Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 54 (2008)

Heft: 1-2

Artikel: Bounds for cohomology classes

Autor: Burger, Marc / Iozzi, Alessandra / Monod, Nicolas / [s.n.]

DOI: https://doi.org/10.5169/seals-109887

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

18

BOUNDS FOR COHOMOLOGY CLASSES

by Marc Burger, Alessandra Iozzi, Nicolas Monod and Anna Wienhard

Let G be a simple Lie group (connected and with finite centre). Consider the continuous cohomology $H^*(G, \mathbf{R})$ of G, which can be defined for instance with the familiar bar-resolutions of the Eilenberg–MacLane cohomology, except that the cochains are required to be *continuous* maps on G (or equivalently smooth or just measurable).

Conjecture 18.1. Every cohomology class of $H^*(G, \mathbf{R})$ is bounded, i.e. is represented by a bounded cocycle.

Recall that $H^*(G, \mathbb{R})$ is isomorphic to the algebra of invariant differential forms on the symmetric space associated to G, hence to a relative cohomology of Lie algebras and thus moreover to the cohomology of the *compact dual space* associated to G. It is however not understood how these isomorphisms interact with boundedness of cochains (compare Dupont [6]).

We emphasise also that, unlike for discrete groups, $H^*(G, \mathbf{R})$ does not coincide with the cohomology of the classifying space BG. There is however a natural transformation $H^*(BG, \mathbf{R}) \to H^*(G, \mathbf{R})$ and we refer to its image as the *primary characteristic classes*. By a difficult result of M. Gromov [7], the latter are indeed bounded; M. Bucher-Karlsson gave a simpler proof of this fact in her thesis [1].

In order to prove the above conjecture, it would suffice to establish the boundedness of the *secondary invariants* of Cheeger–Simons; indeed, Dupont–Kamber proved that the latter together with the primary classes generate $H^*(G, \mathbf{R})$ as an algebra.

An important example where boundedness was established very recently is the class of the *volume form* of the associated symmetric space. Using estimates by Connell–Farb [5], Lafont–Schmidt [8] provided bounded cocycles

in all cases except $SL_3(\mathbf{R})$, the latter case being settled by M. Bucher-Karlsson [2] (a previous proof of R. Savage [11] is incorrect). It follows that the fundamental class of closed locally symmetric spaces is bounded; as explained by M. Gromov, this provides a non-zero lower bound for the *minimal volume* of such a manifold, i.e. a non-trivial lower bound for its volume with respect to *any* (suitably normalised) Riemannian metric.

Many more questions are related to the above conjecture via the following steps listed in increasing order of refinement: (i) find a bounded cocycle representing a given class; (ii) establish a sharp numerical bound for that class; (iii) determine the equivalence class of the cocycle up to boundaries of bounded cochains only.

The latter point leads one to introduce the (continuous) bounded cohomology H_b^* of groups or spaces, where all cochains are required to be bounded. There is then an obvious natural transformation

and the above conjecture amounts to the surjectivity of that map for a connected simple Lie group with finite centre. As of now, there is not a single simple Lie group for which $H_b^*(G, \mathbf{R})$ is known; all the partial results are however consistent with a positive answer to the following:

QUESTION 18.2. Is the map (*) an isomorphism?

For instance, the answer is yes in degree two [3] (and trivially yes in degrees 0,1); for $G = SL_n(\mathbf{R})$, it is also yes in degree three (see [4] for n=2 and [10] for $n \ge 3$).

The functor H_b^* is quite interesting for discrete groups as well and has found applications notably to representation theory, dynamics, geometry and ergodic theory. This notwithstanding, there is not a single countable group for which $H_b^*(-, \mathbf{R})$ is known, unless it is known to vanish in all degrees (e.g. for amenable groups). In any case, the map (*) fails dramatically either to be injective or surjective in many examples. Most known results regard the degree two, with for instance a large supply of groups having an infinite-dimensional $H_b^2(-, \mathbf{R})$, including the non-Abelian free group F_2 . Interestingly, the surjectivity of the map (*) (with more general coefficients) in degree two characterises non-elementary Gromov-hyperbolic groups (Mineyev [9]).

It appears that new techniques are required in higher degrees. Here is a test on which to try them:

QUESTION 18.3. For which degrees n is $H_b^n(F_2, \mathbf{R})$ non-trivial?

It is known to be non-trivial for n = 2, 3. (Triviality for n = 1 and non-triviality for n = 0 are elementary to check for any group.)

REFERENCES

- [1] BUCHER-KARLSSON, M. Characteristic classes and bounded cohomology. Ph.D. thesis, ETHZ Dissertation Nr. 15636, 2004.
- [2] Simplicial volume of locally symmetric spaces covered by SL₃(**R**)/SO(3). Geom. Dedicata 125 (2007), 203–224.
- [3] BURGER, M. and N. MONOD. Continuous bounded cohomology and applications to rigidity theory (with an appendix by M. Burger and A. Iozzi). *Geom. Funct. Anal.* 12 (2002), 219–280.
- [4] BURGER, M. and N. MONOD. On and around the bounded cohomology of SL₂. In: *Rigidity in Dynamics and Geometry (Cambridge, 2000)*, 19–37. Springer, Berlin, 2002.
- [5] CONNELL, C. and B. FARB. The degree theorem in higher rank. *J. Differential Geom.* 65 (2003), 19–59.
- [6] DUPONT, J. L. Bounds for characteristic numbers of flat bundles. In: Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), 109–119. Springer, Berlin, 1979.
- [7] GROMOV, M. Volume and bounded cohomology. *Inst. Hautes Études Sci. Publ. Math.* 56 (1982), 5–99.
- [8] LAFONT, J.-F. and B. SCHMIDT. Simplicial volume of closed locally symmetric spaces of non-compact type. *Acta Math.* 197 (2006), 129–143.
- [9] MINEYEV, I. Bounded cohomology characterizes hyperbolic groups. *Quart. J. Math.* 53 (2002), 59–73.
- [10] MONOD, N. Stabilization for SL_n in bounded cohomology. In: *Discrete Geometric Analysis*. Contemp. Math. 347, 191–202. Amer. Math. Soc., Providence, RI, 2004.
- [11] SAVAGE, R. P. JR. The space of positive definite matrices and Gromov's invariant. *Trans. Amer. Math. Soc.* 274 (1982), 239–263.

M. Burger

FIM-ETHZ Rämistrasse 101 CH-8092 Zürich, Switzerland *e-mail*: burger@math.ethz.ch

A. Iozzi

D-MATH-ETHZ Rämistrasse 101 CH-8092 Zürich, Switzerland *e-mail*: iozzi@math.ethz.ch

N. Monod

Section de Mathématiques Université de Genève, C.P. 64 CH-1211 Genève 4, Switzerland *e-mail*: monod@math.unige.ch

A. Wienhard

University of Chicago 5734 University Avenue Chicago, IL 60637-1514, USA *e-mail*: wienhard@math.uchicago.edu