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L'Enseignement Mathématique (2) 55 (2009), 3-31

HNITENESS AND CONSTRUCTIBILITY

IN LOCAL ANALYTIC GEOMETRY

by Mauricio D. GARAT *)

ABSTRACT. Using the Houzel finiteness theorem and the Whitney-Thom stratification

theory we show, in local analytic geometry, that relatively constructible sheaves
have coherent higher direct images.

Introduction

In 1953, Cartan-Serre and Schwartz proved that the cohomology spaces of
a coherent analytic sheaf on a compact complex analytic manifold are finite-
dimensional [7, 37]. This result was extended to the relative case by Grauert

in 1960 who showed that the direct images sheaves R'fiT, associated to a

coherent analytic sheaf IF, are coherent provided that the holomorphic map

/: A' * .V is proper [14]. It was only with the work of Riehl-Verdier [24]
that a proof similar to the absolute one was obtained (see also [9, 12, 28]).
The proof was simplified and extended to a wider class of sheaves by Houzel

[21]. The aim of tins paper is to deduce from Houzel's theorem a practical
criterion for the coherence of direct image sheaves, close in spirit to the work
in [5, 6, 22, 36, 40]. Our formulation of finiteness theorems is based on the

*) The author was partly supported by the Deutsche Forschungsgemeinschaft (SFB Tr45) and

by the IHES.
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Whitney-Thom theory of stratified sets and mappings. One of the key results

is the following theorem:

Theorem 0.1. Let f: X —» S, X0 —f~1(0), be a standard representative of
a holomorphic map-gertn f : (C",0) —> (C^, 0) satisfying the af-condition and
JC' a complex of coherent sheaves on X. If the complex ¥1' is f-constructible
then the direct image sheaves Rkf*fC' are coherent and the canonical map
r(X0,/C°) —> K' := /Cq induces an isomorphism of graded Os^-modules
between (R'/*/C')0 and H'(K').

In tlie statement of the theorem fC'0 — K' is the stalk at the origin of the

sheaf IC". Here /-constructible means fibrewise constructible, a notion that

we shall carefully explain in the sequel. The notion of standard representatives
and Thorn's af -condition will be recalled in Section 4.1.

A particular case is when / defines an isolated singularity and the complex
is the relative de Rham complex. In particular for hypersurface singularities,
i.e. for k — 1, we get the Brieskorn-Deligne coherence theorem [5]. The proof
of the theorem is indeed similar to that of Brieskom and Deligne.

The results of this paper might be well known to some specialists, but we
think that a paper giving an elementary presentation of the subject together
with simple criteria, based on stratification theory, of the abstract theorems

might be of some use.

1. The finiteness theorem in the absolute gase

1.1 Statement of the theorem

Given a sheaf IF on C", we denote by IFo its stalk at the origin. We denote

by Br C C" the closed ball of radius r centred at the origin and by B, its

interior. In the absolute case Theorem 0.1 can be stated as follows.

Theorem 1.1. For any constructible complex K' of coherent analytic
sheaves in B, c C, the cohomology spaces HP(K'), K" JC0, are finite-
dimensional vector spaces, for any p > 0. Moreover, for e < r small enough,
the canonical mapping K'(Be) —> K'0 induces an isomorphism

HP(K') « IP(Bs, JC'), Vp > 0
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The constructibility of the complex IC' means that the cohomology sheaves

H'(K') are locally constant on the stratum of Some Whitney stratification,
i.e., there exists a sheaf Ey obtained from some vector space E such

that

H(1C |.f « Eu »

in any sufficiently small open subset (J of a stratum. We do not assume, a

priori, the vector space E to be finite-dimensional, but it follows from the

theorem that it is.

The proof of this theorem is a simple variant of the Cartan-Serre-Schwartz

proof for the finiteness of coherent cohomology on a compact complex analytic
manifold. Although it is quite elementary, it contains in essence all the

ingredients involved in the proofs of more sophisticated results. We first

give an example of an application.

1.2 Finiteness of de Rham cohomology of an isolated singularity

Consider the complex Qy of Kahler differentials on a Stein complex
variety A C C". For instance, if A is a hypersurface then the terms of the

complex are Qy — A Q<U! + /Qç„), where / is a generator of the

ideal of X, the differential of the complex being induced by the de Rham

differential.

The Poincaré lemma states that at the smooth points of X, the complex is a

resolution of the constant sheaf Cy, therefore if X has isolated singular points
the complex is constructible. Applying Theorem 1.1, we get the following
result :

Proposition 1.2. If (A, 0) c (C'!,0) is the germ of a variety with an

isolated singular point at the origin then the complex of Köhler differentials
has finite-dimensional cohomology spaces.

If A is a hypersurface then, as conjectured by Brieskom, these cohomology

spaces are all zero, except possibly for j — 0, n — 1, n (see [38]).

For non-isolated singularities, the complex Q", might be non-constructible
unless we make additional assumptions on the existence of a complex analytic
stratification of the variety.
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2. Constructible complexes op sheaves

2.1 Statement Of the result
We use the notation of Theorem 1.1. The aim of this section is to prove

the following result:

Proposition 2.1. For m small enough, the restriction mappings

r : K'(Be) -> fC"(Be'), r' : fC'{Be) —> K"(Be) are quasi-isomorphisms for
any s' < e

The proof of the proposition will use properties of Whitney Stratifications,

a notion that we will now recall.

2.2 Whitney stratified spaces

A (C00) Stratification of a subset X Ç R" is a decomposition of this set

into disjoint C®° manifolds. A stratification is said to be locally finite if every
point admits a neighbourhood which intersects finitely many strata. We now
define Whitney stratifications.

A pair of C°° submanifolds U,V C R", dim V < dim!/, satisfies the

Wütney condition if tire following property holds : for any pair of sequences

(x,). (V,) in the submanifolds U and V both converging to the same point,
such that:

1. the sequence of secants (a, v, converges to a line L, and

2. the sequence of spaces tangent to U at x, converges to an affine subspace

A c R",
the line L is contained in the affine subspace A,

DEFINITION 2.2. A locally finite stratification Xi of a subset X c R"
is called a Wiitney stratification if for any stratum Xj lying on the closure of
a stratum A, the pair (Xj,Xfi satisfies the Whitney condition.

