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CAPTURE PURSUIT GAMES ON l NB< >1 NDId) DOMAINS

by S. Alexander, R. Bishop and R. Ghrist*)

ABSTRACT. We introduce simple tools from geometric convexity to analyze
capture-type (or "Lion and Man") pursuit problems in unbounded domains. The main
result is a necessary and sufficient condition for eventual capture in equal-speed
discrete-time multi-pursuer capture games on convex Euclidean domains of arbitrary
dimension and shape. This condition is presented in terms of recession sets in unit
tangent spheres. The chief difficulties lie in utilizing the boundary of the domain as

a constraint on the evader's escape route. We also show that these convex-geometric
techniques provide sufficient criteria for pursuit problems in non-convex domains with
a convex decomposition.

1. Introduction

Gaines of pursuit and evasion are among the oldest and most elegant

problems in game theory, osculating differential equations, control theory,
differential geometry, and graph theory. This paper focuses on global geometric
features of capture-type pursuit problems. The primary contribution is an

introduction of tools from geometric convexity which allow for results so

general as to be independent of the number of pursuers, and the dimension
and (to a lesser extent) the geometry of the playing field.

*) Research supported by DARPA SToMP # HR0011-07-1-0002 and NSF MSPÀ-MCS
# 0528086.
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1.1 Of lions and men

The history of pursuit-evasion games is rich, with the earliest formal

problems being inspired by naval exploits [3]. Isaac's text [12] is the classical

source for the early survey of the field, with a focus on differential methods.

A more recent text by Naliin [25] gives a colloquial overview with more
colorful history.

The particular pursuit problem considered in this paper goes under the

name of Lion & Man. The original Lion & Man problem (attributed to Rado

in the 1930s) involves a single pursuer chasing a single evader at equal speeds

in continuous time on a domain V equal to a planar Euclidean disc. In this

well-known setting, it was a surprise to find that the evader can win if the

pursuer keeps on the radius to the evader (see Littlewood's geometric proof
[21] of Besicovich's 1952 result and the subsequent paper of Croft [6]). This

problem was generalized by Flyim [8] to account for different speed ratios
and solved via differential methods. More recent treatments of the problem

appear in [20, 2, 33, 17].

Although pursuit games are traditionally played on a planar Euclidean

domain, there are examples of more general playing fields, such as graphs [26],
spheres [18, 32], surfaces of revolution [22, 10], Euclidean half-spaces [15],
hypersurfaces of Euclidean space [31], and general compact CAT(O) metric

spaces [1]. The geometry of a playing field has been used as a parameter in
proving computational complexity of certain pursuit games [27, 19]. Necessary
and sufficient capture criteria are rare, sufficiency being more common in the

literature. The focal point of this paper is a necessary and sufficient criterion
for capture which applies to general convex Euclidean domains.

1.2 Assumptions

The following are fixed assumptions for all but the final sections of dûs

paper.
1. V is a closed unbounded convex Euclidean domain with boundary.
2. There is a single evader E and N pursuers {Py}f, represented as points

with distinct initial locations E° and {Pj1} respectively.
3. For each t N, the evader jumps from location E' to Er+1, a point within

unit distance of E'. Then, each pursuer may jump from Pj to fj at

most a unit distance.

4. The evader E wins the game if Pj j5 E' for all t and /.
5. Each pursuer Pj has perfect information about V and about its current

position Pj and that of the evader /:',+1.
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The principal result of this paper is a necessary and sufficient condition
for the pursuers to win, regardless of evader strategy, as a function of E°,
{P°}, and V.

1.3 Notation

We fix the following standard notation. Euclidean «-dimensional space
is denoted E" with norm |j |j. We choose « so that V has nonempty
interior, that is, V lies in no hyperplane of E". The unit sphere in E"
is S"_1 - {.f G E" : |[ä| — 1}. Given two points P and Q in E", the

line containing them is denoted PQ, the segment between them PQ, and the

distance bet' ;t [I'O | G 5"_1 denote the

denoted B(0,r). A cone with central angle a is the union of all rays from
a point making angle < a with a fixed ray.

We may abuse notation and use E to denote either the evader or an
evader's initial position, E°. The Same holds for pursuers, using Pj instead

of the more cumbersome Pj.

We detail known results for Lion & Man problems, graded as a function
of domain characteristics. In all cases, the assumptions of § 1.2 are in effect.

