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ELLIPTIC DEDEKIND DOMAINS REVISITED

by Pete .. CLARK™)

ABSTRACT. We give an affirmative answer to a 1976 question of M. Rosen: every
abelian group is isomorphic to the class group of an elliptic Dedekind domain R. We
can choose R to be the integral closure of a PID in a quadratic field extension. In
particular, this vields new and — we feel — simpler proofs of theorems of L. Claborn
and C.R. Leedham-Green.

1. INTRODUCTION

Terminology: For a scheme X, PicX denotes the Picard group of
isomorphism classes of line bundles on X. In the case X = SpecR, we
write simply Pic(R). When R 1s a Dedekind domain, Pic(R) is the ideal class
group of R.

A celebrated 1966 theorem of Luther Clabom asserts that for any abelian
group A whatsoever, there exists a Dedekind domain R whose ideal class
group Pic(R) 1s 1somorphic to A [3]. A different proof was given in 1972
by C.R. Leedham-Green [9], which shows that R may be taken to be the
integral closure of a PID in a quadratic field extension. Claborn’s proof requires
familiarity with the divisor class group of a Krull domain. Leedham-Green’s
proof is more elementary — in his own words, it is ‘based on a naive
geometrical construction” — but is quite intricate.

*) Partially supported by National Science Foundation grant DMS-0701771.




214 PL. CLARK

Work of M. Rosen takes a completely different approach, based on the
following facts:

Facr 1. For an elliptic curve E over a field k, the standard affine ring
R = k|E] is a Dedekind domain with Pic(R) isomorphic to the Mordell-Weil
group E(k).

Facr 1. With R = k[E] as above, for any subgroup H C Pic(R), there
exists an overring R? of R such that Pic(RF) = Pic(R)/H.

From these two facts it follows that any abelian group which is isomorphic
to a quotient group of a Mordell-Weil group is the class group of some
Dedekind domain. Rosen calls a Dedekind domain arising as an overring of
the standard affine ring of some elliptic curve elliptic.

In [11], Rosen shows that any finitely generated abelian group is the class
group of the coordinate of some (not necessarily standard) affine elliptic curve
over some number field k. In [12], Rosen uses Serre’s open image theorem
to show that every countably generated abelian group is the class group of an
elliptic Dedekind domain. His method does not work for uncountable groups,
and accordingly he asks whether every abelian group is the class group of an
elliptic Dedekind domain.

Our main result gives an affirmative answer to this question.

MAIN THEOREM. Let A be any abelian group.
a) There is an elliptic Dedekind domain R with Pic(R) = A.

b) We can take R to be the integral closure of a PID in a quadratic field
extension.

Our construction 1s inspired by Rosen’s work and follows his general
strategy in that it uses Facts I and II above to reduce to the problem of
constructing a f{ree abelian group of arbitrary rank as a quotient of some
Mordell-Weil group. But there are also several differences. First, we construct
arbitrary free abelian groups as Mordell-Weil groups, whereas Rosen constructs
a free abelian group of countable rank as the quotient of a Mordell-Weil group
by its torsion subgroup. Second, whereas Rosen’s construction takes &k to be
the maximal multiquadratic extension of Q, ours does not!). Our field k is a

1) Nor could it, of course: the group of rational points of an elliptic curve over a countable
field must be countable.



ELLIPTIC DEDEKIND DOMAINS REVISITED 215

transfinitely iterated function field, and accordingly we make no use of Serre’s
open image theorem nor of any other deep arithmetic facts.

The proof of the Main Theorem occupies little more than a single page.
However, our goal 1s to maximize the audience that can read and appreciate
the argument rather than to minimize its length. To this end, we have included
in §2 some expository material on class groups of overrings of Dedekind
domains. We also discuss Dedekind domains in which every ideal class can
be represented by at least one prime ideal — we call such a domain replete —
as well as a weaker property that suffices for our applications. Our Theorem 14
on the repleteness and weak repleteness of elliptic Dedekind domains may
be new. The proof of the Main Theorem is in §3.

2. PRELIMINARIES

We wish to recall some results concerning the effect of passage to an
overring on the class group, and on the connection between class groups of
affine curves and the Jacobians of their projective completions. We could not
resist mentioning a few interesting results which are closely related to these
topics but not needed for the proof of the Main Theorem. For such results we
explicitly state that they are not needed in the sequel, and we give references
rather than proofs.

2.1 BASIC DEFINITIONS

For a Dedekind domain R, let Z(R) be the set of all nonzero prime ideals ;
we typically speak of elements of Z(R) as simply “primes”. Consider the map

®: Z(R) — Pic(R), p— [p].

