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FINITENESS AND CONSTRUCTIBILITY
IN LOCAL ANALYTIC GEOMETRY

by Mauricio D. GARAY *)

ABSTRACT.  Using the Hougzel finiteness theorem and the Whitney-Thom stratifi-
cation theory we show, in local analytic geometry, that relatively constructible sheaves
have coherent higher direct images.

INTRODUCTION

In 1953, Cartan-Serre and Schwartz proved that the cohomology spaces of
a coherent analytic sheaf on a compact complex analytic manifold are finite-
dimensional [7, 37]. This result was extended to the relative case by Grauert
in 1960 who showed that the direct images sheaves R"f*F , associated to a
coherent analytic sheaf F, are coherent provided that the holomorphic map
S X — § 1s proper [14]. It was only with the work of Kiehl-Verdier [24]
that a proof similar to the absolute one was obtained (see also [9, 12, 28]).
The proof was simplified and extended to a wider class of sheaves by Houzel
[21]. The aim of this paper is to deduce from Houzel’s theorem a practical
criterion for the coherence of direct image sheaves, close in spirit to the work
in [5, 6, 22, 36, 40]. Our formulation of finiteness theorems is based on the

*) The author was partly supported by the Deutsche Forschungsgemeinschaft (SFB Tr45) and
by the THES.
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Whitney-Thom theory of stratified sets and mappings. One of the key results
1s the following theorem :

THEOREM 0.1. Let f: X — S, Xo = f~10), be a standard representative of
a holomorphic map-germ f: (C",0) — (C*,0) satisfying the dy -condition and
K* a complex of coherent sheaves on X. If the complex K is f-constructible
then the direct image sheaves RY, K are coherent and the canonical map
I'Xo,K") — K" = K induces an isomorphism of graded QOsgo-modules
between (R*f. K)o and H'(K").

In the statement of the theorem K = K" 1is the stalk at the origin of the
sheal K. Here f-constructible means fibrewise constructible, a notion that
we shall carefully explain in the sequel. The notion of standard representatives
and Thom’s gy -condition will be recalled in Section 4.1.

A particular case 1s when f defines an isolated singularity and the complex
1s the relative de Rham complex. In particular for hypersurface singularities,
re. for kK =1, we get the Brieskorn-Deligne coherence theorem [5]. The proof
of the theorem is indeed similar to that of Brieskorn and Deligne.

The results of this paper might be well known to some specialists, but we
think that a paper giving an elementary presentation of the subject together
with simple criteria, based on stratification theory, of the abstract theorems
might be of some use.

1. 'THE FINITENESS THEOREM IN THE ABSOLUTE CASE

1.1 STATEMENT OF THE THEOREM

Given a sheal F on C”, we denote by Fy its stalk at the origin. We denote
by B, C C" the closed ball of radius r centred at the origin and by B, its
interior. In the absolute case Theorem 0.1 can be stated as follows.

THEOREM 1.1. For any constructible complex K® of coherent analytic
sheaves in B, C C", the cohomology spaces HV(K"), K := K, are finite-
dimensional vector spaces, for any p > 0. Moreover, for € < r small enough,
the canonical mapping K'(B.) — Ky induces an isomorphism

H(KY~HB,K), Vp=>0.
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The constructibility of the complex K means that the cohomology sheaves
H¥(IC*) are locally constant on the stratum of some Whitney stratification,
i.e., there exists a sheal Epy obtained from some vector space E such
that

HAK )y =~ Eu,

in any sufficiently small open subset U of a stratum. We do not assume, a
priori, the vector space E to be fimte-dimensional, but it follows from the
theorem that it is.

The proof of this theorem 1s a simple variant of the Cartan-Serre-Schwartz
proof for the finiteness of coherent cohomology on a compact complex analytic
manifold. Although it is quite elementary, it contains in essence all the
ingredients involved in the proofs of more sophisticated results. We first
give an example of an application.

1.2 FINITENESS OF DE RHAM COHOMOLOGY OF AN ISOLATED SINGULARITY

Consider the complex €y of Kihler differentials on a Stein complex
variety X C C”. For nstance, if X 1is a hypersurface then the terms of the
complex are Q% = QK. /(df A Q’é:l + rQL,), where f is a generator of the
ideal of X, the differential of the complex being induced by the de Rham
differential.

The Poincaré lemma states that at the smooth points of X, the complex 1s a
resolution of the constant sheaf Cy, therefore if X has isolated singular points
the complex is constructible. Applying Theorem 1.1, we get the following
result:

ProrosiTiION 1.2. If (X,0) C (C",0) is the germ of a variety with an
isolated singular point at the origin then the complex of Kdhler differentials
has finite-dimensional cohomology spaces.

If X 1s a hypersurface then, as conjectured by Brieskorn, these cohomology
spaces are all zero, except possibly for j =0, n— 1, n (see [38]).

For non-isolated singularities, the complex €25 might be non-constructible
unless we make additional assumptions on the existence of a complex analytic
stratification of the variety.
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2. CONSTRUCTIBLE COMPLEXES OF SHEAVES

2.1 STATEMENT OF THE RESULT

We use the notation of Theorem 1.1. The aim of this section is to prove
the following result:

PropPOSITION 2.1. [Ior ¢ small enough, the restriction mappings
r K'(B.) — K'(B.), r': K'(B.) — K'(B.) are quasi-isomorphisms for
any & <e.

The proof of the proposition will use properties of Whitney stratifications,
a notion that we will now recall.

2.2 WHITNEY STRATIFIED SPACES

A (C™) stratification of a subset X C R” 1s a decomposition of this set
into disjoint C*° manifolds. A stratification is said to be locally finite if every
point admits a neighbourhood which intersects finitely many strata. We now
define Whitney stratifications.

A pair of C* submanifolds U,V C R”, dimV < dim U, satisfies the
Whitney condition if the following property holds: for any pair of sequences
(x;), (v;) in the submanifolds U/ and V both converging to the same point,
such that:

1. the sequence of secants (x;v;) converges to a line L, and

2. the sequence of spaces tangent to U at x; converges to an affine subspace
A CR",

the line L 1s contained in the affine subspace A.

DEFINITION 2.2. A locally finite stratification | J", X; of a subset X C R”
1s called a Whitney stratification if for any stratum X; lying on the closure of
a stratum X; the pair (X;, X;) satsfies the Whitney condition.