These definitions are due to Whitaey [43] (see also [13], Chapter 1).

Whitney proved the existence of such a stratification for real semi-analytic
sets; constructive proofs were given in [29, 41].

We shall say that two Whitney stratified sets intersect transversally if their
strata intersect pairwise transversally. We denote by Be C R" the closed ball
centred at the origin of radius e. A direct consequence of the definition is
the following
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Proposition 2.3. Let X c R" be a Whitney stratified subset, then there

exists So such that the boundaries of the balls IL-, e < £0, intersect X
transversally.

Proof. If such an fa did not exist, we could construct a sequence (.V,

lying on a stratum, such that the affine space '/' tangent to the stratum of x; at

the point a, is also tangent to the boundary of the ball />', », of radius 1 /'/ at the

point Xi- In particular tlie secant (Oxf is perpendicular to "/'. This contradicts
the Whitney condition. Q

2.3 INTEGRAI!!.h VECTOR FIELDS

A C v vector field defined on a Whitney stratified topological space is

given by the collection of C°° vector fields on each stratum. It will be called

integrable if it has a continuous flow. An example, in R2, of a non-continuous

integrable vector field is given by

ixW if ^<°'0)
I 0 otherwise

for the stratification consisting of the origin and its complement. The flow of
this vector field in R2 \ {0} is given, in polar coordinates r, 0, by :

<p: (r. 6, t) 3-* (rcos(0 +
'

r sinÇff +
'

and indeed we get tliat limr^0 0 — (0,0).
Another typical example, in R3, of an integrable vector field is given by

J <f il' (A-v) (d.O)

I if otherwise

for the stratification consisting of the z-axis and its complement. This vector
field has the following properties:

1. on each stratum its flow is an isometry (for the standard Euclidean

metric) ;

2. the orthogonal projection on the z-axis commutes with the vector field

(evaluating the vector field at a point and projecting it is the same as

taking tire vector field at the projected point on the z-axis).

These two properties - existence of a Riemamiian metric for which the

flow is an isometry and existence of a projection which commutes with the

vector field - imply the existence of a continuous flow [42] (see also [32],
Proposition 10.1).
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2.4 THOM'S FIRST ISOTÖPY THEOREM

We give a variant of Thorn's first isotopy theorem which is contained in
the proof of the original statement rather than stated as a result on its own
(see for instance [32], Propositions 7.1, 9.1 and 10.1).

Theorem 2.4, Let X be a Whitney stratified subset and let f : X —» ]0,1 [

be a surjective mapping. If the restriction of f to any stratum of X defines

a submersion then any vector field on ]0,1[ lifts to an integrable vector field
on1) X.

EXAMPLE 2.5. Consider the real algebraic singular surface

S - {(,v. y. z) e R3 : xv(y + y)(x - (1 + z2)y) 0}.

The slices of this surface by the planes {z — k} consist of four lines. The

cross-ratio of these four lines varies with the constant k. Around the singular
set the embedded surface S is not locally diffeomorphic to a product embedded

in R3 : the differential of such a diffeomorphism at a point (0,0,2) would be

a linear mapping which Sends four lines to other four lines having possibly a

different cross-ratio (independently of the order of these lines). We assert that

Thorn's theorem implies the existence of a homeomorphism which sends the

surface Sn{|z| < A'} to the product (S H {2 — 0}) x [ -A, R | for any R> 0.
The stratification of R3 defined by X0 - R3 \ .S', Aj S \ {.r y - 0},
X2 - |.V — y - 0} is a Whitney stratification. Consider the projection
R3 —> R, (x. y, z)1—§ z• According to Theorem 2.4, the vector held '()- lifts to

an integrable vector held 6 on R3 with the above Whitney stratification. As
S is invariant under the maps (.v. v..:) (A.v. Ay..:). A > 0, the pair (R3, ,Sj

retracts on a pair .STT), where T is a tubular neighbourhood of the ."-axis.

Put '/'fi {|z < A}. As Tr is compact, the local how of hie vector held
9 gives a global how on Tr which induces a homeomorphism of hie pairs

(Tr. S n Tr) and (R3, (.S T {— 0}) x [-A, A]) for any A > 0. Tins proves
hie assertion.

Corollary 2.6. Consider a Whitney stratification of the ball Beo C R"
such that the boundaries of the balls Be, e < e0, intersect the strata

transversally. For any e, s' e |0, c0[, e' < there exists a homeomorphism
//;.,< : Be -x B,< isotopic to the identity which sends each stratum to itself.

1 It is of course sufficient to check this property for one non-vanishing vector field on the
interval ]0,1[.
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Proof. The transversality assumption implies that the map

f:Be,\{0}^]0,1[
obtained by restricting the Euclidean nonn on R" divided by eo sahslies the

conditions of the above theorem.

2.5 Proof of Proposition 2.1

We consider only the case of the mapping r: K'(Be) —r jC'(Be*), the other

case being quite similar.

We apply the considerations of the previous subsection to C" ss R2"

with the stratification given by a constructible complex of coherent analytic
sheaves IC defined in a neighbourhood U C C" of the origin. According to

Proposition 2.3, we can find a ball /i;fl c U such that all strata in U are

transverse to the boundary of the ball Be for any g < gjp

By Corollary 2.6, there exists a homeomorphism ip: Bg —> />' •. $' < £,
wlrich is isotopic to tire identity and preserves the stratification.

Choose an acyclic covering U — (If) of B; ; its image U' — ([/'),
U[ - p(Uj), is an acyclic covering of Bs>. As the cohomology sheaves of /C°

are locally constant on the strata and ip is isotopic to the identity, we have

vector space isomorphisms H'!(X')(l';) ~ 'Hq(Kl')(U') for each i.
Consider the spectral sequences iff (B. - CJ!( U. IC1) and iff (IP '

CJ'((j'. K.'!) for the hypercohomology of the complex K'. Here, as usual,

C'(-) stands for the Cech resolution.

We have a vector space isomorphism 'Hq(K')((/,) « Hf,(K')(U') on each

small open subset (/,. Therefore the restriction mapping induces an isomorphism

between the E\ -tenns of the hypercohomology spectral sequences :

Ef(Be) Cp(U, WgC)} « Cp(U\ Epf(Bs,).

