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THE BIG PICARD THEOREM
AND OTHER RESULTS ON RIEMANN SURFACES

by Pablo ARES-GASTESI and T.N. VENKATARAMANA

ABSTRACT. In this paper we provide a new proof of the Big Picard Theorem,
based on some simple observations about mappings between Riemann surfaces.

1. INTRODUCTION

Isolated singularities of holomorphic functions are of three types: remov-
able singularities, when the function can be extended to a holomorphic function
at the singular point; poles, if the function behaves locally like z — 1/7";
and essential singularities, where the behaviour of the function is difficult to
control. The Casorati-Weierstrass theorem, from around 1868 (see [9]), says
that the image of any neighbourhood of an essential singularity is dense in
the complex plane. The proof of this result is elementary, based simply on
the characterisation of isolated singularities of holomorphic functions. The Big
Picard Theorem is a deeper result which states that the image of a neighbour-
hood of an essential singularity covers the whole complex plane, except for
perhaps one point. There are several proofs of this theorem, using different
techmiques : the original 1879 proof of Picard [10, pp. 19 and 27] uses elliptic
modular functions, others use Bloch’s theorem and normal families (see for
example [3], [6] or [8]) or the Schwarz-Pick theorem and estimates on the
Poincaré metric of certain plane domains [1]; see [12, p.240] for further
references. In this article we give a new prool of the Big Picard Theorem
based on basic facts of complex analysis, the theory of covering spaces and
the observation that there is no holomorphic mapping from the punctured disc
to an annulus that is injective at the fundamental group level (Proposition 2.1).
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We have tried to make the article accessible to a wide audience ; to this end,
we have recalled some basic facts of complex analysis and given references
to classical texts. The organisation of the article is as follows: in Section 2
we prove the above-mentioned fact about mappings from the punctured disc
to an annulus. In Section 3 we give a proof of Picard’s Theorem; for this we
recall some facts on the modular group and the modular function. In Section 4
we study properties of discrete groups of Mobius transformations; we do this
using Lie group techniques. In particular we show that a covering {rom the
punctured disc to a Riemann surface, if restricted to a small enough punctured
disc, 18 a finite covering (Proposition 4.5). With this result we can provide
another proof of Picard’s Theorem.

We thank the referee for several very relevant comments which greatly
improved the exposition. The statement of Proposition 2.1 given below was
suggested by the referee and R. Narasimhan (in a private communication). We
learned recently that the proof given in the present paper was also found by
Madhav Nori a while ago.

2. A LEMMA ON RIEMANN SURFACES

We start by setting up some notation. The Riemann sphere (extended
complex plane), the upper half plane and the unit disc will be denoted,
respectively, as follows:

C=CU{x}, H={zeC;Im@) >0}, D={zeC;

z| < 1}.

It 1s an easy consequence of Schwarz’s lemma that the group Aut(D) of
biholomorphic self-mappings of the unit disc consists of the Mobius transfor-
mations of the form A(z) = (az + b)/(bz + a), where a and b are complex
numbers satisfying |a|* — |b|* = 1 [1, p.1]. Using the Cayley transform
T(7) = ;__i H — D, it is easy to see that the group Aut(H) consists of the
Mobius transformations with real coefficients; that is, transformations of the
form A(z) = %, with a, b, ¢, d real numbers satisfying ad — bc = 1. We
can then identify Aut(H) with the quotient group PSI,(R) = SL,(R)/{%Id},
where SI.,(R) is the group of square matrices of order 2 with real coefficients
and determinant equal to 1, and Id denotes the identity matrix. (Similarly,
Aut(e) can be identified with PSL,(C).) The advantage of this identification
is that it allows us to use Lie group techniques to obtain results on complex

analysis (Lemma 4.1). We will denote the elements of PSL,(R) by [‘C' Z} .
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The elements of PSL;(R) can be classified by their conjugacy classes as
follows :

1. the identity;
2. hyperbolic elements, conjugate to [’8 1%] , with £ real, £k > 1;

3. elliptic elements, conjugate to [_“;frf’e ig;’;] ,with 0 <8 < m;

4. unipotent or parabolic transformations, conjugate to H H or [(1) _H
(these two transformations are conjugate in Aut(a) but not in Aut(H)).

