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THE BIG PICARD THEOREM

AND OTHER RI NUI TS ON RIEMANN SURFACES

by Pablo ArÉS-GasTBSI and T.N. VENKATARAMANA

ABSTRACT. In this paper we provide a new proof of the Big Picard Theorem,
based on some simple observations about mappings between Riemann surfaces.

L Introduction

Isolated singularities of holomorphic functions are of three types : removable

singularities, when the function can be extended to a holomorphic function
at the singular point; poles, if the function behaves locally like z l/i" ;

and essential singularities, where the behaviour of tire function is difficult to

control. The Casorati-Weierstrass theorem, from around 1868 (see [9]), says
that the image of any neighbourhood of an essential singularity is dense in
the complex plane. The proof of this result is elementary, based simply on
the characterisation of isolated singularities of holomorphic functions. The Big
Picard Theorem is a deeper result which states that the image of a neighbourhood

of an essential singularity covers the whole complex plane, except for
perhaps one point. There are several proofs of this theorem, using different

techniques : the original 1879 proof of Picard [10, pp. 19 and 27] uses elliptic
modular functions, others use Bloch's theorem and normal families (see for
example [3], [6] or [8]) or the Schwarz-Pick theorem and estimates on the

Poincaré metric of certain plane domains [1] ; see [12, p. 240] for further
references. In this article we give a new proof of the Big Picard Theorem
based on basic facts of complex analysis, the theory of covering spaces and

the observation that there is no holomorphic mapping from the punctured disc

to an amiulus that is injective at the fundamental group level (Proposition 2.1).
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We have tried to make the article accessible to a wide audience ; to this end,

we have recalled some basic facts of complex analysis and given references

to classical texts. The organisation of the article is as follows : in Section 2

we prove the above-mentioned fact about mappings from the punctured disc

to an amiulus. in Section 3 we give a proof of Picard's Theorem; for this we
recall some facts on the modular group and the modular function. In Section 4

we study properties of discrete groups of Möbius transformations ; we do this

using Lie group techniques. In particular we show that a covering from the

punctured disc to a Riemann surface, if restricted to a small enough puncUired
disc, is a Unite covering (Proposition 4.5). With this result we can provide
another proof of Picard's Theorem.

We thank the referee for several very relevant comments which greatly
improved the exposition. The statement of Proposition 2.1 given below was

suggested by the referee and R. Karasi inhau (in a private communication). We

learned recently that the proof given in the present paper was also found by
Madhav Nori a while ago.

2. À LEMMA ON RIEMANN SURFACES

We start by setting up some notation. The Riemann sphere (extended

complex plane), the upper half plane and the unit disc will be denoted,

respectively, as follows :

C — C U {oo} H g C ; Im(z) > 0} D {z 0 C ; \z\ < 1}

It is an easy consequence of Schwarz's lemma that the group Aut(D) of
biholomorphic self-mappings of the unit disc consists of the Möbius transformations

of the fonn A(z) — (az + b)/(bz + a), where a and b are complex
numbers satisfying a — \b\ — I [1, p. 1], I sing the Cayley transform

'l'(z) -- : H —> D, it is easy to see that the group Aut(H) consists of the

Möbius transformations with real coefficients; that is, transformations of the

form ,\(.:) =s ^+ '', with a, b, C. cl real numbers satisfying ad — be — 1. We

can then identify Aut(H) with the quotient group PSL2(R) — SI ,2(R)/{±!d\,
where SL2(R) is the group of square matrices of order 2 with real coefficients
and determinant equal to 1, and Id denotes the identity matrix. (Similarly,
Aut(C) can be identified with PSL2(C).) The advantage of this identification
is that it allows us to use Lie group techniques to obtain results on complex
analysis (Lemma 4.1). We will denote the elements of PSL2(R) by F 21] •
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The elements of PSL2(R) can be classified by their conjugacy classes as

follows :

1. the identity;
2. hyperbolic elements, conjugate to [Jj with k real, k > 1 ;

3. elliptic elements, conjugate to [_!n8e >
w'1'' 0 < 0 < 7r ;

4. unipotent or parabolic transformations, conjugate to [J. {] or [J "J]
(these two transformations are conjugate in Aut(C) but not in Àut(H)).