This shows that tire hypercohomology spaces H'(7C. /C) and H*(ße/,/C) are

isomorplric.

As B; is Stein, Cartan's Theorem B implies that the cohomology sheaves

'H'HX') vanish for q > 0. Therefore, the spectral sequence degenerates and

we get the isomorphisms :

HflX, K") « Hp(K'(Be)), W(Be,X') « BP(V(B^)).

Tins shows that the restriction mapping r is a quasi-isomorphism and concludes

the proof of the proposition.
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3. Riesz theory for nuclear Fréchet morphisms

We now come to the functional analytic argument of the proof : Proposition

2.1 and the fact that r is nuclear imply the finite-dimensionality of the

cohomology. Thus we will now explain what imclearity means and why it
implies the finiteness of the cohomology. First we recall some basic notions

of functional analysis.

3.1 The category of Fréchet spaces

We consider only vector spaces over tire field of complex numbers.

A topological vector space E is called locally convex if its topology is

generated by a set of continuous semi-norms (/;„), n c Q. that is, the subsets

VN ; — {rt E : p,i(x) < s j form a fundamental system of 0-neighbourhoods.
The morphisms of the category of locally convex vector spaces are the

continuous linear mappings.

A locally convex topological vector space E is called a Fréchet space
(or an F-space) if it is complete and if the topology of E can be generated

by a countable set of seini-nonns. Fréchet spaces form a subcategory of
the category of locally convex spaces. These definitions are of course
standard [2].

Example 3.1. Consider the vector space Oc(D) of holomorphic functions

on the open disk DC C. Each compact subset K C D defines a semi-

norm Pk(J) — suprç/(. \f(x)\, winch is, in fact, a norm if K has a non

empty interior. The topology is generated by a countable set of semi-

nonns constmcted as follows. Consider the sequence (K„) of closed disks

of radius 1 — 1 jn centred at the origin. The set of nonns {pk,. n G N}
induces the same topology as the set of semi-norms {pu, K compact}. The

Cauchy formula implies that this topology is complete, thus these semi-

nonns induce a Fréchet space structure on the vector space Oc(D). The

supremum nonn on compact subsets induces, in a similar way, a Fréchet

space stmcture on the algebra of holomorphic functions on an open subset

of C".

CONVENTION. In the sequel, we will always endow the algebra of
holomorphic functions on an open subset of C" with the above mentioned
Fréchet space stmcture.
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3.2 The Mackey property

A subset of a locally convex topological vector space is called bounded if
all semi-norms are bounded on it.

DEFINITION 3.2 ([30, 11]). A sequence (,v„) in a locally convex space E

converges to zero in the sense of Mackey if there exists a bounded subset

B C E such that for any s > 0 there exists N with x„ G eB provided
that n >N.

Proposition 3.3. Let (x„) be a sequence in a Brechet space E.
The following conditions are equivalent:

1. (x„) converges to zero in E ;

2. (x„) converges to zero in E in the sense of Mackey.

Proof Let us show that (1) —^ (2). Assume that the sequence (x„)
converges to zero in E. As (x„ is bounded, we can choose a sequence of
increasing semi-norms Pi,... ,Ph • • dehning the topology of E such that

Pk(Xn) < 1 for all k,n £ N. Denote by /?< the unit ball for the semi-norm pi.
The subset B — is bounded and for any til > 0, we can find N such

that x„ G 1 /mB. 'in > N. To see this, choose N such that

Pm(x„) < - V« > N
m

As the sequence (pf) increases, we also have Pk(xn) < T for k < m and

n > N. As x„ G If. and If, c 1 /iii(kBi) for m < k, we conclude that

x„ G I /mB, for all n > N.
The implication (2) ^—> (1) is in fact independent of the assumption that

the topology is Fréchet. We have to show that, for any semi-norm p of E, we
have iim„ p(x„) — 0. As B is bounded, the quantity a — supyeBp(y) is finite.
That (x„) converges to zero in the sense of Mackey means that there exists

a sequence (£„), e„ G R>o Which converges to zero and such that x„ G e„B.
We get that p(xN) < e„a and the left-hand side tends to zero as n goes to

infinity.

DEFINITION 3.4. A locally convex space E for which the notions of
Mackey convergence and usual convergence agree is said to have the Mackey

property.

Proposition 3.3 asserts that Fréchet spaces have the Mackey property.
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3.3 Topological tensor products

Definition 3.5. The topological tensor product of two locally convex

spaces E,F, denoted by E 0 F, consists in the set of expressions of the

type V s= WiBfîrt where tire sequences ft,) and (y,-) are bounded and

È.IM < 00 •

Proposition 3.6. If E, F are locally convex vector spaces and if F has

the Mackey property then any element of the topological tensor product E 0 F
can be written as v — £3cr,.r; where (x;) is bounded, (yf) converges to

Zero, and ^, | ar | < oo

Proof. Take f t= W A,X; 0 y,- G E § F and write A; — afii, where a,- is

summable and b tends to zero. We have

'• ^2a x ®/,v- '

!> 6

where {b,y.) converges to zero in the sense of Mackey and tlierefore, by
Proposition 3.3, converges to zero in F.

Theorem 3.7 ([16, 17]). The topological tensor product of two Fréchet

spaces is complete and Hausdoiff, thus it is also a Fréchet space.

EXAMPLE 3.8. Let U C C", V C Ck be two open subsets; then both

topological vector spaces Oc*(U) 0 (9h(V) and 0(U/ V) are completions
of the space of polynomials Cfo..... z„-k I and induce the same topology
on it; hence they are isomorphic.

The strong dual E' of a locally convex topological vector space E is the

topological dual together with the topology induced by the semi-norms

— sup |h(x)|
x£B

where B runs over the bounded subsets of E. For instance if E is Banach,
this is the topological dual with the operator-nonn topology. In view of the

definition of nuclear morpliisms, we recall the following result:

Theorem 3.9 ([16, 17]). 7he topological tensor product of the strong
dual of a Fréchet space with a Fréchet space is complete and Hausdoiff.
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3.4 Nuclear morphisms

Definition 3.10. A morphism u: E • F of Fréchet spaces is called
nuclear if it lies in the image of the morphism

É ® F Uli. F), Y A- #yi • | v ï > Y A - v)v-1 •

If E,F are fini te-dimensional then all linear mappings are nuclear. This
is of course no longer the case in general Fréchet spaces : nuclear morphisms
are limits of finite range mappings and are therefore compact.