These defimtions are due to Whitney [43] (see also [13], Chapter 1).
Whitney proved the existence of such a stratification for real semi-analytic
sets; constructive proofs were given in [29, 41].

We shall say that two Whitney stratified sets intersect transversally il their
strata intersect pairwise transversally. We denote by B. C R” the closed ball
centred at the origin of radius £. A direct consequence of the definition is
the following
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PROPOSITION 2.3. Let X C R" be a Whitney siratified subset, then there
exists o such that the boundaries of the balls B., ¢ < eq, intersect X
transversally.

Proof. If such an ¢y did not exist, we could construct a sequence (x;)
lying on a stratum, such that the affine space 7; tangent to the stratum of x; at
the point x; is also tangent to the boundary of the ball B, ;; of radius 1/i at the
point X;. In particular the secant (Ox;) 1s perpendicular to 7;. This contradicts
the Whitney condition. [

2.3 INTEGRABLE VECTOR FIELDS

A C™ vector field defined on a Whitney stratified topological space 1s
given by the collection of C* vector fields on each stratum. It will be called
integrable if 1t has a continuous flow. An example, in R2, of a non-continuous
integrable vector field is given by

X0y —y0y .
G i @D £0,0

0 otherwise

for the stratification consisting of the origin and its complement. The flow of
this vector field in R*\ {0} is given, in polar coordinates r,@, by:

roo . !
@: (r,0,0) — (rcos(f + ), rsin(® + ;))

and indeed we get that lim,_.o p(r, 4, ) = (0, 0).
Another typical example, in R>, of an integrable vector field is given by
X0y —yOs .
9, + —\/ﬁ if (x,y) # (0,0)

Oy otherwise

for the stratification consisting of the z-axis and its complement. This vector
field has the following properties:

1. on each stratum its flow i1s an isometry (for the standard Euclidean
metric)

2. the orthogonal projection on the z-axis commutes with the vector field
(evaluating the vector field at a point and projecting it 1s the same as
taking the vector field at the projected point on the z-axis).

These two properties — existence of a Riemannian metric for which the
flow is an isometry and existence of a projection which commutes with the
vector field — imply the existence of a continuous flow [42] (see also [32],
Proposition 10.1).
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24 THOM’S FIRST ISOTOPY THEOREM

We give a variant of Thom’s first isotopy theorem which is contained in
the proof of the original statement rather than stated as a result on its own
(see for instance [32], Propositions 7.1, 9.1 and 10.1).

THEOREM 2.4. Let X be a Whitney stratified subset and let f: X — 10, 1]
be a surjective mapping. If the restriction of f to any stratum of X defines
a submersion then any vector field on 10, 1] lifts fo an integrable vector field
on'y X.

EXAMPLE 2.5. Consider the real algebraic singular surface

S={x,y2 R @+ yx— 1+ =0}.

The slices of this surface by the planes {z = k} consist of four lines. The
cross-ratio of these four lines varies with the constant k. Around the singular
set the embedded surface S 1s not locally diffeomorphic to a product embedded
in R3 : the differential of such a diffeomorphism at a point (0,0, z) would be
a linear mapping which sends four lines to other four lines having possibly a
different cross-ratio (independently of the order of these lines). We assert that
Thom’s theorem implies the existence of a homeomorphism which sends the
surface SN{|z| < R} to the product (SN{z=0})x [-R,R] for any R > 0.
The stratification of R® defined by Xo = R*\ S, X; = S\ {x = v = 0},
X, = {x =y = 0} is a Whitney stratification. Consider the projection
R® - R, (x,y,2) +— z. According to Theorem 2.4, the vector field 8, lifts to
an integrable vector field # on R® with the above Whitney stratification. As
S is invariant under the maps (x,v,2) — (AX, Av,z), A > 0, the pair (R3,S)
retracts on a pair (I, SNT), where T 1s a tubular neighbourhood of the z-axis.
Put Tp = TN{|z| <R}. As Ty is compact, the local flow of the vector field
6 gives a global flow on 7x which induces a homeomorphism of the pairs
(Tr,SNTg) and (R, (SN {z=0}) x [-R,R]) for any R > 0. This proves
the assertion.

COROLLARY 2.6. Consider a Whitney stratification of the ball B., C R"
such that the boundaries of the balls B., ¢ < &g, intersect the strata
transversally. For any e, ¢’ € 10,50, & < e, there exists a homeomorphism
he ot B — B.r isotopic to the identity which sends each stratum to itself.

1y It is of course sufficient to check this property for one non-vanishing vector field on the
interval 10, 1[.
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Proof. 'The transversality assumption implies that the map
f:B, \{0} =10, 1]

obtained by restricting the Fuclidean norm on R” divided by £, satisfies the
conditions of the above theorem.  []

2.5 PROOF OF PROPOSITION 2.1

We consider only the case of the mapping r: K'(B.) — K*(B./), the other
case being quite similar.

We apply the considerations of the previous subsection to C” ~ R*
with the stratification given by a constructible complex of coherent analytic
sheaves I defined in a neighbourhood U C C” of the origin. According to
Proposition 2.3, we can find a ball B,, C U such that all strata in U are
transverse to the boundary of the ball B. for any ¢ < &y.

By Corollary 2.6, there exists a homeomorphism ¢: B. — B.r, ¢’ < ¢,
which is isotopic to the identity and preserves the stratification.

Choose an acyclic covering U = (U;) of B.; its image U = (U)),
Ul = (U, is an acyclic covering of B... As the cohomology sheaves of X°
are locally constant on the strata and ¢ 1s isotopic to the identity, we have
vector space isomorphisms HZ(JCWU;) = HI(C)U!) for each i.

Consider the spectral sequences EJ'?(B.) = CP(U,K?) and EL%(B.) =
Cr(U', K% for the hypercohomology of the complex K. Here, as usual,
C*(-) stands for the Cech resolution.

We have a vector space isomorphism H2(K")(U;) ~ HUK )U!) on each
small open subset U;. Therefore the restriction mapping induces an isomor-
phism between the E;-terms of the hypercohomology spectral sequences :

EP(B.) = CP(U, HUK) = C(U, HUK")) = E{7(B.).

This shows that the hypercohomology spaces H'(B., ") and H'(B.,, *) are
1somorphic.

