transformations
with linear part of determinant equal to 1. In this action the group Gas 18
realized as a 2-transitive subgroup of the permutation group Sy on {0, 1,...,8}
generated by permutations

T = (031)475)(682) and U = (147)(285)
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(see [11], 7.7). The stabilizer subgroup of the point py is generated by U
and TUT™! = (354)(678), and coincides with (g3, g4).

REMARK 4.2. The group Aff,(3) of order 432 that contains Gy as a
subgroup of order 2 1s isomorphic to the Galois group of the equation of
degree 9 defining the first coordinates of the inflection points of a cubic with
general coefficients in the affine plane [13], [55].

The Hessian group Gage, considered as a subgroup of PGL(3, C), admits
two different extensions to a subgroup of GL(3,C) generated by complex
reflections. The first group Gy is of order 648 and is generated by reflections
of order 3 (no.25 in Shephard-Todd’s list [48]). The second group (_?;16 1s of
order 1296 and is generated by reflections of order 3 and reflections of order
2 (no.26 in Shephard-Todd’s list). The images of the reflection hyperplanes
of Gy in the projective plane are the inflection lines, while the images of
the reflection hyperplanes of (_?;16 are the inflection lines and the harmonic
polars.

The algebra of invariants of G, is generated by three polynomials of
degrees 6, 9 and 12 (see [36], [52]):

D = x° +)° + 2 — 105y + P2 +y°7),
Dy = (> — )& =2 - 2),
D1y = (43 + D+ +2)° + 21677,

Note that the curve ®9 = 0 is the union of the nine harmonic polars L; and
that the curve @, = 0 1s the union of the four equianharmonic members of
the pencil. The union of the 12 inflection lines is obviously imvariant with
respect to Gy, however the corresponding polynomial P}, of degree 12 is
not an invariant but a relative invariant (i.e. the elements of Gy transform
the polynomial to a constant multiple).

The algebra of mvariants of the second complex reflection group (_?;16 18
generated by ®g, @}, and a polynomial of degree 18,

bis =+ +2)° — MY 2P + Y+ 2)° — 5832x°y°°.

The curve ®ig = 0 is the union of the six harmonic cubics in the pencil.
Later we will give a geometric meaning to the 18 intersection points of the
curve defined by &5 = 0 with nonsingular members of the pencil.

A third natural linear extension of the group Gaie is the preimage G
of the group under the projection SI.(3,C) — PGL(3,C). This is a group of
order 648 isomorphic to the central extension 3Gy of Gz, but it is not
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isomorphic to Gy16. The preimage of the subgroup I' in 3G,;6 is a non-abelian
group of order 27 isomorphic to the Heisenberg group Hs(3) of unipotent
3 % 3-matrices with entries in Fs. The group G}, is then isomorphic to the
semi-direct product Hz(3) x SI.(2,F3) and is generated by g1, ¢z, ﬁ%,

e*™/%g, considered as linear transformations.

REMARK 4.3. Classical geometers used to define a projective transforma-
tion as a pair consisting of a nondegenerate quadric in the projective space
and a nondegenerate quadric in the dual projective space. If P* = P(V),
then the first quadric is given by a quadratic form on V which defines a
linear map ¢: V — V*. The second quadric defines a linear map V* — V
and the composition with the first one is a linear map V — V. In [21]
the Hessian group is given by a set of 36 conics which are identified
with conics in the dual plane P? by means of an isomorphism P2 — P2
defined by the conic x3 + x% + x2 = 0. These conics are the polars of
four equianharmonic cubics in the pencil with respect to the 12 vertices of
the inflection triangles. The 12 of them which are double lines have to be
omitted.

It 1s known that the simple group G = PSp(4,F3) of order 25,920 has two
maximal subgroups of index 40. One of them is isomorphic to the complex
reflection group G5 of order 648. Tt has the following beautiful realization
in terms of complex reflection groups in dimensions 4 and 5.

It is known that the group Z/3Z x Sp(4,Fs) is isomorphic to a complex
reflection group in C* with 40 reflecion hyperplanes of order 3 (no.32 in
Shephard-Todd’s list [48]). This defines a projective representation of G in P3
and the stabilizer subgroups of the reflection projective planes are isomorphic
to Gas. The reflection planes cut out on each fixed reflection plane the
extended Hesse configuration of 12 inflection lines and 9 harmonic polars
([36], p.334).

It is also known that the group Z/2Z x G % Sp(4,F3) is isomorphic to
a complex reflection group in C° with 45 reflection hyperplanes of order 2
(n0.33 in Shephard-Todd’s list [48]). This defines a projective representation
of G in P*. The algebra of invariant polynomials with respect to the complex
reflection group Z/2Z x G was computed by Burkhardt [8]. The smallest
degree invariant is of degree 4. Its zero locus in P* is the famous Burkhardt
quartic hypersurface with 45 nodes where 12 reflection hyperplanes meet.
There are 40 planes forming one orbit, each containing 9 nodes. Each such
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plane contains 12 lines cut out by the reflection hyperplanes. They form the
Hesse configuration with the 9 points equal to the set of base points of the
Hesse pencil.

One can find an excellent exposition of the results of Maschke and
Burkhardt in [29]. There is also a beautiful interpretation of the geom-
etry of the two complex reflection groups in terms of the moduli space
A2(3) of principally polarized abelian surfaces with some 3-level structure
(see [17], [20]). For example, one can identify .4,(3) with an open subset
of the Burkhardt quartic whose complement is equal to the unmion of the
40 planes.

5. THE QUOTIENT PLANE

Consider the blowing up 7: S(3) —+ P? of the base points p; of the
Hesse pencil and the elliptic fibration (6):

$:SB@) — P, (uy,— X +y +2).

The action of the group ' on P2 lifts to an action on $(3). Fixing one section
of ¢ (i.e. one point p;), the group I' is identified with the Mordell-Weil group
of the elliptic surface and its action with the translation action. Let

¢: 83)/T — P, 7 5(3)/T — P*/T,

be the morphisms induced by ¢ and 7, respectvely.