2.1 Compact domains

When V is compact, there is no route of escape, and the evader is always
captured. No intricate strategy is required: the greedy strategy of having the

pursuer move along the geodesic path to the evader's present location is

efficacious if not efficient. For compact convex domains, this is an exercise

for the reader. The greedy strategy works as well for any compact CAT(O)
domain (a geodesic metric space whose curvature - as measured by comparison
triangles - is nowhere positive) : see [1] for details.

2.2 NO BOUNDARIES

In the case where V VP, there is an obvious necessary and sufficient
criterion for capture :

(*) £ is iu the interior of the convex hull of {/'y} j1.

unit vector about a point O G E" is

2. Prior and present results



106 S. ALEXANDER, R. BISHOP AND R. CHRIST

That this is necessary and sufficient has been discovered and rediscovered

in various contexts within the literature. See, in particular, [6, 11, 36, 17, 28].
The perspective of the present paper is to incorporate the boundary of the

domain as a type of stationary pursuer, whose geometry affects the success

of a given pursuit strategy. This greatly impacts strategy and feasibility of
capture, as it is possible for the pursuers to comer the evader.

2.3 Radius: one pursuer

The paper of Sgall [33] solves a Lion & Man problem on the closed hrst

quadrant Q - {(a:t,x2) e E2 : Mi > 0}. All the assumptions of § 1.2 hold with
V — Q and N 1. For this case, Sgall shows that the pursuer can win if
and only if
(*) The set {ze Q: zSj < |zP|} is bounded.

The resulting algorithm is denoted Spheres in [17] : we will refer to it as

Radius, following the terminology of Croft's 1964 paper [6] (harking back to
the earlier work of Besicovich, Littlewood, and Rado). The algorithm proceeds

as follows. Let O denote a center : a point on the ray with end E through

/', not between E and P, such that the component of Q — B((>. \ OP\) which
contains E is bounded. The existence of a center O follows from (*). The

algorithm produces Pr+I from /'' and Zir+1 by choosing the point that lies

within unit distance of /'' and closest to E'+1 along the segment OE'+l.

Algorithm 1 P' Radius(/'. E'. <))

Require: \PE'\ > 1

l: p' <l_ point on OE' P\B(P, 1) closest to E'
2: return P'

Sgall proves that for V — Q, Radius always succeeds in a finite number

of moves for systems satisfying (*), and that a quadratic number of moves
in I OP I is a sharp upper bound. It is remarked at the end of the proof that
the result and proof generalize from the quadrant Q to any planar wedge of
angle < 7r, as well as to higher-dimensional convex Euclidean cones, with
the obvious modification to (a) above. However, Sgall fails to notice that

there is a distinction between wedges of angle < tt/2 and those with angle

> 7t/2 : for the latter implies that the center must be in Q, but tins is

no longer true for the former. We demonstrate in §4.1 that if the angle is

< 7r/2, Ins algorithm may fail to work because it may require the pursuer to

move outside the domain.
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2.4 Radius: MULTIPLE PURSUERS

The paper of Kopparty and Ravishankar [17] considers die broader setting
of N pursuers in a convex Euclidean domain in dimension n bounded by
finitely many hyperplanes. Their main result is an extension of the proof of
Sgall that the Radius algorithm works in this setting. Condition (*) above

generalizes in the following manner :

(*) E is in the interior of the convex hull of {Pj}f U {F*.}f, where Fk

is the orthogonal projection of E onto the kth bounding hyperplane

Their algorithm is a simple extension of S gall's: choose N centers for
E and tlie Pj such that the set 'D — M \OjPj\) has a bounded component
containing E. Discard the pursuers Pj for which the ray from E through

Pj intersects the boundary of V, and evolve via Pj — Radius(Pj,E,Oj).
Theorem 3 of [17] claims that Radius leads to successful capture, assuming

(*) holds at time t — 0 : see Figure 1.

of V.

<V

V

FlÖORB 1

One Radius step makes positive progress along the radial direction from center Oj
(Note : centers O2 and lengths are not drawn to scale)

Their paper has additional results, including a modified algorithm called
Planes, which is guaranteed to work only in the case of D - E" (as does

Radius, albeit more slowly).
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2.5 New results
We show the following.

1. The conditions (a) above all generalize to a Boundedness Condition

applicable to arbitrary convex Euclidean domains.