As B 1s Stein, Cartan’s Theorem B implies that the cohomology sheaves
HI(K") vamish for ¢ > 0. Therefore, the spectral sequence degenerates and
we get the 1somorphisms :

H'(B. K~ H'(K'(B.)), W (B, K')~ HI(K'(B)).

This shows that the restriction mapping r is a quasi-isomorphism and concludes
the proof of the proposition.  []
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3. RIESZ THEORY FOR NUCLEAR FRECHET MORPHISMS

We now come to the functional analytic argument of the proof: Proposi-
tion 2.1 and the fact that r 1s nuclear imply the finite-dimensionality of the
cohomology. Thus we will now explain what nuclearity means and why it
implies the finiteness of the cohomology. First we recall some basic notions
of functional analysis.

3.1 THE CATEGORY OF FRECHET SPACES

We consider only vector spaces over the field of complex numbers.

A topological vector space E 1is called locally convex if its topology is
generated by a set of continuous semi-norms (p,), # € Q, that is, the subsets
Vie ={x€ E:p,(x) < ¢} form a fundamental system of 0-neighbourhoods.
The morphisms of the category of locally convex vector spaces are the
continuous linear mappings.

A locally convex topological vector space E is called a Fréchet space
(or an F-space) if it 1s complete and if the topology of E can be generated
by a countable set of semi-norms. Fréchet spaces form a subcategory of

the category of locally convex spaces. These definitions are of course
standard [2].

ExXAMPLE 3.1. Consider the vector space Oc(D) of holomorphic functions
on the open disk D C C. Each compact subset K C D defines a semi-
norm px(f) = Supeeg | S ()
empty interior. The topology is generated by a countable set of semi-
norms constructed as follows. Consider the sequence (K,) of closed disks
of radius 1 — 1/n centred at the origin. The set of norms {px,, n € N}
induces the same topology as the set of semi-norms {pg,K compact}. The
Cauchy formula implies that this topology is complete, thus these semi-
norms induce a Fréchet space structure on the vector space Oc(D). The
supremum norm on compact subsets induces, in a similar way, a Fréchet

, which 1s, in fact, a norm if K has a non

space structure on the algebra of holomorphic functions on an open subset
of C".

CONVENTION. In the sequel, we will always endow the algebra of
holomorphic functions on an open subset of C" with the above mentioned
Fréchet space structure.
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3.2 THE MACKEY PROPERTY

A subset of a locally convex topological vector space is called bounded if
all semi-norms are bounded on it.

DEFINITION 3.2 ([30, 11]). A sequence (x,) 1 a locally convex space E
converges 1o zero in the sense of Mackey 1if there exists a bounded subset
B C FE such that for any ¢ > O there exists N with x, € ¢B provided
that » > N.

ProOPOSITION 3.3. Let (x,) be a sequence in a Iréchet space E.
The following conditions are equivalent:

1. (x,) converges io zero in E;

2. (x,) converges to zero in E in the sense of Mackey.

Proof.  Let us show that (1) — (2). Assume that the sequence (x,)
converges to zero in E. As (x,) is bounded, we can choose a sequence of
increasing semi-norms pi, ..., Pk, ..., defining the topology of E such that
pi(x,) < 1 for all k,n € N. Denote by B; the unit ball for the semi-norm py .
The subset B = ﬂk kB is bounded and for any m > 0, we can find N such
that x, € 1/mB,¥n > N. To see this, choose N such that

1
DX < —, VYn>N.
m

As the sequence (p;) increases, we also have pr(x,) < % for £ < m and
n>N.As X, € B and By C 1/m(kBy) for m < k, we conclude that
X, € 1/mB, for all n > N.

The implication (2) = (1) is in fact independent of the assumption that
the topology is Fréchet. We have to show that, for any semi-norm p of E, we
have lim, p(x,) = 0. As B is bounded, the quantity o = sup,,p(v) is finite.
That (x,) converges to zero in the sense of Mackey means that there exists
a sequence (c,), €, € R>o which converges to zero and such that x, € ¢,B.
We get that p(x,) < ¢,a and the left-hand side tends to zero as n goes to
mfinity. [

DEFINITION 3.4. A locally convex space E for which the notions of
Mackey convergence and usual convergence agree 1s said to have the Mackey

property.

Proposition 3.3 asserts that Fréchet spaces have the Mackey property.
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3.3 TOPOLOGICAL TENSOR PRODUCTS

DEFINITION 3.5. The topological tensor product of two locally convex
spaces E,F, denoted by E @ F, consists in the set of expressions of the
type v = Y . AX; ® y;, where the sequences (x;) and (y;) are bounded and
S < .

PROPOSITION 3.6. If E, F are locally convex vector spaces and if I has
the Mackey property then any element of the topological tensor product E & F
can be written as v =">_ a;x; ® v;, where (x;) is bounded, (y;) converges to
zero, and ) |oi| < 00

Proof. Take v=> \x; @y, € E & F and write \; = a;b;, where a; is
summable and b; tends to zero. We have

v = Zaixi ® biyi,
>0

where (D;v;) converges to zero in the sense of Mackey and therefore, by
Proposition 3.3, converges to zero in F. [

THEOREM 3.7 ([16, 17]). The topological tensor product of two Fréchet
spaces is complete and Hausdorff, thus it is also a Frécher space.

ExamMmpLE 38. let U C C",V C CF be two open subsets; then both
topological vector spaces Ocx(U) @ Ocr(V) and Ocure(Ux V) are completions
of the space of polynomials C[zi,...,z,++] and induce the same topology
on it; hence they are isomorphic.

The strong dual E' of a locally convex topological vector space E is the
topological dual together with the topology induced by the semi-norms

pe(u) = sup |u(x)|,
xEBR

where B runs over the bounded subsets of E. For instance if £ is Banach,
this is the topological dual with the operator-norm topology. In view of the
definition of nuclear morphisms, we recall the following result:

THEOREM 3.9 ([16, 17]). The topological tensor product of the strong
dual of a Fréchet space with a Fréchet space is complete and Hausdorfj.
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3.4 NUCLEAR MORPHISMS

DEFINITION 3.10. A morphism u: E — F of Fréchet spaces is called
nuclear 1f it lies m the image of the morphism

ESF—LEF), Y NGOy oY Myl

If E,F are finite-dimensional then all linear mappings are nuclear. This
is of course no longer the case in general Fréchet spaces: nuclear morphisms
are limits of finite range mappings and are therefore compact.