PROPOSITION 5.1.  The quotient surfaces P* /T and S(3)/T have 4 singular
points of type A, given by the orbits of the vertices (7). The minimal resolution
of singularities are isomorphic to a Del Pezzo surface S of degree 1 and to
S(3), respectively. Up to these resolutions, ¢ is isomorphic to ¢ and T is
the blowing up of S in one point, the I -orbit of the points p;.

Proof. The group T preserves each singular member of the Hesse pencil
and any of its subgroups of order 3 leaves invariant the vertices of one of
the triangles. Without loss of generality we may assume that the triangle is
xyz = 0. Then the subgroup of T stabilizing its vertices is generated by the
transformation ¢, which acts locally at the point y = z = 0 by the formula



THE HESSE PENCIL OF PLANE CUBIC CURVES 251

(y,2) > (cy, €27). Tt follows that the orbits of the vertices give 4 singular points
of type A; in P?/T and S(3)/T, locally given by the equation uv+w> = 0.

Let E be an elliptic curve with a group law and let [n]: E — E be the
map x + ax. It 1s known that this map 1s a surjective map of algebraic groups
with kernel equal to the group of n-torsion points. Its degree is n? if n is
coprime to the characteristic. In our case the quotient map by I' acts on each
member of the Hesse pencil as the map [3]. This implies that the quotient of
the surface S(3) by the group T is isomorphic to S(3) over the open subset
U=P"\ {Ato,t;) = 0}.

The map ¢: S(3)/T — P! induced by the map ¢ has four singular
fibres. Each fibre is an irreducible rational curve with a double point which
is a singular point of the surface of type A;. Let o: SG3) —» S3)/T be a
minimal resolution of the four singular points of S(3)/I'. The composition
doa: SBY — P! is an elliptic surface isomorphic to ¢: SG3) — P! over the
open subset U of the base P'. Moreover, ¢ o o and ¢ have singular fibres
of the same types, thus S(3)" is a minimal elliptic surface. Since it is known
that a birational isomorphism of minimal elliptic surfaces is an isomorphism,
this implies that ¢ o o is isomorphic to ¢.

The minimal resolution § of P?/T" contains a pencil of cubic curves
intersecting 1 one point gg, the orbit of the points p;. Hence it easily follows
(see for example [10]) that S is isomorphic to a Del Pezzo surface of degree
one and 7 1s the blowing up of the point g.

Let 7': S3) — P? be the contraction of the 9 sections Ey,...,FEg of the
elliptic fibration ¢ o ¢ to the points q,...,qg in P2, the base points of the
Hesse pencil in the second copy of PZ%.

By Proposition 5.1 the following diagram is commutative :

S3) —— S3)/T +—~— S@3Y

\
o
B

P2 £ Pr «—— § 2 p2

A

(12) g

Here p 1s the quotient map by I', 5 1s a minimal resolution of singularities
of the orbit space P?/T", « is the blow-up of the point ¢o on S, and ~ is the
blow-up of ¢i,...,g9s (see the notation in the proof of Proposition 5.1).
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PROPOSITION 5.2. The curves B; = p~ Y (3(a(E))), i = 1,...,8, are plane
cubic curves with equations

Bi: F+ef+edd =0, By: 24y e =0,
By: xry+yz+72x=0, Bs: xz+yix+722y=0,
By: x*y+ iyt ertx=0, Br: x*zteyx+ ey =0,
By: xytez+eix=0, Bg: x*z+eyx+ety=0.

The union of the eight cubics B; cuts out on each nonsingular member of the
Hesse pencil the set of points of order 9 in the group law with the point pg
as the origin.

Each of them has one of the triangles of the Hesse pencil as inflection
triangle and is inscribed and circumscribed to the other three triangles (i.e.
is tangent to one side of the triangle at each vertex).

Proof. Recall that the sections Ey,...,Eg on S$(3) are non-trivial
3-torsion sections (the zero section is equal to Ep). The preimage B; of
E; under the map r~! oo cuts out on each nonsingular fibre the I'-orbit of a
point of order 9. Thus the image B; of B; in P? is a plane cubic cutting out
the T -orbit of a point of order 9 on each nonsingular member of the Hesse
pencil.

Let £ be a nonsingular member of the Hesse pencil. Take a point p € E
and let ¢ # p be the intersection of E with the tangent line at p. Let r # ¢
be the intersection of E with the tangent line at ¢. Finally, let s # r be the
intersection of £ with the tangent line at r. It follows from the definition of
the group law that we have 2p B g =2qg & r = 2r 5 = 0. This immediately
implies that 9p = 0 if and only if p = s (this explains why the classical
authors called a point of order 9 a coincidence point). The triangle formed
by the lines p,q, q,r, 7,p 1s inscribed and circumscribed to E. Following
Halphen [23], we will use this observation to find the locus of points of
order 9.

The tangent line of E at p = (x¢, Yo, Z0) has the equation

(x% + tyozo)x + (y% + txozo)y + (Z% + txoy0)z = O,

where we assume that £ = E3,. The point ¢ = (xo, €9, ¢220) lies on E because
(x0, Y0, 20) € E ; it also lies on the tangent line at p if p = (xp, yo,20) satisfies
the equation

(13) Bi:xX +e +82 =0.

If p satisfies this equation, then ¢ also satisfies it, hence r = (xo, €20, €Z0)
lies on the tangent at ¢ and again satisfies (13). If we repeat this procedure
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we return to the original point p. Hence we see that any point in By N E is
a point of order 9. Now we apply the elements of the Hessian group to the
curve B; in order to get the remaining cubic curves B,,...,Bg. Notice that
the stabilizer of B; in the Hessian group is generated by I' and g4. It is a
Sylow 3-subgroup of the Hessian group isomorphic to a semi-direct product
I'xZ/3Z.

To check the last assertion it 1s enough, using the G»i6-action, to consider
one of the curves B;. For example, we see that the triangle 7', of equation
xyz = 0 is an inflection triangle of the curve B; and that the triangles 73,73, 74
are inscribed and circumscribed to B;. More precisely we have the following
configuration:

1) B; and B;;4 have 7; as a common inflection triangle and they intersect
in the 9 vertices of the other triangles;

1) B; and B;, i #j, i, j <4, intersect in the 3 vertices of a triangle 7T}
and are tangent in the 3 vertices of 7, with k, £ ¢ {i,j};

i) B; and Bj, i # j, i,j < 4, intersect similarly with k& and £
interchanged.