Different values of k or 0 in the above list (within the given ranges) yield
different conjugacy classes.

Let A be a parabolic transformation of PSL,(R), say A(z) = z+ 1; let
G denote the subgroup (of PSI,(R)) generated by A. The quotient Riemann
surface H/G can be identified with the punctured disc D* = D\{0} ; the
exponential function provides the covering map

- H— D"

7 — exp(2miz).

For the case of a hyperbolic element, take A = []5 I?k] ; then H/G is
conformally equivalent to an annulus, A, = {z € C;r < |z] < 1}. The
covering map 1s again given by an exponential mapping :

T H— A,
z — exp(wilogz/logk)

(where the argument of logz is chosen between 0 and 7). The numbers £
and r are related by r = exp(—n*/logk). See, for example, [4, TV.6.4 and
IV.6.8].

Since parabolic and hyperbolic transformations are not conjugate in
PSI,(R) (or in PSI,(C)), there does not exist a biholomorphic mapping
between the punctured disc and an annulus. However the next proposition
shows that more 1s true.

PROPOSITION 2.1. A holomorphic map from the punctured disc D* to an
annulus A, (r > 0) induces the trivial map between fundamental groups.

Proof. let f: D* — A, be a holomorphic mapping; denote by ~ the
generator of the fundamental group of the punctured disc. Since f is bounded,
its singularity at the origin is removable and so f extends to a function from
the unit disc D to the closure of the annulus A,. However non-constant
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holomorphic functions are open mappings, so f(D) actually lies in A,. Since
~v 1s homotopically trivial in D we have that f(v) 1s homotopically trivial
in A,, and thus f induces the trivial mapping between fundamental groups.

3. PICARD’S THEOREM

The well-known Picard Theorems are results about the range of entire
functions or of functions with essential singularities. More precisely, the Little
Theorem says that the range of a non-constant entire function can miss at most
one point in C (for example, a polynomial is surjective while the exponential
mapping misses the origin). The Big Picard Theorem on the other hand, states
that the same result holds for a function with an (isolated) essential singularity,
in any neighbourhood of the singularity.

The Little Theorem is casy to prove using the fact (see below about
properties of the modular function) that the umiversal covering space of
C\{0,1} 1s the upper half plane, or equivalently the unit disc D. Indeed,
if f: C — C\{0,1} is an entire function, then f will lift to a function
f: C — D; by Liouville’s theorem f 1s constant, and therefore f 1s also
constant. In the case of the Big Picard Theorem the problem is that f is
defined on the punctured disc, and it is not clear that it will lift to the unit
disc; Proposition 2.1 gives us a way out of this difficulty.

Before we give the proof of Picard’s Theorem we need to recall some results
on the modular function (for more details see for example [2, Chapter 7] or
[13, Chapter 16]). Let T denote the congruence subgroup mod 2 of PSI,(Z);
that 1s, the group of Mobius transformations [’Cl z] with integer coefficients,
satisfying ad — bc = 1 and where ¢ and d are odd and b and ¢ are even
(the transformation 1s congruent with the identity modulo 2). This group is
generated by A = [6 %] and B = [_12 (H . These two transformations, as well

as their product C = AB = [j’ ﬂ , are parabolic.

LEMMA 3.1. Any parabolic element of T is conjugate in T" to a power
of A, B or C.