Different values of k or 9 in the above list (within the given ranges) yield
different conjugacy classes.

Let A be a parabolic transformation of I'SJAIR), say A(z) Z + 1 ; let
G denote the subgroup (of PSL2(R)) generated by A. The quotient Riemann
surface H/G can be identified with the punctured disc D* — D\{0} ; the

exponential function provides the covering map

7r: H —> D*

1 HI exp(27nz).

For the case of a hyperbolic element, take A o rJj] > l'lcn H/'G is

confonnally equivalent to an annulus, A, — {z e C; r < z\ < 1}. The

covering map is again given by an exponential mapping :

7T : H —>• A,.

Z exp(7rilogz/ log£)

(where the argument of logz is chosen between 0 and 7r). The numbers k
and r are related by r — exp(—n2/logk). See, for example, [4, IV.6.4 and

IV.6.8],
Since parabolic and hyperbolic transformations are not conjugate in

PSL2(R) (or in PSL2(C)), there does not exist a biholomorphic mapping
between the punctured disc and an annulus. However the next proposition
shows that more is true.

Proposition 2.1. A holomorphic map from the punctured disc D* to an
annulus Ar (r > 0) induces the trivial map between fundamental groups.

Proof. Let /: D* —> A, be a holomorphic mapping; denote by 7 the

generator of the fundamental group of the punctured disc. Since / is bounded,
its singularity at the origin is removable and so / extends to a function from
the unit disc D to the closure of the annulus A, However non-constant
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holomorpliic functions are open mappings, so /(D) actually lies ill A,, Since

7 is homotopically trivial in D we have that /(7) is homo topically trivial
in Ar, and thus / induces the trivial mapping between fundamental groups.

3. Picard's Theorem

The well-known Picard Theorems are results about the range of entire
functions or of functions with essential singularities. More precisely, the Little
Theorem says that the range of a non-constant entire function can miss at most
one point in C (for example, a polynomial is surjective while the exponential
mapping misses the origin). The Big Picard Theorem on the other hand, states

that the same result holds for a function with an (isolated) essential singularity,
in any neighbourhood of the singularity.

The Little Theorem is easy to prove using the fact (see below about

properties of the modular function) that the universal covering space of
C\{0,1} is the upper half plane, or equivalently the unit disc D. Indeed,

if / : C > C\{0. 1} is an entire function, then / will lift to a function

/: C —> D; by Liouville's theorem / is constant, and therefore / is also

constant. In the case of the Big Picard Theorem the problem is that / is
defined on the punctured disc, and it is not clear that it will lift to the unit
disc; Proposition 2.1 gives us a way out of this difficulty.

Before we give the proof of Picard's Theorem we need to recall some results

on the modular function (for more details see for example [2, Chapter 7] or
[13, Chapter 16]). Let T denote the congruence subgroup mod 2 of PSL^Z) ;

that is, the group of Möbius transformations [fo] with integer coefficients,

satisfying ad — be — I and where a and d are odd and b and c are even

(die transformation is congruent with the identity modulo 2). This group is

generated by A [J \ ] and B - [ /2 1] • These two transformations, as well
as their product C — AB — [ I2 1] are parabolic.

Lemma 3.1. Any parabolic element of T is conjugate in T to a power
of A, B or C.