For example, B; and B, intersect in the vertices of 73 and are tangent
in the vertices of Ty, while B; and By intersect transversally on T, and are
tangent on 73. [

We will call the cubics B; the Halphen cubics. Observe that the element go
from the Hessian group sends B; to B; 4. We will call the pairs (B;, B} = B;14)
the pairs of Halphen cubics and we will denote by ¢;, q¢ = gi14 the
corresponding pairs of points in P2

It can easily be checked that the projective transformations g¢s, g4 act on
the Halphen cubics as follows (with an obvious notation):

g (12U2)434'3)), qu:  (243)Q'43)).

REMARK 5.3. The linear representation of I' on the space of homoge-
neous cubic polynomials decomposes into the sum of one-dimensional eigen-
subspaces. The cubic polynomials defining B; together with the polynomials
xyz, X +y> +z> form a basis of eigenvectors. Moreover, note that the cubics
B; are equianharmonic cubics. In fact, they are all projectively equivalent to
Bi, which 1s obviously isomorphic to the Fermat cubic. We refer to [2], [3]
where the Halphen cubics play a role in the construction of bielliptic surfaces
in P*.
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REMARK 54. According to G. Halphen [23], the rational map
yofB top: PP——— P?
can be given explicitly by
(¥, 3,2) =+ (PyP5PY, PaP3Py, xyzPiPy)

where P;, P, are the polynomials defining B; B! as in Proposition 5.2. His
paper [23], besides many other iteresting results, describes the locus of
m-torsion points of nonsingular members of the Hesse pencil (see [19] for a
modern treatment of this problem).

REMARK 5.5. In characteristic 3 the cyclic group of projective transfor-
mations generated by ¢; acts on nonsingular members of the Hesse pencil as
translation by 3 -torsion points with the zero point taken to be (1,—1,0). The
polynomials

XY, Z,W) =Py + Y+ P, 0y +yd + o, 2+ Y + 2, x07)

are invariant with respect to g; and map P? onto a cubic surface in P? given
by the equation (see [22], (3.1))

(14) X4+ Y+ 72°W =XYZ.

Among the singular points of the cubic surface, (0,0,0, 1) is a rational double
point of type Eél) in Artin’s notation [1]. The image of the member E) of the
Hesse pencil 1s the plane section Z+ AW = 0. Substituting in equation (14),
we find that the image of this pencil of plane sections under the projection
from the singular point is the Hesse pencil. The parameter A\ of the original
pencil and the new parameter )’ are related by A\ = A3,

6. THE 8-CUSPIDAL SEXTIC

Let Cs be the sextic curve with equation ®¢ = 0, where ¥y 1s the
degree six invariant of the Hessian group. This is a smooth curve and one
immediately verifies that it does not contain the vertices of the inflection
triangles 77,...,7T4 given in (7) or the base points of the Hesse pencil.

This shows that the preimage C¢ = 7~ '(Cs) of Cs in the surface S(3) is
isomorphic to Ce¢ and that the group T acts on Ce freely. The orbit space
Cs/T is a smooth curve of genus 2 in S(3)/T which does not pass through
the singular points and does not contain the orbit of the section 7 !(pg). Its



THE HESSE PENCIL OF PLANE CUBIC CURVES 255

preimage under ¢ is a smooth curve éé of genus 2 in $(3) that intersects
a general fibre of the Hesse pencil at 2 points. Observe that the curve Cg 1s
tangent to each Halphen cubic B;, B! at a T-orbit of 9 points. In fact, it is
enough to check that C¢ 1s tangent to one of them, say B, at some point.
We have

xﬁ 4 y6 +Z6 _ 10(x3y3 _|_x3z3 +y3z3)
=@ +y +2) - 1200 + 22 +’7)
=3+ +2P+H° + e +EDNE +EY + ).

This shows that the curves By and B are tangent to Cs at the points where
Ce intersects the curve Ey: x> +y° +z° = 0. The map 7': S3) — P? blows
down the curves F;, i =1,...,8, to the base points ¢i,...,qgs, of the Hesse
pencil. Hence the image Cj of 6; in P? is a curve of degree 6 with cusps
at the points ¢y,...,¢gs.

PROPOSITION 6.1.  The 8-cuspidal sextic Cy is projectively equivalent to
the sextic curve defined by the polynomial

DL(x, ¥, 2) = (P +y+2)2 =36y’ 2+ 24+ 2y H — 12y +y)— 122 (Py-+pP).

Proof. In an appropriate coordinate system the points g; have the same
coordinates as the p;’s. By using the action of the group T', we may assume that
the sextic has cusps at py,...,pg. Let V be the vector space of homogeneous
polynomials of degree 6 vamishing at py....,pg with muluplicity > 2. If §
is the blowing-up of ¢i,...,g9s and Ky is its canonical bundle, then P(V)
can be identified with the linear system | —2Ky |. It is known that the linear
system |—2Ks| is of dimension 3 (see [12]) and defines a regular map of
degree 2 from S to P® with the image a singular quadric.

A basis of V can be found by considering the product of six lines among
the 12 inflection lines. In this way one finds the following sextic polynomials

(15) A =yzo+ ey + D+ y+edx+ Ey+ D+ y+€2),
Ay =yia+ey+ D+ ey + e +y+e)x +ey+2),
Ay =yilx+ €y + a4+ y+ E)a+ ey + €+ €y + €2),
A= tey e+ eyt edx+y+e)
x(@x+ey++eEy+r+y+e).

A polynomial P(x,y,z) defining the curve C. is invariant with respect to
the linear representation of the binary tetrahedral group 7 = SI(2,Fs) in V.
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This representation decomposes into the direct sum of the 3-dimensional
representation isomorphic to the second symmetric power of the standard
representation of 2.A4 in C? and a one-dimensional representation spanned
by P(x,y,z). Applying g4 we find that

(A1, Az, As, Ag) 1+ (EAs, E Az, A1, Ay) .

Thus P(x,y,z) = A(A; + €%A; + €A3) + ptA4 for some constants ), 1. Now we
apply gs and find A, i such that P(x,y,z) is invariant. A simple computation
gives the equation of Cj.