2. The application of Radius is invalid on general convex Euclidean domains

(even 2-d cones), contradicting the claims of [33] and [17]. However,
there exists a (restrictive) additional geometric assumption under which
the proofs of [17] become valid. This condition is not needed when there

is a single pursuer and the domain V diverges to infinity on a wide enough
set of directions.

3. The Boundedness Condition is necessary and sufficient for the existence

of a successful pursuit strategy (RotatingRadius) on convex Euclidean
domains (not merely those with piecewise-linear boundaries).

4. The Boundedness Condition gives a sufficient capture criterion on non-
convex Euclidean domains which are expressed as a finite union of convex
domains. The same algorithm RotatingRadius is played in a parallel
projected fashion on the convex components.

All mathematical tools used are very elementary ideas from Euclidean,

spherical, and convex geometry.

This section covers basic definitions from convex geometry [29] and

culminates in a general reformulation of the Boundedness Condition. For the

remainder of this section, assume V is a convex Euclidean domain.

DEFINITION 1. A Euclidean domain V with a configuration of N pursuers
{/A and one distinct evader E satisfies the Boundedness Condition if the

intersection

j—x

where H; is the closed half-space containing E whose boundary hyperplane

passes through Pj orthogonal to EPj.

In this section, we reformulate this condition in terms of spherical

convexity [7]. (One could just as easily work with cones in the non-nonnalized

setting, but we prefer thinking in terms of visibility spheres.)

3. Elementary geometry

(1)
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DEFINITION 2. A subset A C S" 1 of the unit sphere in E" is said to
be convex if the cone over A,

C(A) =s {v E E" : v — Xx for some x E A, A [0, oo)}

is a convex subset of E".

Remark 3. A great k-sphere in A"-1, for 0 < k < n — 1, being by
definition the intersection of S"~1 with a (k-f 1)-plane through the origin,
is a convex subset of jp"*1 according to our definition. In particular, when

k — 0, a pair of antipodal points is a convex subset.

Given V, we can encode the constraints imposed by the boundary as well
as the possible avenues of escape in tenns of dual convex subsets of the unit
sphere.

DEFINITION 4. Given V C E", the normals set N is the subset of N"_1

containing all the outer unit normal vectors to support hyperplanes in E"
which intersect V but not its interior.

It is worth noting a point that many authors have misstated: the set Af
of outer unit normals used in this definition is not necessarily convex, though
its closure is. See [38] for an example where this distinction is critical.

Definition 5. The dual A0 of a convex set A C .S'"~1 is the set of all
unit vectors v making angle > tt/2 with every vector in A.

Then A0 is a closed convex set, and A00 is the closure of A.

Definition 6. The recession set of V is the subset 7Z of N"_1 containing
all unit vectors in the directions of half-lines lying in V.

The following lemma is well known and easy to prove (see [29, p. 123,

Corollary 14.2.1]). We denote the closed hemisphere with pole x in .S'"~1

by Hx.

LEMMA 7. For V C E" convex, (closure A/")0 1Z. Equivalently, xeTZ
if and only if W-x D AT.
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The encoding of the boundary (AO and the directions of escape (R) are

thus dual. In the special case when Af is the empty set (that is, V — E"),
its dual 7Z 5"_1 is the entire unit sphere, in accordance with Definition 6.

On the other hand, when V is compact, then 'R is empty and M — S"~l.

Lemma 8. For T> c E" convex, N lies in a closed hemisphere of S"~1

if and only if V is unbounded.

Proof. The closure of AO being convex and nonempty, either lies within
a closed hemisphere of S"~1 or coincides with S"~l. By Leimna 7, the latter

case occurs if and only if R is empty, hence if and only if V is bounded.

Figure 2

The geometry of the domain and the pursuers is encoded in the visibility (unit tangent)
sphere at E: pictured is the recession set TZ, its dual the normals set A', and the
perceived locations of the pursuers [EPA. The Boundedness Condition is equivalent to
saying that the spherical convex hull of M and the [EPj] is the entire visibility sphere.

The following is a general reformulation of the Boundedness Condition in
terms of recession sets and normals sets. Recall that [EPj\ denotes the unit
vector in the direction from E to Pj.

Theorem 9. The following are equivalent :

(1) T> c E" satisfies the Boundedness Condition.

(2) No closed hemisphere of 5"_1 contains A/"U

(3) The union of the open hemispheres in S"~l with poles \EPj\ contains R.
(4) The spherical convex hull of Af U {[EPj]}^ equals A"-1.