Example 3.IF Take E ~ Oc(D), F — Oc(D'), where I), & are open
disks centred at the origin such that the radius r of the disk D' C C is strictly
smaller than the radius R of D.

The restriction mapping p: öc(D) —> Oc(D') is nuclear. To see this, define

the linear fonns a„

a„:Oc(D)^C,

where 7 is a path in D\D' which turns counterclockwise around the origin.
For any holomorphic function / e Oq(D) the Hadamard criterion states tliat

Iim|an(f)\~l,n > R.

Therefore tlie sequence (k"aN(f)) is bounded for any 0 < k < R. The Banach-

Steinhaus theorem implies that the sequence of linear maps (k"a„) is bounded

for the strong topology. Choose k c |r, A'l ; the equality

«>0

shows tliat p is a nuclear morpliism This result extends to arbitrary Stein

neighbourhoods [24] (see also [23]).

Consider a coherent analytic sheaf F 011 C" and take a presentation of
this sheaf

0% ->Gg,

This exact sequence induces a Fréchet structure on the vector space T(l!) for

any Stein neighbourhood U C C". Tliis stracUire is independent of the choice

of the presentation [7] (see also [10], Proposition 4).
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The proof of the following proposition is a generalisation of our previous
example.

Proposition 3.12 ([7, 24]). For any coherent analytic sheaf fF on C"
and any Stein neighbourhoods Ur U' such that the closure of U' is a compact
subset of U, the restriction mapping fF(U) -> IF(U') is nuclear.

3.5 Nuclear spaces

Definition 3.13. A locally convex vector space E is called nuclear if
any morphism from E to a Banach space is nuclear.

Theorem 3.14 ([16, 17]). The Fréchet space of holomorphic functions
on a polydisk is a nuclear space.

Consequently one may argue directly that the restriction mappings of
Example 3.11 and of Proposition 3.12 are nuclear because they factorise by
a morphism to a Banach space.

The following theorem is a consequence of Grothendieck's characterisation

of nuclear spaces, namely the coincidence2] of the inductive topological tensor

product with the projective one (see also [24]).

Theorem 3.15. For any nuclear Fréchet space E, the functor fe E is

an exact functor from the category of Fréchet spaces to itself.

3.6 The Schwartz perturbation theorem

The following theorem was proved by Schwartz for the more general case

of compact operators.

Theorem 3.16 ([37]). Let f: E —> F be a surjective morphism of Fréchet

spaces. For any nuclear morphism ti: E —> F, the morphism f + u has a

finite-dimensional cokemel.

In particular, if the identity mapping / : E —r E is nuclear, then by taking

f — I and it — —I we get that E is fini te-di mensional. As nuclear morphisms
are compact, this last assertion is a particular case of Rics/'s theorem on the

non-compactness of 0-neighbourhoods in infinite-dimensional Fréchet spaces.

2) In Grothendieck's original treatment, the coincidence of topologies is taken as the definition
of nuclear spaces, while Definition 3.13 is stated as a theorem.
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Corollary 3.17 ([37]). Let M',N' be two complexes of Frêchet spaces.

If there exists a nuclear quasi-isomorpMsm u : M' —> N', then the complexes
have finite-dimensional cohomology.

Proof. We apply Theorem 3.16 to tire maps

./
'•

: Mk x 0 1

-A Nk, (a, ß)^ u(a) + dß.

We prove Theorem 3.16 following Kiehl-Verdier and Houzel. The next
result was proved by Houzel under much more general assumptions ; note that

for Banach spaces the proof of the lemma is obvious.

Lemma 3.18 ([21]). Any nuclear morphism u: E^Eofa Fréchet space
to itself can be written as u s= u' + u" where u' is of finite range, i.e.

dim Im //' < +oo, and I + u" is invertible, where I: E -» M denotes the

identity mapping.

Proof. Write u X^>o ^-L • As the sequences (£;) and (x,) are

bounded there exists M G R such that

|£(%)| < M, Vi,j.
As the sequence (A,) converges to zero, we can find N such that for i > N
we have

lA;l < 2M '

We assert that the sequence ((«")' consisting of iterates of tlie nuclear

morplii sm u" — ^~2i>N Aç|; 0 X; is bounded. Indeed, a direct computation
shows that the Â' til iterate of the map u" is given by the formula

<»")' V A....Ahih(.v..)...sy&t-,;Mkcxk..

Thus, for any semi-norm p : E —> R, we have

(u")k(X) < sup f.( v)/'(x,) lAi'l •

W i> o

This proves the assertion. The above inequality shows that the sequence

vn jyt
k—0

is pointwise convergent, the Banach-Steinhaus theorem implies that it is

uniformly convergent and therefore its limit defines the inverse of I + u".
This concludes the proof of the lemma. Li
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This lemma implies the Schwartz perturbation theorem in case / is the

identity mapping. Indeed, take u, vi\ u" as in the lemma; since the map I+ u"
is invertible, the map / — it (/ + «") + «' has a cokemel of finite dimension.

Now consider a surjective morphism/: E —> F of Fréchet spaces. We assert
that any nuclear morphism u factors through / by a nuclear morphism | :

E

As u is nuclear, we can write

a X! Ai 0 -Vi '

i> 0

where (£,) and (y,) are bounded sequences and A, is sunrmable. As F is

Fréchet, by Proposition 3.6, we may assume that (y,) converges to zero. The

Banach open mapping theorem implies that (y, lifts to a sequence (x, which
tends to zero. We define the nuclear morphism v by the fonnula

'• A f. Q Xj.
;>o

The map I + v, and consequently the map / o (I + v) —f + u, have a finite-
dimensional cokernel. This completes the proof of Theorem 3.16.

3.7 Proof of Theorem 1.1

As tire restriction mapping K'(1L) —> ]C'(Bei) is a nuclear quasi-

isomorphism (Propositions 2.1 and 3.12), Corollary 3.17 applies. Tins shows

that the cohomology spaces of the complex JC{Be) are finite-dimensional
vector spaces or equivalently that it is quasi-isomorphic to a complex C of
finite-dimensional constant sheaves C sa C"".