Since the group Frac(R) of fractional ideals of R is free abelian with Z(R)
as a basis, & uniquely extends to a homomorphism Frac(R) — Pic(R), which
1s surjective, and whose kernel 1s the subgroup Prin(R) of principal fractional
ideals.

If R and § are Dedekind domains, by a morphism of Dedekind domains
we mean an injective ring homomorphism ¢: R < S. If'  i1s a fractional ideal
of R, then the push-forward I € Frac(R) +— IS induces a homomorphism
from Frac(R) to Frac(S), denoted :,. Since the push-forward of a principal
fractional 1deal remains principal, ¢, factors through to a homomorphism
Ly: Pic(R) — Pic(S). For an ideal J of S, we denote by ¢*(J) the ideal JNR
of R.
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2.2  OVERRINGS

If R is an integral domain with field of fractions K, an overring of R 1s
a ring S intermediate between R and K,1e., RCSCK.

LEMMA 1. Let t: R S, where R is a Dedekind domain and S is an
overring.

a) For any P € Z(5), Sp = Rypnr-

b) § is itself a Dedekind domain.

c) " Z(8) —+ Z(R).

d) For all 5P € Z(S), .(t"P) =P.

Proof. a) Put p = PN R. Since P is a nonzero prime ideal in the
overring S of R, there exist nonzero elements x,y € R such that § € P.
Then 0 # x = y(g) € p, so p 1s a nonzero prime ideal of R. Thus S¢; contains
the DVR R, and is properly contained in its fraction field, so Sp = R,,.

b) By the Krull-Akizuki Theorem [10, Thm. 11.7], § 1s a one-dimensional
Noetherian domain; and by part a) the localization of § at every prime is a
DVR, hence S is integrally closed and thus a Dedekind domain.

¢) From part a), we have that there is no other prime B’ of § with
CPB) = p, since localizations at distinct primes in a Dedekind ring are
distinct DVRs.

d) First,
(Let"(BNSp = pSyp = VS .

By part ¢), ¢.(¢*(]3)) 1s not divisible by any prime other than 3, so ¢.(p) = L.

COROLLARY 2. Let S be an overring of the Dedekind domain R. The
prime ideals of S are identified, via (*, with the prime ideals p of R such
that p§S C §.

We can explicitly describe all overrings of a Dedekind domain R. For an
arbitrary subset W C Z(R), put Ry := ﬂpepr , the intersection taking place
in the fraction field K. For the sake of simplifying some later formulas, we
also define

RW = RE(R)\W 5

Evidently Ry is an overring of R, hence is itsell a Dedekind domain.
Conversely :
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THEOREM 3. Let R be a Dedekind domain with fraction field K, and let
R C S CK be an overring. Let W be the set of all primes p of R such that
pS C S. Then

S=Rw=[)Ry.
pew

Proof. Not needed in the sequel; see e.g. [8, Cor. 6.12].

The reader may be more used to thinking about generating overrings by
localization: 1f R 1s a domain and 7' C R a muluplicatively closed set, then
R[T7'] is an overring of R. Probably the reader knows that every overring of
Z 1s obtained by localization; in fact this is true for overrings of any PID R.
For this it suffices to exhibit R[Jy—c] as R[%]. The key point here ?) is that since
R is a UFD we may assume that x and y are relatively prime, and then there

exist @, b € R with ax -+ by =1, so that % = ax_y‘_iby za(;f) +b(}§) €R[§].
But in general, not all overrings are realizable by localization:

THEOREM 4. Let R be a Noetherian domain, and consider the following
properties :

(1) Every overring of R is integrally closed.

(1) Every overring of R is obtained by localizing at a multiplicative subset.

Then (1) holds if and only if R is a Dedekind domain, and (1) holds if and
only if R is a Dedekind domain with torsion class group.

Proof. Not needed in the sequel; see [5] or [6].

The following result explains the importance of overrings in the study of
class groups of Dedekind domains.

THEOREM 5 (Claborn [2]). Let R be a Dedekind domain, and S = RY
be an overring of R. There exists a short exact sequence

0 —» H —» Pic(R) == Pic(S) — 0,
where H = (®(W)) is the subgroup generated by classes of primes p with
A
Proof. Since i, 0 1* = lys), L+ 18 surjective on prime ideals; a fortiori

the induced map on class groups is surjective. Clearly each prime p with

2) The fact that there is no ring strictly intermediate between a DVR and its fraction field,
which was used in the proof of Lemma 1, is an {(even) easier special case.
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p§ = § lies in the kernel. Conversely, suppose [ is a fractional ideal of R
in the kernel of ¢, , so that there exists x in the fraction field with IS = x§.
Then x/~'S =8, so that x/~! is a product of primes p with pS =S.