Proof. A parabolic Möbius transformation 7 — " Jj] has a unique fixed

point in C, namely a f d when c f 0 and 00 if C — 0. If 7 is in T then

its fixed point is in Q U {00}. Let T(z) denote the T -orbit of a point g £ C ;

then Q U {00} can be written as the disjoint union of three orbits :

Q U {00} F(oq) U T(0) U T(l).
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The fixed points of A, Ii and C are oo, 0 and 1 respectively. If 7 6 T
is a parabolic transformation with fixed point at 00 then it is easy to see

(by the conditions set on the coefficients of elements of T that 7 — A" for
some integer n. Similarly if the fixed point of 7 is 0 (respectively 1 then

7 — B" (respectively 7 — ('" For the general case, assume that 7(Zo) — Zo

and Co T(oo) ; then there exists a 7 7 F such that g(oo) - Zo- Then we
have g~1jg - A" because the left hand side of this equality is a parabolic
transformation in T, with fixed point at 00. Thus 7 is conjugate in T to a

power of A. The cases zo e T(0) and zo T(l) are handled similarly.

The modular function A is a holomorphic function defined on the upper
half plane invariant under the group T ; that is, À(7(r)) A(r), for all 7 e r
and r G H. It turns out that A is actually a covering map from the upper
half plane to the plane minus two points, A: H —> C\{0,1} - C\{oo,0,1}.

We now can prove Picard's Theorem.

Theorem 3.2. Iff: D* —^ X C\{oq,0,1} is holomorphic then f cannot
have an essential singularity at the origin.

Before we proceed with the proof we make two observations : firstly, given

any three distinct points in C there exists a (unique) Möbius transformation
that maps them to 00, 0 and 1 ; thus these three points do not play any
particular role in the above statement of Picard's theorem. Secondly, the radius

of the disc around the singularity can be arbitrary since any two punctured
discs are confonnally equivalent.

Proof. Let C be a generator of the fundamental group of D* (we again
make an abuse of notation and use the same letter for a path and its homotopy
class) and let 7 be the element of T that corresponds to /,((') under the

covering defined by the modular function A. By the lifting criterion [5, p.61]
the function / lifts to a map /: D* —>• M/fy). We consider the different

possibilities for 7. If 7 is the identity then /: D* -a H ; but the upper half
plane and the unit disc are confonnally equivalent, so / will have a removable

singularity at the origin and therefore / will also have a removable singularity.
If 7 were hyperbolic then H/(7) would be (confonnally equivalent to) an

annulas, and / would be a holomorphic mapping from the punctured disc

to an annulus that induces an isomorphism between the fundamental groups.
By Proposition 2.1 this is not possible. Since F has no elliptic elements we
conclude that 7 must be a parabolic transformation.
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By Lemma 3.1, by conjugating within F, we may assume that 7 is equal
to a power of A, 5 or C, say 7 — A", with ftp? 0. The function / lifts to the

covering determined by A ; we will denote the lift by / to simplify notation.

LTsing the fact that H/(A) is (conformai!y equivalent to) the punctured disc

we get the following commutative diagram:

H

Here k is the covering given by the exponential function, r —I exp(7rir), and

p is the holomorphic covering such that A — poir. Since / is bounded it has

a removable singularity at the origin ; moreover, since 7 is not trivial we must
have /(0) 0. From [2, Equation 27, p. 272], the function p has a power
series expansion of the fonn p(q) - 16c/ + near the origin. Thus z 0

is a removable singularity for both p and / ; hence / also has a removable

singularity at the origin.

If we assume that 7 — B" we have again that (the corresponding) p has

a removable singularity at z — 0, while if 7 — C" then p has a pole. In each

case, the function / does not have an essential singularity at the origin.