As K,'(Be) is quasi-isomorplric to IC'(Be>), we can construct an exhaustive

sequence of compact neighbourhoods of the origin (/if l) such that K'{BEn) is

quasi-isomorphic to ]C'(B£it+l). In the limit n —> oq, we get that the complex
/<" — fCq is quasi-isomorplnc to the stalk of the complex at the origin.
We have isomorphisms of vector spaces

IPT/Ç. IC') « Hp(K'{Bs)) Pa HP(K'), Vp> 0

where the first isomorphism follows from Cartan's Theorem B. Tins concludes
the proof of Theorem 1.1.
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4. Relatively constructible sheaves

We now explain the notion of /-constractibility introduced in Theorem 0.1.

4.1 Stratified mappings

DEFINITION 4.1. A continuous map between Whitney stratified spaces
X t S, X {J:Xj, S — U S. is said to be stratified if it maps stratum

into stratum, and if the resüiction of / to each stratum is a submersion.

DEFINITION 4.2. A stratified map f'.X —r S. Ac R'. satisfies the

üf -condition if for any sequence of points (,i\) in a stratum Xj converging to

a point X in an adjacent stratum Xy for which the affine subspaces ker df\x (Xj)

converge to a limit A C R we have the inclusion ker dfx. (x) C A.
A map-genn satisfies the fly -condition if it admits a stratified representative

satisfying the fly -condition.

These definitions are due to Thorn [42] (see also [32]).

Definition 4.3 ([27]). A standard representative f: X —> S of a

holomorphic map-genn /: (C",0) —î (C*. 0) satisfying tlie fly-condition is

a representative obtained as follows. Let g: Br —>• T, T — g(Br), be a

holomorphic representative of the genu such that

L the fibre <j~1 (0) is transverse to the boundaries of the balls B; for any
£ < r;

2. the fibres of g intersect transversally tlie boundary of some ball Be

above the closure S of a polydisk S C T centred at the origin ;

3. the map g satisfies tlie fly-condition.

The standard representative f'.X —s- S is obtained by restricting g to

V g '(M' B

Remark that by a misuse of notation the same letter denotes the genn and

a standard representative of it. We sometimes write /': X ^ S, X Y (1 Be

when we want to emphasize tlie radius of the ball used to define X.

4.2 Thom's second isotopy theorem

Thorn's second isotopy theorem is a relative version of Thom's first isotopy
theorem.
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Theorem 4.4 ([42, 32]). Consider a commutative diagram

f ]0, l[x£

10.1[,

where f is a stratified mapping and ir denotes projection to the first factor.

If f satisfies Thorn's a, -condition then any C°° vector field on ]0,1[ lifts to

an integrable vector field on X tangent to the fibres of f.

For a proof of this theorem see [32], Propositions 11.3, 11.5 and 11.6.

As for the hrst isotopy theorem, one usually states the theorem as a statement

of local triviality induced by the flow of the vector field. We get the following
relative variant of Corollary 2.6.

Corollary 4.5. Let f : X -fi S[, X Y fl If be a standard representative

of a germ. For any e' •' |0. :\ there exists a homeomorphism he.si isotopic
to the identity which preserves the stratification and stich that the following
diagram Commutes:

x

4.3 Relative cönstrüctibility
DEFINITION 4.6. Consider a stratified map f: X —»• S satisfying the

a, condition. A sheaf JF on X is called f-constructible if the following
condition holds : each point x G X admits a neighbourhood U inside the

stratum of I such that

If / is the map to a point, an/-constructible sheaf is a constructible sheaf

in the usual sense.

DEFINITION 4.7. Consider a stratified holomorphic mapping /' : AT —> .S',

X C C", S C £*., satisfying the aj -condition. A complex iJC',0) of
CR-coherent sheaves is called f-constructible if its cohomology sheaves

7-//(/C") are /-constructible and if its differential is CR -linear.
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The notion of / -constractibility extends to germs : given a holomorphic

map-germ satisfying the (if -condition / : (X, 0) —> (S. 0), a complex (K', 5)

of Oc.o -coherent modules is called /-constructible if there exists a standard

representative/: X —r S and a complex (/C. d) of /-constructible Ox -coherent

sheaves such tliat K' is the stalk at the origin of the complex K~.'.

The notions of Theorem 0.1 have now been explained.

4.4 THE RELATIVE DE RHAM COMPLEX

We give a simple example of relative constractibility : the relative de Rliam

complex for an isolated singularity.

We consider the relative de Rliam complex Q" associated to a holomorphic

map /': X —> S. X C C". S C C* and assume that S is a smooth complex
manifold.

For instance if k — 1 then the complex has terms Qj — A (If and

the differential is induced by the de Rliam differential of Qy. The differential
of die complex is obviously f~lOs-linear:

7T(d(fa)) — ir(df A a +fda) — it(fda),

where it: Qj —> Q' denotes die canonical projection. A dat holomorphic map-

germ /: (X, 0) —> (C^jO) dehnes an isolated Singularity if its special fibre
has an isolated singular point at the origin and if it satisfies the af -condition.

Proposition 4.8. The relative de Rheim complex Q' associated to a

holomorphic map-germ f : (X, 0) —> (Cfc,0) defining an isolated singularity is

f-constructible.

Proof. Take a flat standard representative f\X—r S of the germ. Consider
die stratification consisting of the smoodi points of die map / : X —f S (smoodi
points of the fibres) and its complement. Stratify die map / : X —> S by refining
this stratification. At a regular point of/, die implicit function dieorem shows

diat die relative de Rliam complex is a resolution of the sheaf f~lOs ; it is

dierefore / -constant on the open strata (this statement is known as the relative
Poincaré lemma).

As / is flat, die singular set of a fibre is either empty or finite. Hence the

cohomology sheaves restricted to any non-open stratum are also /-constant
(any sheaf restricted to a point is constant). Therefore die relative de Rliam

complex is /-constructible.
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For non isolated singularities the situation is of course much more delicate

as the de Rham complex is not always constructible. Additional conditions

implying constractibility are given in [1, 34, 40].
From Theorem 0.1 and Proposition 4.8, one deduces the following result.