REMARK 6.2. The geometry of the surface S, the blow-up of P? at
qi,---,qg, 18 well-known. We now present several birational models of this
surface and relations between them.

The surface § 1s a Del Pezzo surface of degree 1 and admits a birational
morphism #: § — S onto a surface in the weighted projective space
P(1,1,2,3) given by an equation

(16) —u3 + 15 + Alug, u)ug + Blug,u,) =0,

where (ug, 11, uz,u3) have weights 1,1,2,3 (see [12]). The morphism 2/ is an
1somorphism outside of the union of the 8 lines /¢;,...,fg which correspond
to factors of the polynomials Aj,...,As from (15). In fact, the map ¢ is a
resolution of indeterminacy points of the rational map : P> ——— P(1,1,2,3).
It is given by the formulae

(-x,y,Z) — (MOa ulau27M3) = (_xyZ7 .?C3 +y3 + [?'7 (I)Ié(xaya Z)? Pg(x,y,z)),

where Po(x,y,7) = 0 1s the union of the line ¢, : y —z =0 and the 8 lines
0y, ..., 0. Explicitly,

Po(x,y,2) = yz(y — )@ + ¥ (2y° =3y 2 = 3y +22°) + (° — yz + 2)°.

Up to some constant factors, the polynomials A,B are the same as in (5).
The 8 lines are blown down to singular points of the surface.

The composition of i with the projection (i, i1, 2, u3) 5 (U3, touy , 1>, 112)
gives the rational map P?-—— P> defined by

(xa Y, Z) = (u0> Uy, Uy, MS) = (x2y222>xyz(x3 +y3 &3 Z3)7 (x3 +y3 T+ Z3)21 (I)/6) 4

This is a 2.A4-equivariant map of degree 2 onto the quadric cone ugu, —u> = 0,
The ramification curve is the line y —z = 0 and the branch curve 1s the
intersection of the quadric cone and a cubic surface. This is a curve W of
degree 6 with 4 ordinary cuspidal singularities lying on the hyperplane us = 0.
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Consider the rational map ¢ = vo /3~ 'op: P2——— P? from diagram (12).
It follows from the description of the maps in the diagram that the preimage of
the Hesse pencil is a Hesse pencil, the preimage of the curve C[ is the curve
Ce, and the preimage of the union of the lines ¢, ¢q,...,{s is the union of
harmonic polars. This shows that the composition 7’0 ¢: P> ——— P(1,1,2,3)
can be given by the formulae

(JC,)@ Z) g (xyz, x3 +y3 +237 (I)6(x7y7 Z)7 <I>9(x,y,z)),

where ®o(x,y,z) is the invariant of degree 9 for the group G, given in §4.
This agrees with a remark of van Geemen in [53] that the polynomials
xyz, © +y + 22, Pglx,y,z), and Do(x,y,z) satisfy the same relation (16)
as the polynomials xyz, x> +y> + 22, ®L(x,y,2), and Po(x,y,z). Using the
standard techniques of invariant theory of finite groups one can show that the
polynomials xyz, x> +y +2°, ®e(x,y,z), and do(x,y,z) generate the algebra
of invariants of the Heisenberg group H3(3), the preimage of I" in SL(3, F3).
The equations of S with respect to different sets of generators were given
in [7] and [54].

Finally, we explain the geometric meaning of the intersection points of the
sextic curve Cg with a nonsingular member £y of the Hesse pencil. This set
of intersection points is invariant with respect to the translation group T' and
the involution go, thus its image in C, = Cs/T consists of two points on the
curve E) . These points lie on the line through the point py because they differ
by the negation involution gy on E) in the group law with the zero point pg.

PROPOSITION 6.3. The curves Cg and Ey intersect at two points p,q
outside the base points p1,...,ps. These points lie on a line through po
which is the tangent line to the Hessian cubic He(Ey) at po. The 18 points
in Co N Ey are the union of the two T -orbits of p and q.

Proof. This is checked by a straighttorward computation. By using
MAPLE® we find that the curves C%, E, and the tangent line to Eyony
at po have two intersection points.

7. A K3 SURFACE WITH AN ACTION OF Gag

In the previous sections we introduced two plane sextics, Cy and Cg,
which are naturally related to the Hesse configuration. The double cover of
P? branched along any of these curves is known to be birationally isomorphic
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to a K3 surface, 1.e. a simply connected compact complex surface with trivial
canonical bundle. This follows from the formula for the canonical sheaf of a
double cover f: ¥ — P? of the projective plane branched along a plane curve
of degree 2d

wy = [ (wp: @ Op(d))

and the fact that the singular points of Y are rational double points, i.e. they
can be characterized by the condition 7w*(wy) = wx, where 7: X — Y is a
minimal resolution of singularities.

In the following sections we will study the geometry of the K3 surfaces
associated to Cg and Cj; in particular we will show how the symmetries
of the Hesse configuration can be lifted to the two surfaces. We start by
presenting some basic properties of K3 surfaces and their automorphisms
(see for example [5] and [40]).

Since the canonical bundle is trivial, the vector space ©?(X) of holomorphic
2-forms on a K3 surface X 1s one-dimensional. Moreover, the cohomology
group L = H*(X,Z) is known to be a free abelian group of rank 22. The
cup-product equips L with a structure of a guadratic lattice, 1.e. a free
abelian group together with an integral quadratic form. The quadratic form is
unimodular and its signature 1s (3,19). The sublattice Sy C L generated by
the fundamental cocycles of algebraic curves on X is called the Picard lattice
and has signature equal to (1,k). Its orthogonal complement 7x in L 1s the
transcendental lattice of X .

Any automorphism g of X clearly acts on Q*(X) and also induces an
isometry ¢* on L which preserves Sy and Tx. An automorphism ¢ that acts
identically on Q2(X) is called symplectic. We recall here a result proved in [43].

THEOREM 7.1. Let g be an automorphism of finite order on a K3
surface X.

1) If g is symplectic then g* acts trivially on Tx and its fixed locus is
a finite union of points. The quotient surface X/(g) is birational to a K3
surface.

ii) If g is not symplectic then g* acts on Q*(X) as the multiplication by
a primitive r-th root of unity and its eigenvalues on Tx @ C are the primitive
r-th roots of unity. Moreover, if the fixed locus is not empty, then the quotient
X/(g) is a rational surface.