4. Results about discrete groups
AND ANOTHER PROOF OF PICARD ' S THEOREM

The space of 2 x 2 matrices with real (or complex) coefficients has a norm
given by ||À|| — max{|ö|, \b\, |è|, \d\}, where A — fjjJ) -, This norm induces

a (subspace) topology on SL2(R) and a (quotient) topology on PSL2(R). We

will denote by B(Id. e) the ball of centre the identity and radius e ; it consists

of the transformations represented by a matrix [®|] such that \a — lj, l)

T| and 7—1 are bounded above by e. A subgroup G of PSL2(R) is

called discrete if it is discrete in this topology; that is, there is no sequence
of elements of G, say A„ — A„ ^ kl, such that a„,d„ —> 1 and

bn, c„ —> 0.
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Lemma 4,1. There exists e > 0 such that if A and B are in Bihi. e) and

generate a discrete subgroup G of PSL2(R) then G is cyclic.

Proof. We first recall the concept of nilpotent group. Let II\ and If be

two subgroups of a group II ; denote by [//,, //21 the subgroup of H generated

by all elements of the form /îi/ï2/ï^_1/7^~ 1, where h\ g If and /;2 G //2. Define
II(r> - H and for n > 1 set if"1 - [//, lf"~>}\. A group is called nilpotent
if there exists a positive integer n such that II" — {Id}.

By a result of Zassenhaus and Kazhdan-Margulis [11, Theorem 8.16] there

exists an e > 0 such that if A and B are in B(Id. e) in PSL2(R), then the

group G generated by A and B is nilpotent (this holds for a general Lie

group, not only for PSL2(R)). The lemma will be proved if we can show that

any nilpotent discrete subgroup G of PSL2(R) is in fact cyclic.
Let then G be nilpotent and non-trivial ; let n > 0 be an integer such that

G G(1) J - - G("+1) {Id}

Then G(,,) is central in G but not trivial. There are three cases to consider:

L Suppose (f"1 contains a unipotent transformation, say [ | j ] without
loss of generality. Then G is a subgroup of translations, that is,

G t {],',?] ; x ê R}

since these are tlie only elements that commute with [ 11 ]. Thus G can be

identified with a discrete subgroup of R and by standard results, G must be

cyclic.

Thenft o
0 l/ko2. Assume that (f"1 contains a hyperbolic element, say

we have

G {114] ; k R. k > 0}

so G can be identified with a discrete subgroup of R the positive real

numbers with multiplication as the operation. Again one easily obtains that

G must be cyclic.

3. Finally, if G contains an elliptic element, then G is conjugate to

a discrete subgroup of the circle group, .S'1 (the group of rotations). By
discreteness all elements of G have finite order and it is not difficult to see

that G is cyclic.

The next result assumes the LTnifonnization Theorem; for the reader

unfamiliar with it we state the necessary facts in the proof.
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Theorem 4.2. Let f: D* —> S be a holomorphic mapping from the

punctured disc into a Riemann surface S — S/F, where S denotes the

universal covering space of S. Denote by y a generator of the subgroup

of T corresponding to the image /*(7it(D*» of the fundamental group of D*
under f. Then y is the identity or unipotent.

Proof By the Unifomiization Theorem the surface S is the Riemaim

sphere C, the complex plane or the upper half plane, and the group F is

a group of Möbius transformations acting on S (see [4, Theorem IV.5.6,

p. 206]). If S is the Riemann sphere then F is the trivial group so there is

nothing to prove. If S is the complex plane then F consists only of unipotent
elements (actually all elements of F are translations of the form z H- z + A,
A G C), so again the theorem holds. Thus we may assume that S H By
the lifting criterion the map / will lift to a map /: D* —>• X — HMy) • Since

F does not contain any elliptic transformations (see for example [4, IV.6.5],
or simply use the fact that elliptic elements have fixed points in H while

covering transformations act fixed-point freely) we need to consider only the

situation when 7 is hyperbolic. But in that case X would be an amiulus and

/ a holomorphic mapping from the punctured disc to the annul us that induces

an isomorphism between the fundamental groups; Proposition 2.1 rules out
this case, and the theorem is proved.

Corollary 4.3. Let S — H/r be a Riemann surface with universal

Covering space the upper half plane. Suppose there is a punctured disc
embedded in S and let -, ; F be the element corresponding to a small

loop around the puncture; then 7 is unipotent.