Proof. The equivalence of the Boundedness Condition with (2) above

follows from Lemma 8 applied to the set given by the intersection of V with
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the appropriate half-spaces as in Definition 1. The equivalence of Conditions

(2) and (3) follows from Lemma 7, since x G jj - int 'H[EPß for every x 1Z if
and only if for every hemisphere "ficontaining Af we have [EPj] £ int Hx

for some j. The equivalence of (2) and (4) follows from Definition 2.

Note that this result specializes in the case of D — E" : the evader must
lie in the interior of the convex hull of the pursuers.

The Boundeduess Condition means that the evader cannot simultaneously
move away from the boundary of the playing field and all the pursuers. If the

evader ever can, their, of course, the evader wins.

Proposition 10. The Boundedness Condition is a necessary condition

for the existence of a successful pursuit strategy.

Proof. If the Boundedness Condition fails, then all of the vectors [EPj]
together with Af lie within a single hemisphere H of S"-1, thanks to

Theorem 9. Let v be the unique vector in .S'"~1 dual to H. By definition,
v £ 7Z. Moving E in the direction ft yields an infinite trajectory which
furthermore never decreases the distance to any Pj (as a trivial calculation

shows).

4. Boundary effects and Radius

We consider carefully under which circumstances the Radius algorithm of
[17, 33] is valid and effective.

4.1 When Radius FAILS

The first step of Radius in [17, p. 120] is to discard all the pursuers Pj for
which the ray EPj intersects a bounding hyperplane of D, or equivalent!y,
for which [EPj] f_ 1Z. However, the Boundedness Condition may fail to be

preserved under this step; worse, all tire pursuers may be discarded. On the

other hand, if the discarding step is omitted, the algorithm may move pursuers
out of the playing field. Figure 3 gives a planar example involving a single

pursuer.

REMARK 11. It may be argued that the chances of having pursuers 'tricked'
into a boundary collision via Radius is rare; or that this is a result of a

degenerate set of initial conditions; or still that the difference between where
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For a thin cone, the recession set 7Z and the hemispheres set 14 (see Definition 14)
do not partition the unit tangent sphere [left]. Consequently, the Radius algorithm
can fail, in this case [right] by demanding that P^1 lie outside of T>. (Note:
the point O is not drawn at the appropriate distance to T> for scale purposes.)

Radius and where the laws of physics demand that a pursuer goes are too
small to affect the outcome of the game. In dimension two, such consideration

might have validity. However, as the dimension of the domain V increases,
the possibilities for mischief on the part of an adversarial evader increase

dramatically. Consider the example of a domain V whose recession set is

very thin. For example, in 3-d, this would correspond to a domain with
minimal cone angle near zero and maximal cone angle near w, as in Figure 4.

In the case of several pursuers beginning near the boundary and which just
barely satisfy the Boundedness Condition, it is possible for the evader to 'zigzag'

and force pursuers to collide into the boundary at many/all time steps.
Small errors in progress induced by these boundary effects could presumably
accumulate under such au evader strategy.

Further generalizations of tliis example to domains which have several

independent cone angles close to 7r along with several close to zero could

prove more challenging, since the evader has multiple directions 111 which
to escape, while pursuers can experience a boundary collision at many time

steps.

4.2 When Radius works

If no pursuers are discarded but the evader always moves so that the Radius

algorithm leaves them in 'D, then the evader is captured. Thus in Figure 1,

even if the evader moves steadily in the recession direction that makes angle

7t/4 with the positive x and y axes, the escape route will be blocked. The
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FldORB 4

A higher-dimensional convex domain with a thin but long recession set
could lead to a situation in which boundary collisions are prevalent

following is a corrected version of Theorem 3 of [17]. The proof that Radius

works in this restricted case follows the proof of [17] exactly. We include a

careful proof for the sake of completeness.

Theorem 12. For any convex unbounded T>, the pursuers win if
(1) the Boundedness Condition holds and

(2) \EPj\ e 71 for all j.

Proof Condition (2) implies that Oj V for all j, and Pr+1

RadiusfPj, IP"»1, Qj) returns a value in D, since Pj+1 lies on the segment

OjEt+i C V. Since the colinearity and order of the triples (/.'. Of are

maintained as a function of t, the evader must remain for all I within the

(bounded domain of (1) in Definition 1. However, since the angle ZOPjPj+1
is obtuse and | — 1, the Law of Cosines implies that

I OjPj+1 j2 > + 1,

implying the eventual capture of E.