ExXaMPLE 3.11. Take E = O¢(D), F = Oc(D), where D, D’ are open
disks centred at the origin such that the radius r of the disk D' C C is strictly
smaller than the radius R of D.

The restriction mapping p: Oc(D) — Oc(D') is nuclear. To see this, define
the linear forms a,

1 J(@)

Cln:OC(D)—)C, fH% WZ“"‘T

dz,

where ~ is a path in D\ D’ which turns counterclockwise around the origin.

For any holomorphic function f € O¢(D), the Hadamard criterion states that
im |a,()] " > R.

Therefore the sequence (k"a,(f)) 1s bounded for any 0 < £ < R. The Banach-
Steinhaus theorem 1mplies that the sequence of linear maps (k"a,) 1s bounded
for the strong topology. Choose k €]r, R[; the equality

i Zn
p=) NWaye—, A=

70

shows that p 1s a nuclear morphism. This result extends to arbitrary Stein
neighbourhoods [24] (see also [23]).

Consider a coherent analytic sheaf F on C” and take a presentation of
this sheaf

71 #1
e —# UG —F S
This exact sequence induces a Fréchet structure on the vector space JF(U) for

any Stein neighbourhood U C C". This structure is independent of the choice
of the presentation [7] (see also [10], Proposition 4).
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The proof of the following proposition 1s a generalisation of our previous
example.

PROPOSITION 3.12 (|7, 24]). For any coherent analvtic sheaf F on C”
and any Stein neighbourhoods U, U’ such that the closure of U’ is a compact
subset of U, the restriction mapping F(U) — F(U') is nuclear.

3.5 NUCLEAR SPACES

DEFINITION 3.13. A locally convex vector space E is called nuclear if
any morphism from E to a Banach space is nuclear.

THEOREM 3.14 ([16, 17]). The Fréchet space of holomorphic functions
on a polvdisk is a nuclear space.

Consequently one may argue directly that the restriction mappings of
Example 3.11 and of Proposition 3.12 are nuclear because they factorise by
a morphism to a Banach space.

The following theorem is a consequence of Grothendieck’s characterisation
of nuclear spaces, namely the coincidence ?) of the inductive topological tensor
product with the projective one (see also [24]).

THEOREM 3.15.  For any nuclear Fréchet space E, the functor Q¢ E is
an exact functor from the category of Fréchet spaces to itself.

3.6 THE SCHWARTZ PERTURBATION THEOREM

The following theorem was proved by Schwartz for the more general case
of compact operators.

THEOREM 3.16 ([37]). Let f: E — F be a surjective morphism of Fréchet
spaces. For any nuclear morphism u: E — F, the morphism |+ u has a
Jinite-dimensional cokernel.

In particular, if the 1dentity mapping /: E — E is nuclear, then by taking
f =1 and u= —I we get that E 1s fimite-dimensional. As nuclear morphisms
are compact, this last assertion is a particular case of Riesz’s theorem on the
non-compactness of 0-neighbourhoods in infinite-dimensional Fréchet spaces.

) In Grothendieck’s original treatment, the coincidence of topologies is taken as the definition
of nuclear spaces, while Definition 3.13 is stated as a theorem.




FINITENESS AND CONSTRUCTIBILITY IN LOCAL ANALYTIC GEOMETRY 15

COROLLARY 3.17 ([37]). Let M* N* be two complexes of Fréchet spaces.
If there exists a nuclear quasi-isomorphism u. M* — N°, then the complexes
have finite-dimensional cohomology.

Proof. We apply Theorem 3.16 to the maps
ffoM x NV N (@, - uy+dp. O

We prove Theorem 3.16 following Kiehl-Verdier and Houzel. The next
result was proved by Houzel under much more general assumptions; note that
for Banach spaces the proof of the lemma is obvious.

LEMMA 3.18 ([21]). Any nuclear morphism u: E — E of a Fréchet space
to itself can be written as u = u' + u" where ' is of finite range, i.e.
dimImu’ < +o0, and I+ o is invertible, where I: E — E denotes the
identity mapping.

Proof. Write u = Zi>0 A& @ x;i. As the sequences (&) and (x;) are
bounded there exists M € R such that
\&(xj)\ < M, Vi,j.

As the sequence ();) converges to zero, we can find N such that for i > N
we have

1
il &=
We assert that the sequence ((u” )k) consisting of iterates of the nuclear
morphism #" = ). v A& @ x; is bounded. Indeed, a direct computation

shows that the k-th iterate of the map u” is given by the formula
@ = D A NG ). & )8 © X
i17...:ik>0
Thus, for any semi-norm p: £ — R, we have
1yk—1
" | < supl&@pOpl (3)7 >IN
by >0
This proves the assertion. The above inequality shows that the sequence

A
=) Wy
k=0

is pointwise convergent, the Banach-Steinhaus theorem implies that it is
uniformly convergent and therefore its limit defines the inverse of I+ u”.
This concludes the proof of the lemma. [




16 M.D. GARAY

This lemma implies the Schwartz perturbation theorem in case f 1s the
identity mapping. Indeed, take u, ', #” as in the lemma; since the map [+ u”
is invertible, the map I +u = (I+u")+u’ has a cokernel of finite dimension.

Now consider a surjective morphism f: E — I of Fréchet spaces. We assert
that any nuclear morphism # factors through f by a nuclear morphism v :

As u 1s nuclear, we can write

U= Z Aiki @ vi,
i>0
where (&) and (v;) are bounded sequences and J; i1s summable. As F is
Fréchet, by Proposition 3.6, we may assume that (v;) converges to zero. The
Banach open mapping theorem implies that (v;) lifts to a sequence (x;) which
tends to zero. We define the nuclear morphism v by the formula

v = Z )\ifi & X; .
i>0
The map I+ v, and consequently the map f o (I + v) =f + u, have a finite-
dimensional cokernel. This completes the proof of Theorem 3.16.  []

3.7 PROOF OF THEOREM 1.1

As the restricion mapping ]C'(ég) — K'(éE/) is a nuclear quasi-
isomorphism (Propositions 2.1 and 3.12), Corollary 3.17 applies. This shows
that the cohomology spaces of the complex ]C'(I_OS‘E) are finite-dimensional
vector spaces or equivalently that it 1s quasi-isomorphic to a complex L° of
finite-dimensional constant sheaves £ ~ C"*.