Proof. A parabolic Mobius transformation v = [‘C' ﬂ has a unique fixed

point in C, namely az_cd when ¢ # 0 and oo if ¢ =0.1If v is in ' then

its fixed point is in QU {oc}. Let I'(z) denote the I"-orbit of a point z € C:
then QU {co} can be written as the disjoint union of three orbits:

QU {oc} = T'(c0) LI T(0) L T(1).
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The fixed pomnts of A, B and C are oo, 0 and 1 respectively. If v € T
1s a parabolic transformation with fixed point at oo then it is easy to see
(by the conditions set on the coefficients of elements of I') that v = A" for
some integer n. Similarly if the fixed pomnt of v 1s O (respectively 1), then
v = B" (respectively v = (™). For the general case, assume that ¥(z9) = 2o
and 7o € I'(c0); then there exists a ¢ € T’ such that g(co) = zo. Then we
have g~ !'vg = A" because the left hand side of this equality is a parabolic
transformation in T", with fixed point at oo. Thus =~ is conjugate in T" to a
power of A. The cases zo € I'(0) and zo € I'(1) are handled similarly.

The modular function A is a holomorphic function defined on the upper
half plane invariant under the group I'; that is, AM(v(7)) = A7), forall vy €T
and 7 € H. It turns out that X\ is actually a covering map from the upper
half plane to the plane minus two points, A: H — C\{0, 1} = C\{oc,0,1}.

We now can prove Picard’s Theorem.

THEOREM 3.2. If f: D* — X = C\{00,0, 1} is holomorphic then f cannot
have an essential singularity at the origin.

Before we proceed with the proof we make two observations : firstly, given
any three distinct points in C there exists a (unique) Mobius transformation
that maps them to oo, 0 and 1; thus these three points do not play any
particular role in the above statement of Picard’s theorem. Secondly, the radius
of the disc around the singularity can be arbitrary since any two punctured
discs are conformally equivalent.

Proof. lLet ¢ be a generator of the fundamental group of D* (we again
make an abuse of notation and use the same letter for a path and 1ts homotopy
class) and let v be the element of I" that corresponds to f.(c) under the
covering defined by the modular function A. By the lifting criterion [5, p. 61]
the function f lifts to a map f: D* — H/(~). We consider the different
possibilities for v. If ~ 1s the identity then f: D* — H; but the upper half
plane and the unit disc are conformally equivalent, so f will have a removable
singularity at the origin and therefore f will also have a removable singularity.
If v were hyperbolic then H/(v) would be (conformally equivalent to) an
annulus, and f would be a holomorphic mapping from the punctured disc
to an annulus that induces an isomorphism between the fundamental groups.
By Proposition 2.1 this is not possible. Since T has no elliptic elements we
conclude that v must be a parabolic transformation.
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By Lemma 3.1, by conjugating within ", we may assume that ~ 1s equal
to a power of A, B or C, say v = A", with n # 0. The function f lifts to the
covering determined by A ; we will denote the lift by f to simplify notation.
Using the fact that H/(A) is (conformally equivalent to) the punctured disc
we get the following commutative diagram:

H

!

DF —3X

/

Here 7 1s the covering given by the exponential function, 7 — exp(mit), and
p is the holomorphic covering such that A = po . Since f is bounded it has
a removable singularity at the origin; moreover, since -~y is not trivial we must
have f(O) = 0. From [2, Equation 27, p.272], the function p has a power
series expansion of the form p(g) = 16g + ... near the origin. Thus z =0
is a removable singularity for both p and f; hence f also has a removable
singularity at the origin.

If we assume that v = B” we have again that (the corresponding) p has
a removable singularity at z = 0, while if v = (" then p has a pole. In each
case, the function f does not have an essential singularity at the origin.

