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One could now use some results on Kleinian groups to conclude that

o:„ — 1 (see, for example [7, I.D.4 and II.C.6]) but we prefer to give the

following elementary argument. A simple computation shows that
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These two transformations are in TnT, and so a„ and 1 /an must be (positive)
integers; that is, a„ — 1. But then % will be in FflT and therefore z„ — zf„,
since X — H/(T fl T),

This proposition gives us a second way to prove tire Big Picard Theorem
without using the modular function, as follows. As in the proof given above,
the function /: D* —> X C\{oo,0,1} lifts to a function /: D* —y D* that

gives a commutative diagram:

The function / has a removable singularity at the origin with /(0) =• 0 ; the

problem is to determine the behaviour of the map p. By Proposition 4.5 there

is an e such that p is a finite covering from D* onto its image. But then

by the Casorati-Weierstrass theorem p cannot have an essential singularity at
the origin, and neither can /.
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