As K'(ée) is quasi-isomorphic to lC'(éEJ), we can construct an exhaustive
sequence of compact neighbourhoods of the origin (B.,) such that lC'(éEn) 1s
quasi-isomorphic to X* (éen +1)- In the limit # — oo, we get that the complex
K = K 1s quasi-isomorphic to the stalk of the complex £° at the origin.
We have isomorphisms of vector spaces

H'(B., K*) ~ H'(KK'(B2)) ~ HP(K"), Vp >0,

where the first isomorphism follows from Cartan’s Theorem B. This concludes
the proof of Theorem 1.1. [
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4. RELATIVELY CONSTRUCTIBLE SHEAVES
We now explain the notion of f -constructibility introduced in Theorem 0.1.

4.1 STRATIFIED MAPPINGS

DEFINITION 4.1. A continuous map between Whitney stratified spaces
SiX =8, X=X, §=1J;$; is said w be stratified if it maps stratum
into stratum, and if the restriction of f to each stratum 1s a submersion.

DEFINITION 4.2. A stratified map f: X — S, X C R*, satisfies the
ag-condition 1f for any sequence of pomnts (r;) in a stratum X; converging to
a point x in an adjacent stratum X/ , for which the affine subspaces ker dfjx, (x:)
converge to a limit A C R¥, we have the inclusion ker dfp;j (X)) CA.

A map-germ satisfies the ay-condition if it admits a stratified representative
satisfying the dy-condition.

These definitions are due to Thom [42] (see also [32]).

DerFINITION 4.3 ([27]). A standard representative f: X — § of a
holomorphic map-germ f: (C",0) — (CF,0) satisfying the ay-condition is
a representative obtained as follows. let g: B, — T, T = g(B;), be a
holomorphic representative of the germ such that

1. the fibre g=!(0) is transverse to the boundaries of the balls B. for any
e<r,

2. the fibres of ¢ intersect transversally the boundary of some ball B.
above the closure § of a polydisk S C T centred at the origin;

3. the map ¢ satisfies the gr-condition.

The standard representative f: X — § 1is obtained by restricing g to
X=g"YSNB..

Remark that by a misuse of notation the same letter denotes the germ and
a standard representative of it. We sometimes write f: X — S, X = YN B.
when we want to emphasize the radius of the ball used to define X.

42 THOM’S SECOND ISOTOPY THEOREM

Thom’s second isotopy theorem is a relative version of Thom’s first isotopy
theorem.
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THEOREM 4.4 ([42, 32]). Consider a commutative diagram

x —L+10.1[xS

N

10,1,

where [ is a stratified mapping and m denotes projection to the first factor.
If | satisfies Thom’s ag-condition then any C°° vector field on 10, 1 lifts to
an integrable vecior field on X tangent to the fibres of f.

For a proof of this theorem see [32], Propositions 11.3, 11.5 and 11.6.
As for the first isotopy theorem, one usually states the theorem as a statement
of local triviality induced by the flow of the vector field. We get the following
relative variant of Corollary 2.6.

COROLLARY 45. letf: X — S, X=Y még be a standard representative
of a germ. For any & €10,¢[ there exists a homeomorphism h. .. isotopic
fo the identity which preserves the stratification and such that the following

diagram commutes :
h

Y

X

XNB.

N

S

43 RELATIVE CONSTRUCTIBILITY

DEFINITION 4.6. Consider a stratified map f: X — § satuslying the
dr-condition. A sheal F on X 1s called f-constructible if the following
condition holds: each pomnt x € X admits a neighbourhood U inside the
stratum of x such that

Fuo=f' i) F.

If f 1s the map to a point, an f -constructible sheaf is a constructible sheaf
in the usual sense.

DEFINITION 4.7. Consider a stratified holomorphic mapping f: X — S,
X C C", § C C*, satisfying the ar-condition. A complex (K, 6) of
Ox -coherent sheaves is called f-constructible if its cohomology sheaves
HA(IC") are f-constructible and if its differential is f~'(s-linear.
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The notion of f-constructibility extends to germs: given a holomorphic
map-germ satisfying the gy-condition f: (X,0) — (5,0), a complex (X', )
of Ocn g-coherent modules is called f-constructible if there exists a standard
representative f: X — § and a complex (X°°, 9) of f-constructible Oy -coherent
sheaves such that K° is the stalk at the origin of the complex K°.

The notions of Theorem 0.1 have now been explained.

44 THE RELATIVE DE RHAM COMPLEX

We give a simple example of relative constructibility : the relative de Rham
complex for an 1solated singularity.

We consider the relative de Rham complex €2¢ associated to a holomorphic
map f: X = S, X C C", S C C* and assume that S is a smooth complex
manifold.

For instance if kK = 1 then the complex has terms Qjﬁ = fo / Q}é—l Adf and
the differential is induced by the de Rham differential of €2y . The differential

of the complex is obviously f~!(;-linear:
m(d(fe)) = mldf Ao+ fda) = n(fda),

where 7: 2y — €2 denotes the canonical projection. A flat holomorphic map-
germ f: (X,0) — (C*,0) defines an isolated singularity if its special fibre
has an isolated singular point at the origin and if it satisfies the gr-condition.

PROPOSITION 4.8.  The relative de Rham complex S associated 1o a
holomorphic map-germ f: (X,0) — (C*,0) defining an isolated singularity is
[ -constructible.

Proof. 'Take a flat standard representative f: X — § of the germ. Consider
the stratification consisting of the smooth points of the map f: X — § (smooth
points of the fibres) and its complement. Stratify the map f: X — § by refining
this stratification. At a regular point of f, the implicit function theorem shows
that the relative de Rham complex is a resolution of the sheaf f~'Qy; it is
therefore f-constant on the open strata (this statement is known as the relative
Poincaré lemma).

As f 1s flat, the singular set of a fibre is either empty or finite. Hence the
cohomology sheaves restricted to any non-open stratum are also f-constant
(any sheaf restricted to a point is constant). Therefore the relative de Rham
complex is f-constructible. [
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For non 1solated singularities the situation is of course much more delicate
as the de Rham complex is not always constructible. Additional conditions
implying constructibility are given in [1, 34, 40].