Thus one can realize certain quotients of the Picard group of R by passing
to a suitable overring S. In general however, not every subgroup of Pic(R) is
generated by classes of prime ideals. This brings us to the next section.

2.3 REPLETE DEDEKIND RINGS

We say that a Dedekind domain R is replete if the map @© is surjective,
1.e., il every ideal class is represented by a prime ideal.

PROPOSITION 6. Let R be a replete domain, and let H C Pic(R) be any
subgroup. Then there exists an overring S of R such that Pic(S) = Pic(R)/H .

Proof. 1Indeed, if R is replete, then H is generated by a set W of
prime ideals of R. Then take S to be the overring RY = anE(R)\W R, . By

Theorem 5, Pic(RY) 22 Pic(R)/H.

For the proof of Proposition 6 to go through, it suffices that R have the
property that any subgroup H of Pic(R) is generated by classes of prime
ideals. Let us call a domain with this property weakly replete.

COROLLARY 7. An overring of a weakly replete domain is weakly replete.

Proof. 'This follows easily from Theorem 5.

ExaMPLES. Trivially, a PID 1s replete. The repleteness of the ring of
integers in a global field 1s a weak version of the Chebotarev Density Theorem.
We will see in §2.4 that the standard affine ring of an elliptic curve is weakly
replete but not necessarily replete. Examples of domains which are not weakly
replete seem harder to come by. In [4], Claborn exhibits for each n € ZT
a Dedekind domain R, whose class group is cvclic of order » and such
that [p] = [q] for all p,q € Z(R,), as well as a Dedekind domain R with
Pic(R) =2 Z such that for all p € Z(R), [p] = +1.

A repletion of a Dedekind domain R 1s a replete Dedekind domain §
together with an injective ring homomorphism ¢: R < §, such that
1+ Pic(R) = Pic(S).
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THEOREM 8 (Claborn). For a Dedekind domain R, let R' denote
the localization of R[t] at the multiplicative set generated by all monic
polynomials. Then R' is Dedekind and the composite map t: R — R[t] — R
is a repletion.

Proof. Not needed in the sequel; see [1, Cor. 2.5].

COROLLARY 9 (Claborn). For any Dedekind domain R, and any subgroup
H C Pic(R), there exist a Dedekind domain S and a homomorphism of
Dedekind domains +: R — S making the following sequence exact:

0 — H — Pic(R) == Pic(S) — 0.

Thus every quotient group of Pic(R) is the class group of some Dedekind
domain.

Proof. 'This follows immediately from Theorem 8 and Proposition 6.

2.4 AFFINE DOMAINS, GEOMETRIC DOMAINS, AND ELLIPTIC DOMAINS

Let k be a field. To a pair (C,0), where C; is a complete, nonsingular
geometrically integral curve and O € C(k) is a rational point, we attach the
rational function field &(C) and standard affine ring k[C?], the subring of k(C)
consisting of all functions which are regular on all points except (possibly) O.
Note that k[C?] is the coordinate ring of the affine algebraic curve C° = C\O.
The ring k[C?] is a nonsingular Noetherian domain of dimension one, 1.e., a
Dedekind domain. Consider the map which sends a degree 0 divisor ), np[P]
on C to the divisor > , —o 1Pl P] (of degree —np) on C?. Upon quotienting
out by principal divisors, this gives an isomorphism

(1) JO)(k) = Pic®(C) =75 Pic(k[C°]),

where J(C) is the Jacobian of C. Thus the class group of a standard affine
domain is canonically isomorphic to the group of k-rational points on a certain
(Jacobian) abelian variety.

When C = E has genus one, the automorphism group acts transitively
on the set of k-rational points, so the affine curve E° is independent of the
choice of O. In this case, we sumplify the notation k[E?]| to k[E].

The following special case of (1) is already interesting :

COROLLARY 10.  For an elliptic curve E ., the following are equivalent :
(1) The standard affine ring k|E] is a PID.
(i) E has trivial Mordell-Weil group : E(k) = 0.
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Later we shall exhibit F k such that E(k) =0, i.e., “elliptic PID’s” exist !
In general, let us say that a Dedekind domain R 1s affine if it 1s of the form
k[C’] for some nonsingular, geomeirically integral affine curve C? over a
field k. Write C for the nonsingular projective model of C°. As long as
C \ C” contains at least one k-rational point, a well-known argument using
Riemamn-Roch shows that the affine domain k[C?] is an overring of some
standard affine domain.