4. RESULTS ABOUT DISCRETE GROUPS
AND ANOTHER PROOF OF PICARD’S THEOREM

The space of 2 x 2 matrices with real (or complex) coefficients has a norm
given by ||A|| = max{|a|, ||, |c|,|d|}, where A = (¢%). This norm induces
a (subspace) topology on SL,(R) and a (quotient) topology on PSL,(R). We
will denote by B(Id, €) the ball of centre the identity and radius ¢ ; it consists
of the transformations represented by a matrix [[Cl 2} such that |a — 1|, |b
|c| and |d — 1| are bounded above by e. A subgroup G of PSL,(R) is
called discrete if it is discrete in this topology; that is, there is no sequence
of elements of G, say A, = [‘Cl:’f ZZ], A, # Id, such that a,,d, — 1 and
bp,cp — 0.

>
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LEMMA 4.1.  There exists € > 0 such that if A and B are in B(ld,e) and
generate a discrete subgroup G of PSLy(R) then G is cvclic.

Proof. We first recall the concept of nilpotent group. Let H; and I, be
two subgroups of a group H ; denote by [H;, H,] the subgroup of H generated
by all elements of the form A;7i2h; lhz_ ! where h; € H, and h, € H,. Define
H®Y = H and for n > 1 set H™ = [H, H"~Y]. A group is called nilpotent
if there exists a positive integer n such that #" = {Id}.

By a result of Zassenhaus and Kazhdan-Margulis [11, Theorem 8.16] there
exists an € > O such that if A and B are mn B(Id,e) in PSL,;(R), then the
group G generated by A and B 1s nilpotent (this holds for a general Lie
group, not only for PSL;(R)). The lemma will be proved if we can show that
any nilpotent discrete subgroup (G of PSI,(R) is in fact cyclic.

Let then G be nilpotent and non-trivial ; let n > 0 be an integer such that

G=G"2... 26" ={1}.

Then G is central in G but not trivial. There are three cases to consider:

1. Suppose G contains a unipotent transformation, say [(1) H without

loss of generality. Then G is a subgroup of translations, that is,
G {[47] ey,

since these are the only elements that commute with [(1) H Thus G can be
identified with a discrete subgroup of R and by standard results, G must be
cyclic.

2. Assume that G™ contains a hyperbolic element, say [’g’ 1/0k0} . Then
we have

GC {6 skER, k>0},

so G can be identified with a discrete subgroup of RT, the positive real
numbers with multiplication as the operation. Again one easily obtains that
G must be cyclic.

3. Finally, if G contains an elliptic element, then G 1is conjugate to
a discrete subgroup of the circle group, S' (the group of rotations). By
discreteness all elements of G have finite order and it is not difficult to see
that G 1s cyclic.

The next result assumes the Uniformization Theorem; for the reader
unfamiliar with it we state the necessary facts in the proof.
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THEOREM 4.2. Let f: D* — S be a holomorphic mapping from the
punctured disc into a Riemann suiface § = §/F, where S denotes the
universal covering space of S. Denote by ~ a generator of the subgroup
of T corresponding to the image f.(mi(D™)) of the fundamental group of D*
under f. Then ~ is the identity or unipotent.

Proof. By the Uniformization Theorem the surface S is the Riemann
sphere C, the complex plane or the upper half plane, and the group T is
a group of Mobius transformations acting on S (see [4, Theorem IV.5.6,
p-206]). If S is the Riemann sphere then I' is the trivial group so there is
nothing to prove. If S is the complex plane then I' consists only of unipotent
elements (actually all elements of T are translations of the form z+— z+ A,
A € C), so again the theorem holds. Thus we may assume that S=H. By
the lifting criterion the map f will lift to a map f: D* — X = H/{~). Since
' does not contain any elliptic transformations (see for example [4, IV.6.5],
or simply use the fact that elliptic elements have fixed points in H while
covering transformations act fixed-point freely) we need to consider only the
situation when ~ is hyperbolic. But in that case X would be an annulus and
fv a holomorphic mapping from the punctured disc to the annulus that induces
an isomorphism between the fundamental groups; Proposition 2.1 rules out
this case, and the theorem 1s proved.