From Theorem 0.1 and Proposition 4.8, one deduces the following result.

THEOREM 4.9. Let f: X — S, Xo = f~Y0), be a flat standard representa-
tive of a holomorphic map-germ f: (C",0) — (CF,0). If f defines an isolated
singularity then the direct image sheaves R"f*Q} are coherent and the canon-
ical map I'(Xo,8y) — 27 induces an isomorphism of graded Oso-modules
between (R'f.S2r)o and H'(€2 ().

If X is smooth and if the components of f define a complete intersection,
these modules are all zero except possibly for p =0, dm X — 1 [5, 15, 31].

5. PrROOF OF THEOREM 0.1

5.1 CONSTRUCTION OF THE CONTRACTION

PROPOSITION 5.1.  For any standard representative f: X — S and any
e’ < g, the restriction mapping r: K'(X) = K'X"), X' =f~"YS)NB., is a
quasi-isomorphism.

Proof.  'The proof is similar to that of Proposition 1.7.

Choose an acyclic covering U — (U;) of X, find A, .- as in Corollary 4.5
and put Ul = h. .(U;).

As the complex of sheaves is f-constructible, we get vector space
isomorphisms

HIK WU = (flu)« HUK) f(U) = HICC)U)

on cach small open subset U;. Consequently, the corresponding hypercohomol-
ogy spectral sequences show that the restriction mapping 7: K*(X) — K*(X')
is a quasi-isomorphism for any &' <. [

5.2 FRECHET MODULES AND NUCLEAR MORPHISMS

An associative algebra A 1s called a Fréchet algebra if there exist semi-
norms p,: A — R, n € N defining a Fréchet space topology on A and such
that

pnlab) < pu(@)pu(b), Vn,ab.
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For 1nstance, the algebra of holomorphic functions on an open subset of C”
1s a Fréchet algebra.

Here and in the sequel, we will use the word module over a ring A instead
of bimodule, 1.e., all the modules that we will consider have left and right
multiplications by elements of A, and of course if A is commutative, left and
right multiplications coincide.

A module E over a Fréchet algebra A will be called a Fréchet module
if £ has a Fréchet space topology for which left and right multiplication
mappings are continuous.

The morphisms of the category of Fréchet A-modules are the continuous
C-linear mappings which are left A-linear. The space of morphisms from a
Fréchet A-module E to a Fréchet A-module F is denoted by IL4(E,F). We
use the notation £ := La(E, C).

The topological tensor product E @4 F is defined as the cokernel of the
map

(ERcAScF) 5 (E@cF), madn—ma@n—mean.

A morphism of Fréchet A-modules u: E — F 1is said to be A-nuclear if it
lies in the image of the morphism

E'SaF > La(EF), Y AN&@yi— [t 3 A&m], MeC,

where A; 1s summable. These definitions are due to Kichl-Verdier [24].

EXAMPLE 5.2. Take A = Oc(®), £ = O (D x 8), F = O (D' x S)
where D, D', S are disks centred at the origin in C such that the respective
radii R,7 of the disks D, D' C C satisfy R > r.

The restriction mapping p: O (D x 8) — Ox(D' x 8) is an O(S)-nuclear
morphism. Indeed, let us define the O(S)-linear forms a,

1@

an: Ocs(D x $) = OcS), [ = 5 e

where « is a path in D\ DY turning counter-clockwise around the origin.
Choose k € |r,R[; the equality

A Zn r
P:Z)\(knan)‘@r—n, )\:E

7>0

shows that the mapping p is O(S)-nuclear.
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The O(S)-nuclearity of the morphism p can also be seen directly by using
the isomorphism

O (D x 8) 7 Oc(D) @ Oc(S).

We saw that the restriction mapping Oc(D) — Oc(D') is C-nuclear, therefore
by tensoring both sides by Oc(S), we get an O¢(S)-nuclear morphism.

53 THE SCHWARTZ PERTURBATION THEOREM FOR FRECHET MODULES

The formulation given by Houzel of the generalised Schwartz perturbation
theorem involves vector spaces with bornologies rather than topological vector
spaces; here and in the sequel we apply the theorem for the bornology
consisting of bounded subsets of locally convex spaces.

THEOREM 5.3 ([21]). Let f: E — F be a surjective morphism between
A-Fréchet modules. For any A-nuclear morphism u: E — F, the cokernel of
the map |+ u is an A-module of finite type.

The proof of this theorem 1s similar to the one we gave in the absolute
case and will therefore be omitted; for details we refer to [21]. In case the
identity mapping 1s nuclear, then by taking f =1 and u = —I we get the
following corollary.

COROLLARY 5.4. If the identity mapping 1. E — E is A-nuclear then E
is a finite type A-module

EXAMPLE 5.5. Let S C C* be an open subset and take an Q¢ (S)-linear
mapping ¢: OF(S) = OL(S). Such a mapping is given by a p X g matrix
with entries in O (S). The identity mapping is an O (S)-nuclear morphism
from kery to itself. Therefore kery is an O (S)-module of finite type.

As in the absolute case, the perturbation theorem implies the following
result.

THEOREM 5.6 ([24, 21]). Let A be a Fréchet algebra and M° N two
complexes of A-Fréchet modules. If there exists a nuclear quasi-isomorphism
u: N° — M* then the complexes M® and N' are quasi-isomorphic to a
complex of finite tvpe free A-modules.
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54 ELEMENTARY FUNCTIONAL ANALYTIC PROPERTIES OF COHERENT SHEAVES

Following Kiehl-Verdier, we say that a morphism u: E — F between two
A-Fréchet modules 1s A-quasinuclear if there exists a commutative diagram
of Fréchet A-modules:

ARQeV

lﬂ.\
E—Y s F,

where V is a nuclear Fréchet space, 7 1s surjective and v i1s A-nuclear. The
reason for considering this notion is explained by the following proposition,
which is a direct consequence of Proposition 3.12.

PROPOSITION 5.7 ([24]). For any coherent analytic sheaf F on C" x CF
and any Stein neighbourhoods U, U’ such that the closure of U’ is a compact
subset of U C C" and for any Stein neighbourhood S C C*, the restriction
mapping F(U x 8) — F(U' x 8) is O(S)-quasinuclear.