Theorem 4.9. Let f: X —> S, Xc —f~l(0), be aflat standard representative

of a holomorphic map-germ f : (C",0) —> (C*,Ô). Iff defines an isolated

singularity then the direct image sheaves RkfM} are coherent and the canonical

map r(A0,£2p —> Qj 0 induces an isomorphism of graded Osp-modules
between (R'/*Q^)0 and H'(Q"f 0).

If X is smooth and if tlie components of / define a complete intersection,
these modules are all zero except possibly for p — 0, dimX — 1 [5, 15, 31].

5. Proof of Theorem 0.1

5.1 Construction Of the contraction
Proposition 5.1. For any standard representative f: X -a S and any

e' < e, the restriction mapping ft 1C'(X) -a KffX'% X' f l(S) ]).>. is a

quasi-isomorphism.

Proof. The proof is similar to that of Proposition 1.7.

Choose an acyclic covering U — II) of X, find lh: :;> as in Corollary 4.5

and put U[ h..,- (I '

As the complex of sheaves is /-constructible, we get vector space

isomorphisms

UHK-fiUi) « (fv)MHl^fWs) *
on each small open subset II. Consequently, tlie corresponding hypercohomol-

ogy spectral sequences show that tlie restriction mapping r: K '(X) -a K '(X')
is a quasi-isomorplfism for any < s.

5.2 Fréchet modulés and NUCLEAR morphisms

An associative algebra A is called a Fréchet algebra if there exist semi-

norms p„ : A —> R, n G N defining a Fréchet space topology on A and such

that

p„(ab) < p„(a)p„(b) Vn,a,b.
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For instance, the algebra of holoniorphic functions on an open subset of C"
is a Fréchet algebra.

Here and in tlie sequel, we will use the word module over a ring A instead

of bimodule, i.e., all the modules that we will consider have left and right
multiplications by elements of A, and of course if A is commutative, left and

right multiplications coincide.

A module E over a Fréchet algebra A. will be called a Fréchet module

if E has a Fréchet space topology for which left and right multiplication
mappings are continuous.

The morphisms of the category of Fréchet A -modules are the continuous

C-linear mappings which are left A-linear. The space of morphisms from a

Fréchet A -module £ to a Fréchet A -module F is denoted by l.,\(lé F). We
V

use the notation E I-a (/;'.(")•

The topological tensor product Wmk V is defined as the cokemel of the

map

(/•.' jfeA §>c F) -> (E %c F), m (S>ä W « Hr ma 0 « - m 0an

A morphism of Fréchet A-modules ti: E' —»• F is said to be A-nuclear if it
lies in the image of the morphism

F Sa F —> I..\(E. F), ^ ' A i S H I v H> ^ ] A f.(.v)v |, A; G C,

where A, is summable. These definitions are due to Kiehl-Verdier [24].

Example 5.2. Take A Oc(5), E Ö&(D x S), F - Oci{D' x S)

where D,D',S are disks centred at the origin in C such that the respective
radii A\r of the disks D,D' C C satisfy R> r.

The restriction mapping p: 0(-2(I) x S) —»• ö(n{D' x S) is an 0(5)-nuclear
morphism. Indeed, let us define the 0(5)-linear fonns a„

where j is a path in D \ D' turning counter-clockwise around the origin.
Choose k G ]?",£[; the equality

«>0

shows that the mapping p is 0(5)-nuclear.
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The Ö(S) -nuclearity of the morpliism p can also be seen directly by using
the isomorphism

Oa(D x S) « Oc.(D) 0 Oc(S).

We saw tliat the restriction mapping Oç(D) —S Oq(D') is C-nuclear, therefore

by tensoring botlr sides by 0< (S), we get an Oc(S) -nuclear morpliism.

5.3 The Schwartz perturbation theorem for Fréchet modules

The formulation given by Houzel of the generalised Schwartz perturbation
theorem involves vector spaces with homologies rather than topological vector

spaces; here and in the sequel we apply the theorem for the homology
consisting of bounded subsets of locally convex spaces.

Theorem 5.3 ([21]). Let f : E—k F be a surjective morpliism between

A-Fréchet modules. For any A-nuclear morpliism ti: E —> F, the cokemel of
the map f + u is an A-module of finite type.

The proof of this theorem is similar to the one we gave in the absolute

case and will therefore be omitted; for details we refer to [21]. In case the

identity mapping is nuclear, then by taking f — I and it — —I we get the

following corollary.

Corollary 5.4. If the identity mapping I: E E is A-nuclear then E
is a finite type A-module

EXAMPLE 5.5. Let S C c' be an open subset and take an Oçt(S) -linear

mapping ip: O^., (S) —> ö(y„ (.V). Such a mapping is given by a p X q matrix
with entries in Oft (S). The identity mapping is an öct(S) -nuclear morpliism
from ker p to itself. Therefore ker ^ is an Oct(5)-module of Unite type.

As in the absolute case, the perturbation theorem implies the following
result.

Theorem 5.6 ([24, 21]). Let A be a Fréchet algebra and M',N' two

complexes of A -Fréchet modules. If there exists a nuclear quasi-isomorphism

ti: N' M' then the complexes M' and N' are quasi-isomorphic to a

complex of finite type free A-modules.
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5.4 Elementary functional analytic properties of coherent sheaves

Following Kiehl-Verdier, we say that a morphism it : E -A F between two
A -Fréchet modules is A-quasinuclear if there exists a coimnutative diagram
of Fréchet A -modules :

4 Sc V

E ——*- F

where F is a nuclear Fréchet space, tt is surjective and v is A -nuclear. The

reason for considering this notion is explained by the following proposition,
which is a direct consequence of Proposition 3.12.

Proposition 5.7 ([24]). For any coherent analytic sheaf F on C" x Ck

and any Stein neighbourhoods U, U' such that the closure of U' is a compact
subset of U c C" and for any Stein neighbourhood S c Er, the restriction

mapping F(U x S) -a F(Uf x S) is 0{S)-quasinuclear

The generalised Schwartz perturbation theorem extends to the case where

the perturbation is given by a quasinuclear morphism rather than a nuclear

morphism
The following proposition is a direct consequence of Theorem 3.15.