THEOREM 11 (Rosen). Let C? = C\ S be a nonsingular, geometrically
integral affine curve over a field k. Let D%(S) be the subgroup of Div(C)
consisting of degree O divisors supported on S, and let P(S) be the principal
divisors in D°(S). Let d be the least positive degree of a divisor supported
on §S (note that d = 1 if and only if S contains at least one k-rational point),
and let | be the least positive degree of a divisor on C. Then there is an
exdact sequence

(2) 0 — D(S)/P(S) — Pic’(C) — Pic(C”) — Z(d/i) — 0,
where Z(d /i) is a cyclic group of order d/i.

Proof. Not needed in the sequel; see [11].

Rosen remarks that Theorem 11 was, in essence, already known to
F.K. Schmidt in the 1930’s. Nevertheless, one cannot help but feel that it
is not as widely known as it should be. It has many consequences, some
amusing and some important. First:

EXAMPLE. let k& be a field of characteristic different from 2, and
let C° = C\ S be the affine curve with coordinate ring R, = k[C?] =
klx,y1/(x* +y* — 1). Here S is a degree 2 divisor consisting of a pair of
points ooy, oo, which are (resp. are not) each k-rational if —1 1is (resp. is
not) a square in k. We conclude:

THEOREM 12. Let k be a field of characteristic different from 2, and let
R, be the Dedekind domain k[x,y]/(x* + y* — 1). Then:

W) If =1 is a square in k, then R, is a UFD (equivalently, a PID).

@) If —1 is not a square in k, then R, is not a UFD: rather
Pic(R,) = Z/2Z.

In particular, taking & = R, the ring R, = R[cosf,sinfl] of real
trigonometric polynomials is not a UFD. H.E Trotter in [14] gives an
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appealingly direct proof of this fact by showing that the familiar identity
sin® @ = (1 + cos 8)(1 — cos §)

is a non-unique factorization into irreducibles. (Notice that Z/2Z is also the
Picard group of topological R-line bundles on the unit circle !) On the other
hand, taking k = C, R, & C[e", (/)] is the ring of complex trigonometric
polynomials, which is, in accordance with Theorem 12, a PID.

Using (2) and the fact that every elliptic curve over Q has infinite rank,
Rosen deduces:

THEOREM 13 (Rosen). For any finitely generated abelian group A, there

is a number field k and a (not necessarily standard) affine elliptic curve E°
over k such that Pic(k[E°]) = A.

The claim that in Theorem 13 we can always take k = Q is equivalent
to the existence of elliptic curves E,, of arbitrarily large rank, a notorious
open problem.

A Dedekind domain is geometric if it 1s an overring of an affine Dedekind
domain. In other words, a geometric Dedekind domain 1s the ring of all
functions on a complete curve C, which are regular on the complement of
some fixed, but possibly infinite, subset of closed points of C. Finally, an
elliptic Dedekind domain is an overring of the standard affine domain of an
elliptic curve E ;.

THEOREM 14.  Let Ey be an elliptic curve with equation V= Px) =
x* + Ax + B.
a) The standard affine ring k[E]| is weakly replete (hence so are all of its
overrings).
b) If k is algebraically closed, k[E] is not replete.

¢) Suppose k does not have characteristic 2 and k|E] is not replete. Then
for all x € k, there exists y C k with y* = P(x).

Proof. Each point P # O on E(k) corresponds to a prime ideal in the
standard affine ring k[E]; according to the isomorphism of (1), every nontrivial
element of Pic(k[E]) arises in this way. This proves part a). Part b) 1s similar
if k 1s algebraically closed, then by Hilbert’s Nullstellensatz every prime ideal
of k[E] corresponds to a k-valued point P # O on E(k), which under (1)
corresponds to a nontrivial element of the class group. Therefore the trivial
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class is not represented by any prime ideal. Under the hypotheses of part ¢),
there exists an x € & such that the points (x, =+/P(x)) form a Galois conjugate
pair. Therefore the divisor (x,/P(x)) -+ (x, —+/P(x)) represents a closed point
on the curve E, in other words a nonzero prime ideal of k[F]. But the

corresponding point on E(k) 18 (x,v/P(x)) + (x, —/P(x)) = O.