Corollary 4.4. Let S H/r. Then there exists a covering from the

punctured disc to S if and only if T Contains unipotent transformations.

The following proposition is the key point in our second proof of the Big
Picard Theorem.

Proposition 4.5. Let k: D* —> S be a covering map, where S is a

Riemann surface. Let D(' denote the punctured disc D* {z G C ; 0 < [ij < e}.
Then there exists e G (0,1) such that the restriction of 7r to D; is a finite
covering onto its image.

Proof. Since 7r is a covering, the universal covering space of S is the

upper half plane, so we can write S H/r, for F a discrete subgroup of
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PSL2CR). By Theorem 4.2, the subgroup of F corresponding to 7r>(7T|(D'

is generated by a uni potent element g ; without loss of generality we may
assume that g — [ J } ]. Let T denote the group of translations in PSL2(R) ;

since F is discrete, F Fl T must be generated by a translation of the fonn
to ''i'"] ' f°r some positive integer m.

We can identify D* (in the statement of the proposition) with the quotient
H/(g) ; let X — H/iT n T Then the covering ~ factors through X :

P 7T

Now X is also a punctured disc, and p is an W7-to-l covering (a power map,
p(z) — z'" The proposition will be proved if we can establish the following
claim :

The mapping W: X —s- S is injective on D*, for some 0 < e < 1.

To prove the claim, assume that there are two sequences of points in X,
say {I,,} and {z!„}, with 7f(z„) — W(z'„) and such that z„ -X 0 and z'„ —ï 0. Let

t„ — xn + iy„ and if — x'N + ix'N be lifts of these points in H ; then y„ —> +00
and y'n -g 4*00. Let g„ —1*1 ; we have gn{i) — t„ and it is easy to

%/yi>

see by direct computation that gf1gg„ —> Id. Similarly, if g'„ corresponds to

4, then {g'n)-l9g'„ -> H-
Since zN and z1,, are F -equivalent there exist % F such that (r„) — r'n.

Let k„ ~ gf^^g'n ; then k,,(i) — i and it is easy to see that (g'„)~1gg'„ —r M
implies gf17,71 gz„g„ -g Id (conjugate from the upper half plane to the unit
disc to do the computations ; on D the element conjugate to k„ has the fonn

_o£]>with 1

For a fixed n let G„ denote the subgroup of PSL2(R) generated

by %199« and I/,7
' Zf1 gx„g„. We have that G„ is discrete (since G„

is conjugate to a subgroup of F, which is discrete) and generated by
elements close to the identity (when n is big enough). By Lemma 4.1

G„ is cyclic. But this implies that gf1 ggN and gf1"/f1g%g„ have the

same fixed points, and therefore 7(00) — 00 ; thus j„ is of the fonn

% — —[ a0" ], where a„ is a positive real number and ß„ is a real

number.
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One could now use some results on Kleinian groups to conclude that

o:„ — 1 (see, for example [7, I.D.4 and II.C.6]) but we prefer to give the

following elementary argument. A simple computation shows that

% \1 if"Lo l In man
LO 1

In
' i Mm
-0 1 In

y SB,
m

0 1

These two transformations are in TnT, and so a„ and 1 /an must be (positive)
integers; that is, a„ — 1. But then % will be in FflT and therefore z„ — zf„,
since X — H/(T fl T),

This proposition gives us a second way to prove tire Big Picard Theorem
without using the modular function, as follows. As in the proof given above,
the function /: D* —> X C\{oo,0,1} lifts to a function /: D* —y D* that

gives a commutative diagram:

The function / has a removable singularity at the origin with /(0) =• 0 ; the

problem is to determine the behaviour of the map p. By Proposition 4.5 there

is an e such that p is a finite covering from D* onto its image. But then

by the Casorati-Weierstrass theorem p cannot have an essential singularity at
the origin, and neither can /.
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