Let ¢: X — P? be the double cover branched along Cs. We now prove
that the action of the Hessian group on the projective plane lifts to an action
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on X. We denote by Qg the 2-Sylow subgroup of SL(2,Fs), isomorphic to
the quaternion group.

PROPOSITION 7.2. The Hessian group Gas IS isomorphic to a group
of automorphisms of the K3 surface X. Under this isomorphism, any
automorphism in the normal subgroup Hyy =T x4 Qg is symplectic.

Proof. The double cover g: X — P? branched along the curve Cs can
be defined by the equation

w2 —|—<I>6(x,y,z) = Oa

considered as a weighted homogeneous polynomial with weights (1,1,1,3).
Thus we can consider X as a hypersurface of degree 6 in the weighted
projective space P(1,1,1,3).

Let G}, be the preimage of Gy in SL(3,C) considered in Section 4 and
let g/ (i=1,...,4) be the lifts of the generators g; in G},,. It is checked
immediately that the generators gi,g;, g5 leave the polynomial ®¢ invariant
and g, multiplies ® by €*. Thus the group G, acts on X by the formula

gi(-xa Y. 4 w) = (g;(xa Y, Z),”LU) for i # 4.4 94(-x9 Y. &, w) = (gﬁ;(x,y,z), ew) .

The kernel of G}, — Gae is generated by the scalar matrix (e, €, €), which
acts as the identity transformation on X. Then it is clear that the induced
action of Gy on X is faithful.

The subgroup Hs, of Giie 18 generated by the transformations g1, 92, g3,
g4g3g4_1. To check that it acts symplectically on X we recall that the space
of holomorphic 2-forms on a hypersurface F(xo,...,x,) of degree d in P"
1s generated by the residues of the meromorphic #-forms on P" of the type

P , .
w:FZﬂ(—l)’xidxl/\---/\dxﬂ\~-/\dxm
=

where P is a homogeneous polynomial of degree d —»n — 1. This is easily
generalized to the case of hypersurfaces in a weighted projective space
P(go....,g94). In this case the generating forms are

P . —~
W= F;(—l)’q,-x,-dxl/\m/\dx,-/\m/\dx,,,

where degP=d —qgo—--- — ¢y
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In our case d = go + q1 + g2 + g3 = 0, hence there is only one form, up
to proportionality. It is given by
_xdyNdzNdw —ydx Ndz Ndw + zdx Ady Adw —3wdx ANdy Ndz
B w? +q)6(x,y,z) .

W

It is straightforward to check that the generators of Hy; leave this form
invariant (cf. [41], p. 193).

REMARK 7.3. The action of T x Qg appears as Example 0.4 in the paper
of S. Mukai [41] containing the classification of maximal finite groups of
symplectic automorphisms of complex K3 surfaces.

Let P;, Pl (i=1,...,4) be the polynomials defining the cubics B;, B;4
as given 1n Section 5 and F; be the equations of the equianharmonic cubics
in the Hesse pencil :

Fio,y, 0= +Y +2tamyz  (i=1,...,9),
where a; = 0 and «; = 627 for i =2,3,4 (see Section 2).
PROPOSITION 7.4. The K3 surface X is isomorphic to the hypersurface
of bidegree (2,3) in P! x P* with equation
(17) WP P(x,y,2) + VP Pj(x,y,2) + V3uvFi(x,y,2) = 0
forany i=1,...,4.
Proof. As noticed in the previous section we can write

B = det (j;{l ‘ﬁf 1) = 3P 1 4P\ P,
1

The K3 surface Y given by the bihomogeneous equation of bidegree (2,3)
in P! x P?

(18) 2Py (x, ¥, 2) + VPP, ¥, 2) + V3uvF(x, y,2) = 0

is a double cover of P? with respect to the projection to the second factor
and its branch curve is defined by ®s = 0. Thus Y is isomorphic to the K3
surface X. By acting on equation (18) with the Hessian group Gai16 we find
analogous equations for X in P! x P? in terms of the polynomials P;, P} and
F; for i =2,3,4.
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An important tool for understanding the geometry of K3 surfaces is the
study of their elliptic fibrations. We recall that the fibration 1s called jacobian
il it has a section.

PROPOSITION 7.5. The K3 surface X has 4 pairs of elliptic fibrations
hibl: X — P (i=1,...,4

with the following properties :

a) h; and b} are exchanged by the covering involution of q and Gy acts
transitively on byp,...,04;

b) the j-invariant of any smooth fibre of h; or bl is equal to zero;

¢) each fibration has 6 reducible fibres of Kodaira’s type 1V, i.e. the union
of three smooth rational curves intersecting at one point. The singular points
in the reducible fibres of ©; and b, are mapped by q to the vertices of the
triangle T; ;

d) each fibration is jacobian.

Proof. Consider the equations (17) for X in P! x P?. The projections on
the first factor h;: X — P!, i = 1,...,4 are elliptic fibrations on X since
the fibre over a generic point (u,v) is a smooth plane cubic. A second set
of elliptic fibrations on X is given by h} = h; o o, where ¢ is the covering
mnvolution of ¢g. Since all these fibrations are equivalent modulo the group
generated by ¢ and G,y6, it will be enough to prove properties b), ¢) and d)
for h;.

The fibre of h; over a point (u,v) is isomorphic to the plane cubic defined
by equation (18). This equation can be also written in the form

(u® +v* + \/guv)x?’ + (et + *0* + \/guv)y3 + (Eu* + ev? + \/guv)zs =G

Hence it is clear that all smooth fibres of h; are isomorphic to a Fermat cubic
1.e. they are equianharmonic cubics. This system of plane cubics contains
exactly 6 singular members corresponding to the vanishing of the coefficients
at x°, y> and z>. Bach of them is equal to the union of three lines meeting
at one point and defines six singular fibres of type IV of the elliptic fibration
1. The singular points of these reducible fibres are the inverse images of the
vertices vy, vy, v, of the triangle 77 under the map g (see (7) in Section 2).
This proves assertions b) and c).