Proposition 5.8 ([24]). If E is a free module over a nuclear Fréchet

algebra A, i.e. E is isomorphic to a product A ®ç V where V is a nuclear
Fréchet space, then the functor §>A E is exact.

Corollary 5.9 ([21, 24]). For any -coherent sheaf F. any
polycylinders S, S' C Ck, S' c S, and any Stein open subset U c C",
we have an isomorphism of Fréchet modules over the ring Oçk(S)

F(U x S) 1 OcfS') m F(U x S').

We conclude by pointing out that Corollary 5.9 together with Example 5.5

imply Oka's theorem: Any system ofgeneratorsfor the kernel ofan 0^-linear
mapping of sheaves ip: Cfct -a OqQk at the origin induces a system of
generators in a sufficiently small neighbourhood of the origin.

Indeed, we saw that (kei' o)(.S') is a module of finite type, and a system of
generators for the 0(5)-module (ker f )(S) induces a system of generators for
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the 0(S')-module {fccr^)(.S") ~ (kerr-)(5) 0c ôç*{S') for any polycylinders
S' C S.

5.5 Proof of Theorem 0.1, final step

Lemma 5.10. The restriction mapping r: K.'(X) — ICQ?) is an

Os(S) -quasinuclear quasi-isomorphism.

Proof. Recall that X is the intersection of a Stein open neighbourhood
with some open ball Be. Define the complex of sheaves K ' in Be x S by the

presheaf

îcm aefi fCfurf-fV)).
Both complexes are isomorplfic as complexes of bréchet sheaves. Moreover,
the restriction mapping fC'(Be x S) —> Kffiçt X S) is Os(S) -quasinuclear
(Proposition 5.7). This proves the lemma.

Tins lemma shows that Theorem 5.6 applies, therefore there exists a

complex £' of free coherent Os -sheaves such that £\S) is quasi-isomorphic
to IC(X).

Lemma 5.11. The sheaf complexes £', f*X"x are quasi-isomorphic.

Proof. A mapping j .M* —f L' of complexes induces a quasi-isomorphism
between two complexes if and only if its mapping cone ("(it) is exact.

We apply tins fact to the mapping cone of tire quasi-isomorphism

u : £'{S) —St K\X).
Âs the functor S> Os(l') is exact for any polydisk PCS (Proposition 5.8),
the complex ('*(») Os{P) is also exact.

1 sing Corollary 5.9, we get that C\u) 0 Os{P) is the mapping cone of
u': £'(/') —> K'(X H f~ '(/')) • Therefore, the complexes of sheaves £' and

J(K.'X are quasi-isomorphic. This proves the lemma.

We assert that the complex IC — K"0 is quasi-isomorpliic to the stalk of
the complex £' at the origin.

Let (B;J be a fundamental sequence of neighbourhoods of tlie origin in C",
such that their intersection with the special fibre of / is transverse. As the

map / satisfies the üj -condition, we can find a fundamental sequence (S„)

of neighbourhoods of the origin in Ck such that the fibres of / intersect BSn

transversally above S„.
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Put X„ — f 1

(,S'„) ; we have the isomorphisms

C# -f ÎC* r^> -f 1C*
**)& ~/*/c\x„ t

The first isomorpliism is a consequence of the previous lemma and the

second follows from the fact that the contraction is a quasi -isomorphi sm

(Proposition 5.1).

In the limit n —> oo we get that the complex K' — }C'0 is quasi-isomorphic
to the complex £'(). This concludes the proof of the theorem. U

6. FlNITENBSS THEOREM FOR COHERENT INI >• ANALVI K COMPLEXES

6.1 The generalised Schwartz perturbation theorem

We now state a variant of the theorem which includes most cases

encountered in local analytic geometry. For this we need first to axiomatise
the concepts introduced in the proof of the Schwartz perturbation theorem.

A topological algebra A is a commutative algebra over C such that the

underlying vector space is given a locally convex topology for which the

algebra operations are continuous. An A-module /:' is a topological Â-module

if it carries a locally convex topology for which the module operations are

continuous.

The following definition is adapted from [21].

Definition 6.1. A topological algebra A is called multiplicatively convex
if any bounded subset of A is absorbed by a bounded subset invariant under

multiplication.

For instance, Fréchet algebras are multiplicatively convex.

Let us now list the properties which are needed for the proof of the

Schwartz perturbation theorem:
1. A, E, F should be complete;
2. E should be barrelled (if E is Fréchet this is the Banach-Steinhaus

theorem) ;

3. A should be multiplicatively convex;
4. any bijective morphism from E to F should be an isomorphism

(in case E, F are Fréchet this is the Banach open mapping theorem) ;

5. F should have the Mackey property.
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The first three conditions are needed for the proof of the Houzel lemma, the

last ones for reducing the proof to the case / /. We thus get the following
particular case of a theorem due to Houzel [21], the proof of which is similar
to that of the Schwartz perturbation theorem (Theorem 3.16).

Theorem 6.2. Let f:E^F be a surjeetive morphism between

topological A-modules. Assume that A, Jf, F satisfy the above listed properties;
then for any A-quasinuclear morphism u: E -t F, the cokernel of the map

f + ii is an A-module of finite type.

6.2 Inductive limits of Fréchet spaces

The category of Fréchet spaces is too restrictive to provide sufficient

applications in local analytic geometry, for instance the vector space of
holomorphic function germs does not admit such a topology. It is therefore

necessary to introduce a more general class of objects, LF-spaces.
Consider a set of linear maps from Fréchet spaces to a fixed vector space

U;: Et —> E, ië Q such that 1Jiôw,(/î,) — E. The inductive limit topology
T of die vector space E is defined by

U CT Vf 6 £2, u~l(U) is open in Ei.

The category of LF-spaces is then a sub-category of the category of locally
convex Spaces.

Spaces of type LF are locally convex, bomological (bounded linear

mappings coincide with continuous ones) and barrelled (pointwise bounded
subset are unifonnly bounded), but not always complete [25].

In case the Efs form an increasing sequence of closed vector subspaces

in E and the uçS are the inclusions, the resulting LF-spaces are complete and

satisfy the Banach open mapping theorem [8]. In fact, one has the following
result.

Theorem 6.3 ([26]). Any complete LF-spaces E, F defined by limits of
a countable set of Fréchet spaces satisfy the Banach open mapping theorem,

that is, any bijective morphism from E to F is an isomorphism.