The generalised Schwartz perturbation theorem extends to the case where
the perturbation 1s given by a quasinuclear morphism rather than a nuclear
morphism.

The following proposition is a direct consequence of Theorem 3.15.

PROPOSITION 5.8 ([24]). If E is a free module over a nuclear Fréchet
algebra A, i.e. E is isomorphic 1o a product A Sc V where V is a nuclear
Fréchet space, then the functor @A E is exact.

COROLLARY 59 (21, 24)). For any QOcatr-coherent sheaf F, any
polyeylinders S, 8" C C*, S C S, and any Stein open subset U C C”,
we have an isomorphism of Fréchet modules over the ring Oc«(S)

FU XS Ox(S)~FUxS).

We conclude by pointing out that Corollary 5.9 together with Example 5.5
mmply Oka’s theorem : Any svsten of generators for the kernel of an O¢x -linear
mapping of sheaves : ij,( — ijk at the origin induces a system of
generators in a sufficiently small neighbourhood of the origin.

Indeed, we saw that (ker )(S) 1s a module of finite type, and a system of
generators for the O(S)-module (ker )(S) induces a system of generators for
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the O(S)-module (ker p)(S') &~ (ker ©)(S) Sc Oc(S) for any polycylinders
ScS.

5.5 PROOF OF THEOREM 0.1, FINAL STEP

LEMMA 5.10. The restriction mapping r: K'(X) — K'(X") is an
Os(S)-quasinuclear quasi-isomorphism,

Proof.  Recall that X 1s the intersection of a Stein open neighbourhood
with some open ball B.. Define the complex of sheaves K" in B. xS by the
presheaf

KU x Vy=KUNF'(wvy).

Both complexes are isomorphic as complexes of Fréchet sheaves. Moreover,
the restricion mapping X'(B. x §) — K(B.r x S) is Og(S)-quasinuclear
(Proposition 5.7). This proves the lemma. []

This lemma shows that Theorem 5.6 applies, therefore there exists a
complex L° of free coherent (Og-sheaves such that L£°(S) 1s quasi-isomorphic

to K'(X).

LEMMA 5.11. The sheaf complexes L, f*lC"X are quasi-isomorphic.

Proof. A mapping u: M" — L’ of complexes induces a quasi-isomorphism
between two complexes if and only if its mapping cone C°(1) is exact.
We apply this fact to the mapping cone of the quasi-isomorphism

u: L(S) = K'(X).

As the functor & Og(P) is exact for any polydisk P C S (Proposition 5.8),
the complex C*(1t) @ Os(P) is also exact.

Using Corollary 5.9, we get that C"(#) & Os(P) is the mapping cone of
w': L7(P) — K'(X N f~Y(P)). Therefore, the complexes of sheaves £° and
f*iCl'X are quasi-isomorphic. This proves the lemma. []

We assert that the complex K* = K, is quasi-isomorphic to the stalk of
the complex £ at the origin.

Let (B.,) be a fundamental sequence of neighbourhoods of the origin in C”,
such that their intersection with the special fibre of f 1s transverse. As the
map f satisfies the a-condition, we can find a fundamental sequence (S,)
of neighbourhoods of the origin in C* such that the fibres of f intersect B,
transversally above S,,.
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Put X, = f~1(S,); we have the isomorphisms

Lis, =LKy, = i Kix ., -

The first isomorphism is a consequence of the previous lemma and the
second follows from the fact that the contraction is a quasi-isomorphism
(Proposition 5.1).

In the limit # — oo, we get that the complex K* = K is quasi-isomorphic
to the complex Lj. This concludes the proof of the theorem. []

6. FINITENESS THEOREM FOR COHERENT IND-ANALYTIC COMPLEXES

6.1 THE GENERALISED SCHWARTZ PERTURBATION THEOREM

We now state a variant of the theorem which includes most cases
encountered in local analytic geometry. For this we need first to axiomatise
the concepts introduced in the proof of the Schwartz perturbation theorem.
A topological algebra A is a commutative algebra over C such that the
underlying vector space is given a locally convex topology for which the
algebra operations are continuous. An A-module £ 1s a topological A-module
if 1t carries a locally convex topology for which the module operations are
continuous.

The following definition is adapted from [21].

DEFINITION 6.1. A topological algebra A is called multiplicatively convex
if any bounded subset of A is absorbed by a bounded subset invariant under
multiplication.

For instance, Fréchet algebras are multiplicatively convex.
Let us now list the properties which are needed for the proof of the
Schwartz perturbation theorem :

1. A, E, F should be complete;

2. E should be barrelled (if £ is Fréchet this is the Banach-Steinhaus
theorem) ;

3. A should be multiplicatively convex;

4. any bijective morphism from E to F should be an isomorphism
(in case E, F' are Fréchet this 1s the Banach open mapping theorem);

5. F should have the Mackey property.
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The first three conditions are needed for the proof of the Houzel lemma, the
last ones for reducing the proof to the case f = 1. We thus get the following
particular case of a theorem due to Houzel [21], the proof of which is similar
to that of the Schwartz perturbation theorem (Theorem 3.16).

THEOREM 6.2. Lei f: E — I be a surjective morphism between topo-
logical A-modules. Assume that A, E, I’ safisfy the above listed properties;
then for any A-quasinuclear morphism u: E — I, the cokernel of the map
S+ u is an A-module of finite type.

6.2 INDUCTIVE LIMITS OF FRECHET SPACES

The category of Fréchet spaces is too restrictive to provide sufficient
applications in local analytic geometry, for instance the vector space of
holomorphic function germs does not admit such a topology. It is therefore
necessary to introduce a more general class of objects, LF-spaces.

Consider a set of linear maps from Fréchet spaces to a fixed vector space
wi: B — E, i € Q such that ;.o ui(E) = E. The inductive limit topology
T of the vector space E 1s defined by

UeT <= YieQ, uyY(U) is open in E;.

The category of LF -spaces is then a sub-category of the category of locally
convex spaces.

Spaces of type LI are locally convex, bornological (bounded linear
mappings coincide with continuous ones) and barrelled (pointwise bounded
subset are uniformly bounded), but not always complete [25].

In case the E;’s form an increasing sequence of closed vector subspaces
in E and the u;’s are the inclusions, the resulting LF -spaces are complete and
satisly the Banach open mapping theorem [8]. In fact, one has the following
result.