It remains to show that the elliptic fibration f; has a section. We thank
N. Elkies for explicitly finding such a section. It is given by

@, 3,20 = ((1 = Qu +dov, (1 — Yu+ dyv, (1 — u + dyv)
where (d07d17d2) = igS(_\g/Z7 € -t 17 6\3/5)
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REMARK 7.6. Consider the map
PZ__>P27 (x’y’z)|__>(x3,y37z3).

The 1mage of the curve Cg is a conic 7" and the preimages of the tangent
lines to 7 are plane cubics that are everywhere tangent to Cg. The map
induces a degree 9 morphism from X to P! x P! isomorphic to the double
cover of P? branched along 7. The projections to the two factors give the
fibrations h; and hj.

Note that each family of everywhere tangent cubics to Cg corresponds to
an even theta characteristic # on Cg with h°(6) = 2.

Let 7: ¥ — P! be a jacobian elliptic fibration on a K3 surface Y. The
fibre of 7 over the generic point i is an elliptic curve Y, over the field of
rational functions K of P'. The choice of a section E of 7 fixes a K -rational
pomt on ¥, and hence allows one to find a birational model of ¥, given by
a Weierstrass equation y* —x° —ax—b = 0, where a,b € K. The construction
of the Weierstrass model can be “globalized” to obtain the following birational
model of ¥ (see [10]).

PROPOSITION 7.7.  There exists a birational morphism f: Y — W, where
W is a hypersurface in the weighted projective space P(1,1,4,6) given by
an equation of degree 12

V' —x — Ay, v)x — B(u,v) =0,

with A(u,v), B(u, v) binary forms of degrees 8 and 12 respectively. Moreover :

1. The image of the section E is the point p = (0,0,1,1) € W. The
projection (,v,x,y) v+ (u,v) from p gives an elliptic fibration ©': W' — P!
on the blow-up W' of W with center at p. It has a section defined by the
exceptional curve E' of the blow-up.

2. The map f extends to a birational morphism f': Y — W' over P!
which maps E onto E' and blows down irreducible components of fibres of
7w which are disjoint from E to singular points of W'.

3. Each singular point of W' is a rational double point of type
A, Dy Es, E7 or Eg. A singular point of type A, corresponds to a fibre
of m of Kodaira type 1,1, I (if n=1), or IV (if n = 2). A singular
point of type D, corresponds to a fibre of type I, . A singular point of type
Es, E7, Eg corresponds to a fibre of type IV, III* II* respectively.
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The elliptic surface W is determined uniquely, up to isomorphism, by
the elliptic fibration on Y. It 1s called the Weierstrass model of the elliptic
fibration 7.

It is easy to find the Weierstrass model of the elliptic fibration h;: X — P!
on our surface X.

LEMMA 7.8. The Weierstrass model of the elliptic fibration by, is given
by the equation

yZ—JCS—(M6+’U6)2:O.

Proof. We know from Proposition 7.5 that the j-invariant of a general
fibre of h; 1s equal to zero. This implies that the coefficient A(x,v) in the
Weierstrass equation 1s equal to zero. We also know that the fibration has
6 singular fibres of type IV over the zeros of the polynomial

(u2 + vt 4+ \/STLw)(eu2 + vt + \/§M)(€2M2 + e + \/guv) = u®+2°.

Since each of the fibres is of Kodaira type IV, the singularity of W over a root
of u®+ v® must be a rational double point of type Az, locally isomorphic to
the singularity y* 4 x° +z*. This easily implies that the binary form B(u,v) is
equal to (u®+4v°) up to a scalar factor which does not affect the isomorphism
class of the surface.

LEMMA 7.9. Let Y be a K3 surface with Picard number 20 having a
non-symplectic automorphism of order 3. Then the intersection matrix of Ty
with respect a suitable basis is given by

(19) Ag(=m) = (2’” ’”) ’

m 2m
for some m € L, m > 0.

Proof. Let f be a non-symplectic automorphism of order 3 on Y.
By Theorem 7.1ii), f* acts on Ty @ C with eigenvalues e, 2. Let x € Ty,
x # 0, then

0= @+ @)+ V@, @) = 20, () + 2.

Note that x* = 2m for some positive integer m because the lattice Ty is even
and positive definite. Then the intersection matrix of 7y with respect to the
basis x, —f*(x) 18 Az(—m). See also Lemma 2.8 in [45].
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The proof of the following theorem follows a suggestion of M. Schuett.

THEOREM 7.10. The intersection matrix of the transcendental lattice of
the K3 surface X with respect to a suitable basis is

12 6
Ax(=6) = (6 12) ‘

Proof. Consider the automorphism ¢ of order 6 of X that acts on
the Weierstrass model by the formula (u,v,x,y) — (qu, v, n%x,1°y), where
n=e™/3 It is easy to see that o acts freely outside the union of the two
nonsingular fibres Fy, F, over the points (u,v) = (1,0) and (0, 1). The action
of the cyclic group G = {o) on each of the fibres is an automorphism of
order 6 such that G has one fixed point, {¢>) has 4 fixed points and (o?)
has 3 fixed points.

Let X/G be the orbit space. The images Fy and F., of Fgq and F,
in X/G are smooth rational curves and X/G has 3 singular points on each
of these curves, of types As,As and A,. A minimal resolution of X/G is
a K3 surface Y. The elliptic fibration h; on X defines an elliptic fibration
p: Y — P! with two fibres of type II*, equal to preimages of Fy and F,
on Y, and one fibre of type IV, the orbit of the six singular fibres of h;.

It 1s easy to compute the Picard lattice Sy of Y. Its sublattice generated
by wrreducible components of fibres and a section of p 1s 1somorphic to
UG Eg® Eg® Ay, where U is generated by a general fibre and a section.
It follows from the Shioda-Tate formula in [49] that this sublattice coincides
with Sy and that the discriminant of its quadratic form is equal to —3. Since
the transcendental lattice 7y is equal to the orthogonal complement of Sy in
the unimodular lattice L = H?*(X,Z), this easily implies that 7y is a rank 2
positive definite even lattice with discriminant equal to 3. There i1s only one
1somorphism class of such a lattice and it is given by A,(—1).