COROLLARY 43. Let S = H/T' be g Riemann surface with universal
covering space the upper half plane. Suppose there is a punctured disc
embedded in S and let v € T be the element corresponding to a small
loop around the puncture; then ~y is unipotent.

COROLLARY 44. Let S = H/I'. Then there exists a covering from the
punctured disc to S if and only if T contains unipotent transformations.

The following proposition is the key point in our second proofl of the Big
Picard Theorem.

PrROPOSITION 4.5. Let w: D* — S be a covering map, where S is a
Riemann surface. Let DY denote the punctured disc D! ={z € C; 0 < |z| < €}.
Then there exists € € (0,1) such that the restriction of © to D! is a finite
covering onto its image.

Proof. Since m is a covering, the universal covering space of S is the
upper half plane, so we can write S = H/T', for T a discrete subgroup of
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PSI,(R). By Theorem 4.2, the subgroup of ' corresponding to 7.(7(D"))
1s generated by a unipotent element ¢ ; without loss of generality we may
assume that g = [(1) }] Let 7 denote the group of translations in PSI,(R);
since I' 1s discrete, ' M7 must be generated by a translation of the form

1 l/m .. .
[ § i } , for some positive integer m.

We can identify D* (in the statement of the proposition) with the quotient
H/(g);let X=H/(I'N7T). Then the covering 7 factors through X :

Now X is also a punctured disc, and p is an m-to-1 covering (a power map,
p(z) = ™). The proposition will be proved if we can establish the following
claim:

The mapping 7: X —= S is injective on D7, for some 0 < e < 1.

To prove the claim, assume that there are two sequences of points in X,
say {z,} and {z,}, with 7(z,) = 7(z,) and such that z, — 0 and z, — 0. Let
Tw = X, + i, and 7, = x, +iy), be lifts of these points in H ; then vy, — 400
and y/, — 4o00. Let g, = ﬁ o] we have g,(i) = 7, and it is easy to
see by direct computation that g, 'gg, — Id. Similarly, if g, corresponds to
7!, then (g/)"'gg, — Id.

Since z, and z), are T -equivalent there exist «, € T such that ~,(r,) = 7.
Let k, = g7 'y 1g,; then k,(i) = i and it is easy to see that (g))"'gg’ — Id
implies g, 'v. 19,9, — 1d (conjugate from the upper half plane to the unit
disc to do the computations ; on D the element conjugate to k, has the form

[AHE} , with [\,] = 1).

For a fixed n let G, denote the subgroup of PSIL,(R) generated
by 97199, and g v 'gv,9,. We have that G, is discrete (since G,
is conjugate to a subgroup of T, which is discrete) and generated by
elements close to the identity (when 7 1s big enough). By Lemma 4.1

G, is cyclic. But this implies that g, 'gg, and g, v, 'gyug, have the

same fixed points, and therefore ~(oc) = oc; thus =, 1s of the form
o 1 in G 5 w s
Ay = T [(’6 [1 ] , where «j, 1s a positive real number and 3, 1s a real

number.
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One could now use some results on Kleinian groups to conclude that
o, = 1 (see, for example [7, D4 and I1.C.0]) but we prefer to give the
following elementary argument. A simple computation shows that

1 273
=[] W =[]

These two transformations are in I'"7", and so «, and 1/q, must be (positive)
integers ; that is, a,, = 1. But then +, will be in T'N7 and therefore z, = 7/,
since X =H/(TNT).

This proposition gives us a second way to prove the Big Picard Theorem
without using the modular function, as follows. As in the proof given above,
the function f: D* — X = C\{00,0,1} lifts to a function f: D* — D* that
gives a commutative diagram:

D*

Sk

Iy —-X.

The function f has a removable singularity at the origin with f(O) = 0; the
problem 1s to determine the behaviour of the map p. By Proposition 4.5 there
15 an € such that p i1s a finite covering from D onto its image. But then
by the Casorati-Weierstrass theorem p cannot have an essential singularity at
the origin, and neither can f.
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