THEOREM 6.3 ([26]). Any complete LI -spaces E, F defined by limits of
a countable set of Fréchet spaces satisfy the Banach open mapping theorem,
that is, any bijective morphism from E to F is an isomorphism.

PROPOSITION 6.4 ([19], Chapter 3). For any compact subset K C C", the
LF-space Oc(K) = lig(’)cn(U), K C U, of holomorphic functions restricted
to K C C" is complete and has the Mackey property. Moreover, the
multiplication of functions defines a structure of muliiplicatively convex algebra
on Oc(K).
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Proof. 'The proposition is a consequence of the following characterisation
of bounded subsets due to Grothendieck ([19], Chapter 3, Proposition 5):
a subset B C Oc«(K) 1s bounded provided that there exist a neighbourhood
U containing K and a bounded subset B’ C C%(U) N Oc(U) which projects
onto B via the restriction mapping Oc(U) = O (K). []

6.3 THE SHEAVES Oyx

Let i: X — Y be the inclusion of a complex analytic manifold X into
another complex analytic manifold Y. The sheaf i=!Oy is denoted by Oyix .
If i is the inclusion of a submanifold X C Y then Oyx is the sheal of
holomorphic functions on Y restricted to X. If ¥ is of the form X x T,
we denote simply by Oy, |x the sheaf obtained from the inclusion of X x {0}
in X x T. The stalk of the sheaf Ox,7x at a point Xy is the space of germs
of holomorphic functions in X x 7" at the point x = xo, t = 0. These sheaves
are frequently considered in microlocal analysis [35].

In the previous subsection, we saw that the space of global sections of the
sheaf pr(, Y C C", over a compact subset has an LF-space structure.

As inductive limits commute with topological tensor products, the topo-
logical vector space Oc:(K) is nuclear. Therefore most of the properties
established for the sheaves Ox extend to the sheaves Oyx.

As 1n the case of the sheaf of holomorphic functions, it follows from
Theorem 6.2 that the sheaf Oxyrix is coherent, that is, the kernel of any
morphism of sheaves of modules

k
Oxxrix = Oxxrix

1s finitely generated. This can also be deduced from Cartan’s Theorem A and
from the coherence of the sheaf Oxyr.

Following the general terminology [39], we say that a sheal F on a
space X 18 Oy, 1x-coherent, or that it is a coherent ind-analytic sheaf, if it is
the cokernel of a morphism of Oy, r|x-modules:

o4

#1
XxTx (’)XxT|X —F —=0.

The notion of f-constructibility extends trvially to complexes of Oxyr|x-
coherent sheaves and to their stalks.

6.4 1.0CAI FINITENESS THEOREM

By Proposition 6.4, we may apply the generalised Schwartz perturbation
theorem in the ind-analytic context and get the following result (we no longer
consider direct image sheaves, as the conclusions are similar).
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THEOREM 6.5. Let f: (C",0) — (C*,0) be a holomorphic map-gern satis-
Sfving the ay-condition. The cohomology spaces HY(K") associated to a complex
of f-constructible Oguw)cn o-CoOherent modules are f _10Ck+N|Ck70-coherent
modules, for any p > 0.

REMARK 6.6. The algebra structure on Qv plays no role in the proof.
Therefore, one may replace the condition « f-constructible Ocntn | o -coherent
modules » by « f_IOCk+N|Ck’O -topological modules 1somorphic as topological
vector spaces 0 Ocranycn g ».

Let us denote by M1 the maximal ideal of the local ring O¢x o. We identify
CF o C* x {0} © CF x C". To conclude, we give a proof of the following
algebraic form of the division theorem due to Houzel and Serre.

PROPOSITION 6.7 ([20]). Any Ogesr o-tiodule M of finite type such that
M/IMM is a finite-dimensional C-vector space is itself an Ocx o-module of

finite type.
Proof. Consider the complex obtained from a projective resolution of M :

Koo 2 Oy Oy ——> 0, H(K') = O, o/Imé; M.
This complex gives a complex /C° of Oyyr-sheaves whose support is an
analytic variety V C X x T. Here X € C" and T < CF are small
neighbourhoods of the origin in C" and CF.

The dimension of M/9MM is equal to the intersection multiplicity of V
with X x {0} = {(x,0) : t = 0}. Assume that X and 7 are so small that
the variety V intersects X x {0} only at the origin. Then the restriction of
the complex K° to X x {0} defines an Oyx x1|x,0 -coherent sheal complex on
X € C". The cohomology of the complex is supported at the origin, it is
therefore constructible. Theorem 0.1 implies that H'(K') = M 1s a finite type
module over the ring Ocx o (here [ is the mapping to a point). This proves
the proposition. [

6.5 THE BOUTET DE MONVEL DIVISION THEOREM

We now prove the Sato-Kashiwara-Kawai division theorem for pseudo-
differential operators [35]. As in the commutative case, this theorem admits
an algebraic version (or rather a generalisation) similar to the Houzel-Serre
formulation of the division theorem [3] (see also [33], Chapter 3).
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Denote by &(0) the sheaf of analytic pseudo-differential operators in
T*C" = C¥ = {(g,p)} of order 0. Let £'(0) be a subsheaf of operators which
depend only on some of the vanables, say ¢1,...,4;,p1,...,P:. We denote
by &0(0), £/(0) the stalks of the sheaves £(0), £'(0) at the point xo € C*
with coordinates g; = =¢, =0, p1=1,p,=0,...,p, =0.

THEOREM 6.8 ([3, 33]). For any coherent left Eo(0)-module M the
Jollowing assertions are equivalent:

1. the Qi1 g-module M /0, 'M is of finite type;

2. the E((0)-left module M is of finite type.

Proof. The module M is the stalk at the point xo = (0,...,0,1.0,...,0)
of a sheal M of &(0)-modules in T*C" ~ C*.

Consider the complex given by a resolution of M

Koo gy — s g0y —— 0, HKT) = EO)° /Imd, ~ M.
The support of M coincides with that of M/0 M, it is therefore an
analytic subvariety V C C¥" ([35]; see also [33], Proposition 4.2.0).

The restriction of the sheal £(0) to the complement of the zero section in
T*C" = C* is a sheaf of non-commutative Fréchet algebras [4]. Therefore
the argument given in the proof of Proposition 6.7 applies mutatis mutandis
to this situation. [
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