To sum up: since every abelian group A i1s a quotient of a free abelian
group FA(x) of some rank x, and the standard affine domain k[E] attached
to an ellipic curve E 1s weakly replete, in order to realize A as the Picard
group of an elliptic Dedekind domain it suffices to find k and E such that
E(k) =2 FA(x). This we handle in the next section, along with the claim that
the domain can be taken to be the integral closure of a PID in a quadratic
extension.

3. PROOF OF THE MAIN THEOREM

PROPOSITION 15.  Let K be a field of characteristic O and E g an elliptic
curve. Let K(E) be the function field of E. Then there is a short exact sequence

0 — E(K) — E(K(E)) — Endg(E) — 0.

Here Endg(E) = Z9P), where a(E) = 2 if E has K-rational CM, and
otherwise a(E) = 1. Since Endg(E) is free abelian, we have E(K(E)) =
E(K) P 24D,

Proof. E(K(E)) 1s the group of rational maps from the nonsingular curve
E to the complete variety £ (the group law 1s pointwise addition). But every
rational map {rom a nonsingular curve to a complete variety is everywhere
defined, so E(K(E)) 1s the group of all morphisms £ — E under pointwise
addition. The constant morphisms form a subgroup isomorphic to E(K), and
every map of curves from E to itsell differs by a unique constant from a map
of elliptic curves (£, Q) — (E, 0), i.e., an endomorphism of E.

Now take E/q : y 4+ y=2x —49x — 86, so E(Q) =0 [7, Theorem H].
21233

s
multiplication. So defining Ko = Q and K, = K,(E/x,), Proposition 15 gives

This elliptic curve has nonintegral j-invariant so does not have complex

E(K,) = @z

o |
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Now define K., = lim,_,, K, ; what can we say about E(K..) ? We have
the following technical result:

LEMMA 16 (“Continuity Lemma”). Let K be a field, (K;)c; be a directed
system of field extensions of K, and Ex an elliptic curve. Then there is a
canonical isomorphisnt

Proof. E.g. by abstract nonsense: this holds for any representable con-
travariant functor from the category of affine K -schemes to the category of
abelian groups.

Therefore E(K..) = lim, E(K,) = @, cz+ L, recovering Rosen’s Theorem.

Now given an uncountable set x, choose w an ordinal of the same
cardinality. We define the field K, by transfinite induction: Ky, = Q, for an
ordinal 0 < w, K,11 = Ko(E/x,), and for a limit ordinal o, K, = limy «, K, .
By the Continuity Lemma, we have E(K,) = lim, ¢, E(Ky).

An isomorphism from E(K,) to €,.,Z can be built up by transfi-
nite induction as well; this amounts to the following elementary exercise
(cf. [13, p. 105]):

FacT.  For an abelian group A, the following are equivalent :
(1) A is free abelian.

(i) A has a well-ordered ascending series with all factors Asi1/As infinite
cyclic.

Thus for a given abelian group A = Z[x]/H , we have constructed a field &,
an elliptic curve £, and an overring R of the affine domain k[£] such that
Pic(R) = Z[x]/H = A, which proves part a) of the Main Theorem.

As for the second part, let o be the automorphism of the function field
k(E) induced by (x,y) — (x, —y), and notice that ¢ corresponds to inversion
P+— —P on E(k) = Pic(k[E]). Let § = R? be the subring of R consisting
of all functions which are fixed by o. Then k[E]” = k[x] is a PID, and § is
an overring of k[x], hence also a PID. More precisely, S is the overring of
all functions on the projective line which are regular away from the point at
infinity and the x-coordinates of all the elements in H (note that since H is
a subgroup, it is stable under inversion). Finally, to see that R is the integral
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closure of § in the separable quadratic field extension k(E)/k(x), it suffices
to establish the following simple result.

LEMMA 17. Let L/K be a finite Galois extension of fields, and S a
Dedekind domain with fraction field L. Suppose that for all o € Gal(L/K),
o(S) =S. Then S is the integral closure of R:=SNK in L.

Proof. Since § 1s integrally closed, it certainly contains the integral closure
of R in L. Conversely, for any x € §, P(t) = HUGGM(L/K)(I — o(x)) 1S a
monic polynomial with coefficients in (S N K)[7] satsfied by x.

REMARK. It is possible to avoid the use of an elliptic curve with trivial
Mordell-Weil group: since we are, in general, passing to a quotient anyway,
we can just mod out by E(k). In fact, at the expense of introducing minor
complications, one can make the argument go through starting with any elliptic
curve E over any field & whatsoever.
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