REMARK 13. It is permissible to discard any number of pursuers ab initio,
so long as the Boundedness Condition holds with the remaining pursuers.

In the case of a single pursuer P, we can present a simple condition on
the playing field V that guarantees the success of Radius.
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DEFINITION 14. For a fixed domain 'D, let U denote the union of all
closed hemispheres in W~1 that contain J\f.

By Theorem 9, the Boundedness Condition in the single pursuer case

becomes [ | f U.

Lemma 15. Assume there is a single pursuer P, and that IZyU — 5"_1.
Then the pursuer wins following Radius if the Boundedness Condition holds.

Proof Since IZLill S"~1, tlie Boundedness Condition | EI'| ([_ U implies
that [/:'/'I g 7Z, and so the hypotheses of Theorem 12 are satisfied.

If the condition of Lemma 15 fails, then Radius may fail, as the planar
example in Figure 3 illustrates.

Theorem 16. In the case of a single pursuer if V contains a cone

with central angle at least 7r/4, then the Boundedness Condition guarantees
capture via Radius.

Proof. Suppose V contains a cone with central angle 7r/4. Equivalently,
'R contains a spherical disk of radius 7t/4 centered on some unit vector §
(that is, all unit vectors making angle < 7r/4 with »). Since W and J\f are

dual, the set N must be contained in a spherical disk of radius 7t/4 about — v
It follows that U, the union of all closed hemispheres containing Mt contains
the spherical disk of radius 37r/4 about —v. Therefore ft Li U — JF as

desired. Lemma 15 completes the proof.

When V does not contain a sufficiently large subcone, it is still possible
to ensure capture, as we demonstrate in the next section.

5. Sufficiency of the Boundedness Condition

We introduce Algorithm RotatingRadius to resolve the deficiencies of
Radius and provide a complete characterization of when capture is possible.
From Theorem 12 we see that the Radius algorithm works if {|/:7';|} C 1Z.

In this case, under the Radius algorithm, each pursuer Pj computes a center Oj

on the line EPj and moves radially away from this center. The centers Oj are

fixed throughout the game, and the evader is blocked from entering a family
of expanding concentric spheres about each Oj.
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However, in the case where \EPj\ f| 7Z, Radius may move a pursuer
P'j to a position Pj+1 outside D. When tliis occurs, the strategy of the

RotatingRadius algorithm is to recalculate P;r+1 to lie in V, using nearest-

point projection. RotatingRadius then recalculates the center Oj+1, changing
the blocking sphere so that the new one continues to contain the old one even

though they are no longer concentric. The key is to show that this can be

done while keeping the radii of the blocking spheres bounded.

Theorem 17. Discrete-time equal-speed capture on a convex domain V
is achievable if and only if the initial positions of the pursuers and evader

satisfy the Boundedness Condition.

5.1 The RotatingRadius algorithm
One begins by discarding those pursuers {/';} for which [EPj] £ Af.

By Theorem 9, this move preserves the Boundedness Condition. After the

evader moves from ff to Ët+1, each pursuer Pj and its corresponding center

Oj is updated according to (Pj+1,Oj+1) Rotat.ingRaelius(Py, If. V). See

Figure 5.

EjÖBRB 5

The RotatingRadius algorithm deals with boundary collisions in Radius by projecting P" to
P* in the boundary <)'D and then moving the center O to O' with P' placed along E'O'

5.2 Radial progress

For Radius, Sgall bases Iris estimate of capUire time on the following
estimate, which we adapt to RotatingRadius.

Lemma 18. If Pj+1 ^ Et+l,

jojpj|2 +1 < |oj+1p;r+1|2.
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Algorithm 2 (P,0') RotatingRadius(P, E', O, V)
Require: \PE'\ > 1

l: Radius!/'. E'.
2; if /'" e V then
m p' <= p"
4: a 4= o
5: else

6: P* projection of P" to V
7: P' 4= point on I' ll' />'(/'. 1) closest to E'

8: 0' 4= point on the ray E'P' witli \E'0'\ — \E'0\
9: end if

10: return (P',0')

Proof. Set P — Pj. Since EE' \ < 1, the distance from any point M of
the interior of the segment E'O to the line EO is < 1. Taking M such that

PM _ EO we see that there are two points on E'O at distance 1 from /',
and tlie one, P", nearest to E' forms an obtuse angle ZOPP". Hence by the

Law of Cosines, (,0P|2 + 1 < |OP"\'E If P" G V, then Pj+l — P" and we

are done.