The transcendental lattices of the surfaces X and Y are related in the
following way. By Proposition 5 of [50], there is an isomorphism of abelian
groups (Ty) ® Q = (Tx)* ® Q, defined by taking the inverse transform
of transcendental cycles under the rational map X — Y. Since G acts
symplectically on X, we have (Tyx)” = Ty. Under this map the intersection
form 1s multiplied by the degree of the map, equal to 6. This implies that
Tx has rank two and contains 7y(6) = A,(—6) as a sublattice of finite index.

Note that the automorphism gu(x, y, z, w) = (x, €y, €z, ew) of X clearly fixes
the curve {x = 0} pointwise. Hence g4 is non-symplectic by Theorem 7.1. It
follows from LLemma 7.9 and the previous remarks that 7y = A,(—m). Hence
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we only need to determine the integer m. As we saw above, Ty contains a
sublattice isomorphic to A;(—6), hence m € {1,2,3,6}. We now exclude all
possibilities except the last one.

The K3 surface with Ty =2 A,(—1) was studied in [44], in particular all
jacobian elliptic fibrations on Y are classified in Theorem 3.1. Since none
of these fibrations has the same configuration of singular fibres as h; (see
Proposition 7.5), this excludes the case m = 1.

The K3 surface with 7y =2 Ay(—2) is isomorphic to the Kummer surface
from Theorem 8.6 below. All its jacobian fibrations are described m [44],
Theorem 3.1 (Table 1.1) and, as in the previous case, none of them has
6 fibres of type IV. This excludes the case m = 2.

Finally, a direct computation shows that A,(—3) does not contain a
sublattice isomorphic to A,(—6). In fact, since the equation x* + y* +xy = 2
has no integral solutions, then A,(—3) does not contain any element with
self-intersection 12. This completes the proofl of our theorem.

We conclude this section by giving another model for the surface X.

PROPOSITION 7.11. The K3 surface X is birational to the double cover
of P? branched along a sextic with 8 nodes which admits a group of linear
automorphisms isomorphic to Ay.

Proof. The lift g, of the involution g, to the cover X = {w? +
Dg(x,y,z) = 0} given by Go(x,y,z,w) = (x,z,y,w) is a non-symplectic
mvolution. The fixed locus of gy is the genus two curve Lo which is the
double cover of the harmonic polar Ly = {y—z = 0} branched along LyNCs.
The quotient surface R = X/(gy) is a Del Pezzo surface of degree 1, the
double cover of P%/(go) = Q, where Q is the quadratic cone with vertex
equal to the orbit of the fixed point pg = (0,1, —1) of go. We denote by B
the image of Lo in R.

Let b: R — P? be the blowing-down of 8 disjoint (—1)-curves on R to
points si,...,s3 in P?. The pencil of cubic curves through the eight points
is the image of the elliptic pencil |—Kg| on R. Note that the stabilizer of the
point po in the Hessian group 1s isomorphic to 2. A4, with center equal to (g),
thus the group A4 acts naturally on R and on the elliptic pencil |—Kg|. The
curve B € |-2Kg| is an Ay-invariant member of the linear system |—2Kg|
and H(B) 1s a plane sextic with 8 nodes at the points sy, ...,5g. Thus we see
that X admits 9 isomorphic models as a double cover of the plane branched
along a 8-nodal sextic with a linear action of Ay.
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REMARK 7.12. In [34] the authors study a K3 surface birationally
isomorphic to the double cover of P? branched along the union of two triangles
from the Hesse pencil. This surface has transcendental lattice of rank 2 with
intersection matrix (8 g) and it admits a group of automorphisms isomorphic

to A ¥ Z/4Z.

8. A K3 SURFACE WITH AN ACTION OF SL(2,F3)

We now study the K3 surface which is birational to the double cover of
P? branched along the sextic C} defined by @ =0.

We recall that € has 8 cusps in the base points g1, ...,gg of the Hesse
pencil. The double cover of P? branched along Cj is locally isomorphic to
2+ x>+ = 0 over each cusp of C}, hence it has 8 singular points of
type Az (see [5]). It is known that the minimal resolution of singularities of
this surface is a K3 surface and that the exceptional curve over each singular
point of type A, i1s the union of two rational curves intersecting in one point
(see for example [40], §2).

In this section we will study the properties of this K3 surface, which will
be denoted by X'.

PROPOSITION 8.1. The K3 surface X' is birationally isomorphic to the
quotient of the K3 surface X by the subgroup T of Gy6. In particular, the
group SL(2,F3) is isomorphic to a group of automorphisms of X'.

Proof. The minimal resolution of the double cover of P? branched along
C} can be obtained by first resolving the singularities of Cj through the
morphism ~: § — P? from diagram (12) and then taking the double cover
q': X' — S branched over the proper transform éé of C. ([5]). Since

B~ p(Ce)) = ég we have the commutative diagram

¥ Y s Xfr + = %

S N B

P2 pyre s T, P2,

where g is the double cover branched along Cg, ¢’ is the minimal resolution
of the double cover branched along Ci, 7 and p are the natural quotient
maps, & 1s a minimal resolution of singularities and the bottom maps are as

in diagram (12). This gives the first statement. The second one follows from
the isomorphism Gz16/T 22 SL(2, F3).
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REMARK 8.2. The points in X with nontrivial stabilizer for the action
of I' are exactly the 24 preimages by ¢ of the vertices of the triangles in
the Hesse pencil. In fact these points belong to 8 orbits for the action of
I' and give 8 singular points of type A, in the quotient surface X/T" (see
Proposition 5.1).

We now describe some natural elliptic fibrations on the surface X'.

PROPOSITION 8.3. The pencil of lines through each of the cusps of Ck
induces a jacobian fibration on X' with 3 singular fibres of Kodaira’s type
Ie and one of type I3 (i.e. cycles of 6 and 3 rational curves respectively).

Proof. Let p be a cusp of C; and h, be the pencil of lines through p.
The generic line in the pencil intersects Cj; in p and 4 other distinct points,
hence its preimage in X’ is an elliptic curve. Thus £, induces an elliptic
fibration /4, on X’.

