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AN FP,,-CONJECTURE FOR NILPOTENT-BY-ABELIAN GROUPS

by Kai-Uwe BUX

Let G be a finitely generated metabelian group, i.e., we have a short exact
sequence

N—GC—Q

with N and Q Abelian groups, wherein the quotient Q is finitely generated and
the kernel N is finitely generated as a Z(Q-module. For any homomorphism
x:Q—=R,let O, :=1{q€ Q| x(g)> 0} be the monoid of elements in Q
that are non-negative with respect to y. R.Bieri and R. Strebel defined the
geometric invariant of G as

Zo(N) := {x € Hom(Q,R) | N is finitely generated over ZQ, } .

Note that homomorphisms that are positive scalar multiples of one another
define the same non-negative sub-monoid of (. Thus, the geometric invariant
is a conical subset of the real vector space Hom((Q, R). Also note that Oy = @,
whence the geometric invariant contains 0 since G is finitely generated.

Bieri-Strebel showed that 2p(N) determines whether G is finitely pre-
sented. However, this information is more easily extracted from the complement

o(N) := Hom(Q, R) — Zo(N).

THEOREM 20.1 (Bieri—Strebel [4]). The following are equivalent:
(1) G is finitely presented.
(2) G is of type FPs.

(3) The complement E@(N) does not contain two antipodal points, i.e.,
whenever x € Z5(N), then —x ¢ ZH(N).
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Bieri conjectured that the information about higher finiteness properties
of G is also encoded in X5H(N). Recall that a group G is of type FP, if
there is a partial resolution

Pyo—Py1—-—P—>Py—>71

of Z, regarded as the trivial ZG-module, by finitely generated projective
Z.G -modules.

CONIJECTURE 20.2 (Bieri). For any m > 2, the following are equivalent :
(1) G is of type FP,,.
(2) The complement XH(N) is m-tame.

Here, we call a conical subset U of a real vector space m-tame if

O¢y+U+---+U.
m sm;lrmands

Evidence for this conjecture is mounting. It has been proved for many special
cases. In particular, H. Aberg settled the case when N is virtually torsion free
of finite rank [2], and the case m = 3 was settled by R. Bieri and J. Harlander
for the case of split extensions [3].

Now, let G be nilpotent-by-Abelian, i.e., suppose G fits into a short exact
sequence

N—G—Q

where N is nilpotent and ) is Abelian. Again, we assume that G is finitely
generated. In that case, every Abelian factor M; := N;/Ni;, along the lower
central series N = Ny > N> > N3 > ... is a finitely generated Z{Q-module
to which we can associate, as above, a geometric invariant Zp(M;) and a
complement denoted by ECQ(ME-).

Note that a necessary condition for G to be of type FP, is that the
homology groups Hi(G;Z) are finitely generated in dimensions up to #z.
Therefore, the most optimistic and most straightforward generalization of the
FP,,-conjecture to the class of nilpotent-by-Abelian groups would be that
the metabelian quotient of G contains all of the relevant information needed
besides the obvious homological restrictions. We thus arrive at:

CONIJECTURE 20.3. [For m > 2, the following are equivalent:
(1) G is of type FP,,.

(2) The complement Z@(Ml) is m-tame and the homology groups Hi(N;Z.)
are finitely generated as Z.Q-modules for all dimensions i € {1,2,...,m}.
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Surprisingly, this very optimistic conjecture has some support: by results
of H. Abels, the conjecture holds for m = 2 if G is a solvable S-arithmetic
group over a number field [1]. My own results on solvable §-arithmetic
groups over function fields [5] are also compatible with the conjecture.
However, the conjecture appears too optimistic, so a better question might
be:

Is there a way to characterize the higher TP, -properties of a nilpotent-
by-Abelian group G in terms of its homology and the geometric invariants of
the modules M; ?
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