Otherwise we continue the algorithm by letting P* be the nearest point in
V to P" (clearly I'I" < 1), and letting H* denote the half-space containing
V and bounded by the support hyperplane to V at P* that is orthogonal
to Then P' — if'1 is the unique point on tlie segment E'P* at

distance 1 from P. Since E' C D and P" f V, then E' is in H* and so

ZE'P*P" > tt/2. Hence \P*E'\ < \P"E'\. Since \E'0'\ \E'0\, we have

(2) \0'P'\2 > \0'P*\2 > I OP" |2 > |OP|2 + 1.

5.3 A DECREASING PLAYING FIELD

Consider the closed ball B — P(Oj, |OjPj|). Let C be the component
of (V — (J Bj) containing ET. We prove that C is strictly monotonically
decreasing under tlie RotatingRadius algoritlnn, thus providing a set-valued

Lyapunov function.

Lemma 19. cl C '1 c C for every t.

Proof. In this proof, we fix j and continue tlie notation of §5.1. Set

B' B'j B(()'.. ()'. I'1.1 and let Sf be the boundary sphere of B'. When
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p" — we have 0=0', so by Lemma 18, Bt+1 is concentric with and

larger than B!. Otlierwise we show that the ball B'+1 about O' includes the

intersection of V with the ball />" about O, that is,

(3) (Bt+1 nV)D (Br n V).

Consider two concentric spheres with center ()' : .S'f+1 through I'1 and

S with radius \OP"\. We also have two concentric spheres with center O:
S' through P and S" through P". By (2), the corresponding balls satisfy
Br+1 2) B and B" D B' Therefore (3) will follow from

(4) (b n V) 3 (b" n V).

Since S and S" have the same radius, their intersection S fl S" is an

(n — 2)-sphere S' centered at the midpoint of the segment OO' and lying
in the perpendicular bisecting hyperplane of that segment. Let H' be the

half-space containing ()' and bounded by this perpendicular bisector. Then

(B n H') D (B" n H').

Therefore (4) will follow in turn from

(5) (/#" flDjCH',
since tlien

(B nv) 3 (unH'nf) 3 (B" n h' n V) 3 (B" n V).

By construction, is the shortest join from P* to D, so f lies in
the half-space H* bounded by the support hyperplane to V at I' that is

orthogonal to P"P*. Thus (5) will follow from

(6) (/>•"' ILK I!'.
wliicli we now verify.

The centers O and ()' of B" and B, respectively, and the point E' all
lie on a 2 plane T ortliogonal to the bounding hyperplane of H'. Moreover,
T is also ortliogonal to the bounding hyperplane of H* since P" and I"
lie on T. By symmetry, it suffices to verify (6) when B", H* and H' are

reinterpreted as their respective intersections with 77

Thus we regard H* as a half-plane bounded by a support line at P* for
V (7 7\ and H' as the half-plane containing O' bounded by the perpendicular
bisecting line of OO'. Similarly, S fl S" is an intersection of two circles, of
equal radius and with centers at equal distance from and consists of two
points on the bisecting line.
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FïGOEB 6

Progress in the RotatingRadius algorithm is proved by demonstrating
a nestedness property for balls /»' ' intersected with T>

Because ZE'P*P" is obtuse, \E'P*\ < \E'P"\. Since \E'0\ \E'0'\,
then I O'P* I > \OP"\, that is, P* lies outside B. Since P* G H' and

(IIHU) _) (II" O//), then P* lies outside PUP". Therefore the segment P*P"
lies, except for its righthand endpoint, outside BOB". It follows tliat B" 71 H

camrot leave H', since on the bounding line of H the intersection point with
the bounding line of H* is separated from S H S" by the intersection point
with P*P".

5.4 Proof of Theorem 17

Proof. If O'y
1 / Oj, the closed half-space H 4 containing Oj+1 and

bounded by the perpendicular bisecting hyperplane of (()'~ ' consists of the

points of E" that are no furtlier from Oj+1 than from Oj.
Choose a point Qj G (Pj n V). By (3), (J, G (Pj H V) for all t. Thus, in

the notation of the preceding section, we always have Qj G P". Since Qj G V
and H* is a supporting half-space for V, we also have Qj G H* But then

by (6), Qj G H 1 for all t. Therefore the distance |ô;Oj| is nonincreasing
in I.