Proposition 6,4 ([19], Chapter 3). For any compact subset K c C", the

LF-space 0C'(K) lim i'V (' )• K c U, of holomorphic functions restricted
to K c C" is complete and has the Mackey property. Moreover, the

multiplication offunctions defines a structure of multiplieafively convex algebra
on Oc(K).
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Proof. The proposition is a consequence of the following characterisation

of bounded subsets due to Grothendieck ([19], Chapter 3, Proposition 5):
a subset B C Ö0'(K) is bounded provided that there exist a neighbourhood
U containing K and a bounded subset B' C C°([7) H Oc»(U) which projects
onto B via the restriction mapping Oçn(l!) —> Oc-(K).

6.3 The sheaves Oy\x

Let i: X -A Y be the inclusion of a complex analytic manifold X into
another complex analytic manifold Y. The sheaf i~lOy is denoted by Oy\x-
If i is the inclusion of a submanifold X C Y then Oy\x is hie sheaf of
liolomorpliic functions on Y restricted to X. If Y is of the form X x T,
we denote simply by Ox / r x the sheaf obtained from the inclusion of X x {0}
in X X T. The stalk of the sheaf öX/t\x al a point .to is the space of genns
of liolomorpliic functions in X x T at the point t Ao- t — 0. These sheaves

are frequently considered in microlocal analysis [35].

In the previous subsection, we saw that the space of global sections of the

sheaf Oyjx, Y C C", over a compact subset has an LF-space structure.

As inductive limits commute with topological tensor products, the

topological vector space Oy» (K) is nuclear. Therefore most of the properties
established for the sheaves Ox extend to the sheaves Oy x

As in the case of the sheaf of holomorphic functions, it follows from
Theorem 6.2 that the sheaf öx%t\x is coherent, that is, the kernel of any
mol'phism of sheaves of modules

°XxT\X °XxT\X

is limtely generated. This can also be deduced from Cartan's Theorem A and

from the coherence of the sheaf 0X / t
Following the general terminology [39], we say that a sheaf T on a

space X is 0Xxt\x -coherent, or that it is a coherent ind-analytic sheaf, if it is

the cokemel of a morpliism of Ox
_ j y modules :

®XxT\X ~* ®XxT\X F -Y 0

The notion of /-constructibility extends trivially to complexes of Oxxt\x~
coherent sheaves and to their stalks.

6.4 Local einjteness theorem

By Proposition 6.4, we may apply the generalised Schwartz perturbation
theorem in the ind-analytic context and get the following result (we no longer
consider direct image sheaves, as the conclusions are similar).
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Theorem 6.5. Let f: (C", 0) -> (Ck, 0) be a holomorphic map-germ
satisfying the af-condition, ne cohomology spaces HP(K') associated to a complex

of f-constructible Oc*±N\c".o-coherent modules are f~lQCk+N\c* 0-coherent
modules, for any p > 0.

Remark 6.6. The algebra structure on &c*+N\C" plays no role in the proof.
Therefore, one may replace the condition «/-constructible Ö0i+n\c.o-coherent
modules» by «f~1 öci.-v c< 0-topological modules isomorphic as topological
vector spaces to 0c»+A<ie»,o ».

Let us denote by 9JÎ the maximal ideal of the local ring ö(m (i We identify
Ck to Ck x {0} C Cx X C". To conclude, we give a proof of the following
algebraic form of the division theorem due to Houzel and Serre

Proposition 6.7 ([20]). Any Cçt+».0 -module M of finite type such that

M/WIM is a finite-dimensional C-vector space is itself an Ocpo -module of
finite type.

Proof. Consider the complex obtained from a projective resolution of M :

K' ; • ' — Om%0 — °cU»,0 0 H\K-) - * M.

This complex gives a complex /C* of Ox7r -sheaves whose support is an

analytic variety V C X x Here X C C" and T C C,: are small

neighbourhoods of the origin in C" and C
The dimension of M/DJIM is equal to tlie intersection multiplicity of V

with X x {0} — {(x. t) : t — 0}. Assume that X and T are so small that
the variety V intersects X x {0} only at the origin. Then the restriction of
the complex /C* to I x {0} defines an Pitor^oxetAcrent sheaf complex on
X C C". The cohomology of the complex is supported at the origin, it is

therefore constructible. Theorem 0.1 implies that H'(K') ~ M is a finite type
module over the ring Cq* o ('lcrc / is l'lc mapping to a point). 1 Iiis proves
the proposition.

6.5 The Hi h m i : i de MönVeL division theorem

We now prove the Sato-Kashiwara-Kawai division theorem for pseudo-
differential operators [35], As in the commutative case, this theorem admits

an algebraic version (or rather a generalisation) similar to the Houzel-Serre

formulation of the division theorem [3] (see also [33], Chapter 3).
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Denote by £(0) the sheaf of analytic pseudo-differential operators in

T*C" ® C2" — {(()[>)} of order 0. Let £'(0) be a subsheaf of operators which

depend only on some of the variables, say (j\..... qr j)\,.... pi,. We denote

by cco(0). £q(0) tlie stalks of the sheaves £(0), £'(0) at the point Xo G C2"

with coordinates qx — — q„ 0, pi — 1, p2 — 0,..., p„ — 0.

Theorem 6.8 ([3, 33]). For any coherent left £o(0)-module M the

following assertions are equivalent :
1. the Oftf+t-i _0-module M/df^M is of finite type;
2. the £q(0)-left module M is of finite type.

Proof The module M is the stalk at the point Xo (0,..., 0,1,0,..., 0)
of a sheaf M of T0(0)-modules in T* C" ft; C2".

Consider the complex given by a resolution of A4

IC : £{Qy® —ÎU- £(0)"« * 0 T(0)"°/ImStmM.

The support of M coincides with that of AA /<)f1 A4, it is therefore an

analytic subvariety V C C2" ([35] ; see also [33], Proposition 4.2.0).
The restriction of the sheaf £(0) to the complement of the zero section in

T*C" fa C2" is a sheaf of non-commutative Fréchet algebras [4]. Therefore
the argument given in the proof of Proposition 6.7 applies mutatis mutandis

to this situation.
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