The pencil 4, contains 3 lines through 3 cusps and one line through
2 cusps of C%, since the cusps of C[ are the base points of the Hesse pencil.
The proper transform of a line containing 3 cusps is a disjoint union of
two smooth rational curves. Together with the preimages of the cusps, the
full preimage of such a line in X’ gives a fibre of fzp of Kodaira’s type Ig,
described by the affine Dynkin diagram As. Similarly, the preimage of a line
containing 2 cusps gives a fibre of 7, of type I3 (in this case the proper
transform of the line does not split). Thus fzp has three fibres of type I; and
one of type I5.

The exceptional divisor over the cusp p splits into two rational curves
e1,¢; on X' and each of them intersects each fibre of fzp in one point, i.e. it
1s a section of fzp.

PROPOSITION 8.4. The elliptic fibrations b, b!, i=1,...,4, on X induce
8 elliptic fibrations Hi,a on X' such that

a) b, and Bﬁ are exchanged by the covering involution of ¢' and S1.(2,F3)
acts transitively on §,,...,b, ;

b) the j-invariant of a smooth fibre of the elliptic fibration b, or Bﬁ is
equal to zero;

¢) each fibration has two fibres of Kodaira’s type IV* (i.e. 7 rational
curves in the configuration described by the affine Dynkin diagram Es) and
two of type IV.
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Proof. Tt will be enough to study the fibration b, , since all other fibrations
are projectively equivalent to this one by the action of G, and o.

Let g1, g2 be the generators of I" as in Section 4. The polynomials Py, P
and F; are eigenvectors for the action of T' (Remark 5.3), hence it is clear
from equation (18) that I" preserves the elliptic fibration ;. In fact, g; acts on
the basis of the fibration as an order three automorphism and fixes exactly the
two fibres E;,E] such that ¢(E,) = By and g(E}) = B}. The automorphism
g» preserves each fibre of h; and acts on it as an order 3 automorphism
without fixed points. Hence it follows that the image of the elliptic fibration
b, by the map #~'7 in diagram (20) is an elliptic fibration on X’'. We will
denote it by b, .

Now statements a), b), ¢) are easy consequences of the analogous statements
in Proposition 7.5.

According to Proposition 5.2 the cubics By and B contain the 9 vertices
of the triangles T3,75,74 in the Hesse pencil. Hence the fibres Ey, E| each
contain 9 points in the preimage of the 9 vertices by ¢g. It follows from
Remark 8.2 that the images of E; and E] in X/T each contain 3 singular
points of type A;. The preimage of one of these fibres in the minimal resolution
X’ is a fibre of type IV* in the elliptic fibration h, on X’ (the union of 3
exceptional divisors of type A, and the proper transform of E; or E}).

It can easily be seen that the 6 singular fibres of by of type IV belong
to two orbits for the action of I'. In fact, the singular points in ¢ach of these
fibres are the preimages by g of the vertices of T; (see Proposition 7.5). The
image of a singular fibre of type [V in X/T" is a rational curve containing a
singular point of type A, and its preimage in X’ is again a fibre of type IV.
Hence b, has two fibres of type IV.

REMARK 8.5. It can be proved that the image of any of these fibrations
by the cover ¢ is a one-dimensional family of curves of degree 9 in P?
with 8 triple points in gy,...,gs and 3 cusps on Cg. In fact, ¢’ sends the
fibre &~ !'7(E;) of B, to the union of the 6 inflection lines through ¢; and
¢, not containing gy, where the 3 lines through ¢; are double. Clearly, the
analogous statement is true for E} (the lines through p| are now double).
Hence the image of a fibre of b, is a plane curve D of degree 9 with 8
triple points at qi,...,gs. Moreover, the curve D intersects the sextic Cj
in 6 more points and since its inverse image in X' has genus one, then D
must also have three cusps at smooth points of C{ which are resolved in the
double cover ¢’.
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THEOREM 8.6. The K3 surface X' is birationally isomorphic to the
Kummer surface Kum(E. X E.), where E. is the elliptic curve with fundamental
periods 1, c. Its transcendental lattice has rank 2 and its intersection matrix
with respect to a suitable basis is

Ay(=2) = (‘21 j) .

Proof. We will consider one of the jacobian fibrations on X’ described
in Proposition 83. Tet M be the lattice generated by the two sections
e1, ez, the components of the 3 singular fibres of type Is not intersecting
e; and the components of the fibre of type /5. The intersection matrix
of M has determinant —2% - 3°, hence rank M = rank Sxy» = 20 and
rank TX/ =2.

The non-symplectic automorphism ¢4 of order 3 on X induces an
automorphism ¢; on X’. Recall that g4 fixes the curve R = {x = 0}
on X, hence g, fixes the proper transform of 7(R) on X’. Thus by
Theorem 7.1, g} is a non-symplectic automorphism of order three on X’.
This implies, as in the proofl of Theorem 7.10, that the intersection matrix
of Ty 1s of the form (19) with respect to an appropriate choice of
generators ; in particular its discriminant group Ar, = 7%, /Txs is isomorphic
to Z/3Z S Z/3mZ.

A direct computation of M* shows that the discriminant group Ay is
isomorphic to Z/3Z3 & Z/6Z*. Since M is a sublattice of finite index of Sy,
the discriminant group Ay, = Ay, is 1somorphic to a quotient of a subgroup
of Apr. This implies that m < 2.

By Theorem 3.1 (Table 1.1) in [44], the unique K3 surface with
transcendental lattice as in (19) with m = 1 has no jacobian elliptic fibration
as in Proposition 8.3. Hence m = 2 and by [30], X’ is isomorphic to the
Kummer surface of the abelian surface E. x E..

REMARK 8.7. 1) In [32] it 1s proved that all elliptic fibrations on the
Kummer surface Kum(E, x E.) are jacobian. All these fibrations and their
Mordell-Weil groups are described in [44]. In particular it is proved that the
Mordell-Weil group of the elliptic fibration in Proposition 8.3 is isomorphic
to ZDZ/3Z and that those of the 8 elliptic fibrations in Proposition 8.4 are
1somorphic to yARS Z/3Z (see Theorem 3.1, Table 1.3, No. 19, 30).

ii) The full automorphism group of X’ has been computed in [33], but the
full automorphism group of X 1s not known at present.
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