The lengths 0;fT are uniformly bounded for all t, as are the lengths

\QjE'\ by Leimna 19. Therefore the lengths O'.E' are uniformly bounded

in t as well. By Lemma 18,

(7) 10)E' \2 > I O'jP'j \2 > I OjPf 12 + t.

Therefore capture occurs.
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5.5 Quadratic estimate

The proof of Theorem 17 yields the following estimate, just as in the

setting of [33, 17].

Corollary 20. Under the Boundedness Condition, if Qj g (Bj n T>%

then the pursuers catch the evader in time

t < nun
j

I QjO° j + max{ I Qjx \ : X G t'n}) - | ()"P"

Proof. For each j, the time of capture t satishes

\0°Pf\2 +t< jrifPj|2 < (\%Üj\ + \QjPj\f

< I QjOj I + max{ I Qjx\ : X G Cf})2

The hrst inequality is from (7), and the last is by the nonincreasing property
of QjO'. and Lemma 19.

6. NONCONVEX DOMAINS : CONVEX DECOMPOSITION

The tools used in the proofs of this paper are intimately linked to convexity,
making the prospects for extending Theorem 17 to arbitrary Euclidean domains

seem dim. However, by ûxing a convex decomposition of a more general
domain and using properties of projections to convex sets, it is possible to

give a surprisingly broad generalization.

6.1 The Extended Boundedness Condition

Consider a domain T> in E", again with a contiguralion of one evader

E and N pursuers {/';}. Suppose V is expressible as a union V — IJ Da,
where each Va is a convex domain with boundary. We assume neither that

tins union is disjoint, nor that each T>a is noncompact, nor that each P,, is

il -dimensional.

The assumptions on the motion of the pursuers and evader must be modihed

slightly in the non-convex setting. In particular, the unit-distance upper bound

on the distance moved per time step must now be interpreted within the

interior geometry of V. Players may move to the endpoint of any (rectihable)
path in V of at most unit length from the starting point: players may not

'jump" across comers or other boundary features.
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DEFINITION 21. Let PROJa : E" -O Va denote nearest-point projection
to 'D0 The maps PROJa are well-defined projections, since T>a is convex.
The Extended Boundedness Condition states that the set of pursuers can be

partitioned into nonempty collections {P,l]n e Va, 1 < ja < Na}, where

for each noncompact 'D,,, the configuration of the evader PROJri:(E) and Na

pursuers {/%,,} satisfies the Boundedness Condition.

Note that for compact T>a, the Extended Boundedness Condition merely

says that T>a contains at least one designated pursuer.

Figure 7

On a domain with convex decomposition, one projects the evader's position
onto convex factors and plays pursuit games in parallel

Theorem 22. ne Extended Boundedness Condition is sufficient to ensure

discrete-time equal-speed capture on V.

Proof. Since the maps PROT, are projections, they are distance non-
increasing, and consequently the jumps of RRO.J,,(E) are at most unit
distance. For each noncompact T>ai let the N& pursuers {P0j„} follow the

RotatingRadius algorithm applied to Va with evader PRO-CtE). If T>a is

compact, set P%„ e ® and continue as in Radius. If a pursuer
I'.,-, captures PROj0(E) but PROJ«(E) f- E, tliereafter let move where

PROJq,(E) moves, namely P'lrj PROJa(Ef) for subsequent t.

In accordance with the estimates in the preceding section, the projected

or 'ghost' evader PROJa(E) is eventually captured for each a. However,

PROJ„(E) — E for at least one o: : E is captured.
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6.2 Fewer pursuers

The Extended Boundedness Condition is dependent upon a choice of
convex decomposition. An infelicitous choice (too many components) leads

to an excessive lower bound on the number of pursuers needed.

In addition, the analogue of Proposition 10 does not hold in tins context.

If the Extended Boundedness Condition fails for a given decomposition (or
even for any convex decomposition), it does not imply that capture cannot be

achieved.

Remark 23. As in §5.3, for each Va, let fjjj be the component of
(Da — (J B': containing PROJQ(Er). Say C'a and À are accessible from
each other if and only if the interior distance in V between them is < 1.

The possible locations for Er+1 are in those domains C', that are accessible

from some C'n for which E' G Da. Consider the graph T' whose vertices Vrt

correspond to the domains D,,, and whose edges correspond to the accessible

pairs {CojCß}. By Lemma 19, at each step no new edges are created while

some may be lost. Thus at step t, we can discard all the designated pursuers
for all tire domains T>ß such that VÇ does not lie in the same connected

component of F' as any Va satisfying E' G Va.

7. Concluding remarks

We close with a sequence of remarks delineating extensions, open problems,
and significant aspects of the techniques here introduced.

Remark 24 (General domains). We stress that the difficulties handled in
tins paper all stem from the combination of dimensionality and constraints

in the domains considered. In general, 2-dimensional playing fields are fairly
easy to deal with (the proof of Theorem 17 can be greatly simplified in the

planar case). High-dimensional playing fields without boundary are trivial.
It is the combination of a potentially intricate, high-dimensional boundary
which provides the core challenge. There is seemingly no hope of adapting
differential game-theoretic methods to such problems (since changing the

boundary induces subtle global constraints), and we are left with geometry as

a recourse. Fortunately, there are sufficient geometric tools available.
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Remark 25 (Recession sets). An important contribution of this paper is

the recognition of the recession set as a means of encoding domain geometry
in pursuit problems. I liis allows one to speak of the evader-pursuer sightlines,
the boundary normals of the domain, and the available escape routes in a

common context — subsets of the unit tangent sphere. The combination of
Theorems 9 and 17 imply that feasibility of capture is a function of the

geometry of the recession set relative to evader-pursuer sightlines. Moreover,
the pursuers' plan may be viewed as an attempt to move the vectors ||into the recession set while preserving the boundedness condition.

Remark 26 (Multiple evaders). We have considered multi-pursuer games
with a single evader. Consider a modification to the assumptions of §1.2 in
which there are M evaders Et moving in discrete time along the sequences

{££} with |£|£|+1| < 1 for all t. The goal of the pursuit game is to have

all M evaders eventually captured.

Thanks to Proposition 10, the obvious necessary condition for capture
is that the Boundedness Condition is satisfied for each Et with respect to
the entire collection of pursuers {/(}. Thanks to Theorem 17, the obvious

sufficient condition for capture is that there is a partition of the pursuers,

{Pfj} for i — 1...., M such that for each £, the collection [/', |T

satisfies the Boundedness Condition on V. The obvious strategy in this case

is to play games in parallel.
In the case of multiple evaders, more complex strategies of pursuers'

trading 'ownership' of an evader are possible. This remains an important and

interesting challenge.

Remark 27 (Information constraints). Similar network-theoretic issues

surround issues of communication and exchange of information between

players. The necessary and sufficient conditions of tins paper have the stringent
assumptions of perfect evader location and domain information, as well as

initial all-to-all communication between pursuers (to initialize centers Oj).
Relaxing these assumptions generates a number of interesting challenges.

For example, assume that the pursuers know only an approximate evader

location, encoded as a compact convex set £ (cf. [30]). Assume a monolonicity
condition which says that the set £'+1 is a subset of the translation of £'
by a vector of at most unit length. (That is, uncertainty of evader location

can decrease but cannot increase.) Then it is perhaps possible to reprove the

Main Theorem by, for example, having each pursuer chase after the point of
£ closest to the pursuer's center (this is well-defined thanks to convexity).
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Other scenarios for uncertain information include those in which the

pursuers do not admit an initial all-to-all communication round, but rather
communicate with pursuers which are sufficiently close. Far-off pursuers cannot
be reached. This and similar problems touch 011 many ideas currently in play
in the control theory literature on distributed consensus with limited/faulty
communication [35].

Remark 28 (Other noneooperative pursuit games)- There are numerous

examples of pursuit-evasion games beyond the Lion & Man setting : see [12, 25]
for an overview. We mention in particular the case considered by Isaacs [12]
in which the evader's goal is to reach a specified subset of the domain. More
recent entries in the literature consider pursuit games in which capture means

not physical coincidence, but rather visibility — the pursuer wins when there

is a line-of-sight to the evader. For results ill this genre, see [34, 9]. More

recently, much attention has been paid to probabilistic techniques in pursuit

games: see [13, 14, 37].

Stepping back from the game-tlieoretic perspective, one can consider a

pursuit-evasion game as a form of cooperative consensus problem, where a

"swarm" of pursuers attempts to reach positional consensus with an evasive

'leader". Consensus problems have received a great deal of attention recently
from the control-theory Community, with motivation from biologically observed

swarming phenomena. Several authors [5, 35, 23] have given decentralized

algorithms for reaching consensus in a variety of contexts.
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