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BOUNDS FOR COHOMOLOGY CLASSES

by Marc BURGER, Alessandra 107z, Nicolas MONOD and Anna WIENHARD

Let G be a simple Lie group (connected and with finite centre). Consider
the continuous cohomology H*(G, R) of G, which can be defined for instance
with the familiar bar-resolutions of the Eilenberg—MacLane cohomology, except
that the cochains are required to be coniinuous maps on G (or equivalently
smooth or just measurable).

CONIECTURE 18.1. Every cohomology class of H*(G,R) is bounded, i.e.
is represented by a bounded cocvcle.

Recall that H*(G,R) is isomorphic to the algebra of invariant differential
forms on the symmetric space associated to G, hence to a relative cohomology
of Lie algebras and thus moreover to the cohomology of the compact dual
space associated to G. It is however not understood how these isomorphisms
interact with boundedness of cochains (compare Dupont [6]).

We emphasise also that, unlike for discrete groups, H*(G,R) does not
coincide with the cohomology of the classifying space BG. There is however
a natural transformation H*(BG,R) — H*(G,R) and we refer to its image as
the primary characteristic classes. By a difficult result of M. Gromov [7], the
latter are indeed bounded; M. Bucher-Karlsson gave a simpler proof of this
fact in her thesis [1].

In order to prove the above conjecture, it would suffice to establish the
boundedness of the secondary invariants of Cheeger—Simons; indeed, Dupont—
Kamber proved that the latter together with the primary classes generate
H*(G,R) as an algebra,

An important example where boundedness was established very recently
is the class of the volume form of the associated symmetric space. Using
estimates by Connell-Farb [5], Lafont—Schmidt [8] provided bounded cocycles
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in all cases except SLi(R), the latter case being settled by M. Bucher-
Karlsson [2] (a previous proof of R. Savage [11] is incorrect). It follows
that the fundamental class of closed locally symmetric spaces is bounded;
as explained by M. Gromov, this provides a non-zero lower bound for the
minimal volume of such a manifold, i.e. a non-trivial lower bound for its
volume with respect to any (suitably normalised) Riemannian metric.

Many more questions are related to the above conjecture via the following
steps listed in increasing order of refinement: (i) find a bounded cocycle
representing a given class; (ii) establish a sharp numerical bound for that
class; (iii) determine the equivalence class of the cocycle up to boundaries of
bounded cochains only.

The latter point leads one to introduce the (continuous) bounded cohomol-
ogv H; of groups or spaces, where all cochains are required to be bounded.
There is then an obvious natural transformation

(*) Hi(—,R) — H(—,R)

and the above conjecture amounts to the surjectivity of that map for a connected
simple Lie group with finite centre. As of now, there is not a single simple
Lie group for which H,(G,R) is known; all the partial results are however
consistent with a positive answer to the following :

QUESTION 18.2. Is the map (x) an isomorphism ?

For instance, the answer is yes in degree two [3] (and trivially yes in
degrees 0,1); for G = SL,(R), it is also yes in degree three (see [4] for
n=72 and [10] for n > 3).

The functor H; is quite interesting for discrete groups as well and has
found applications notably to representation theory, dynamics, geometry and
ergodic theory. This notwithstanding, there is not a single countable group
for which Hi(—,R) is known, unless it is known to vanish in all degrees
(e.g. for amenable groups). In any case, the map (x) fails dramatically either
to be injective or surjective in many examples. Most known results regard
the degree two, with for instance a large supply of groups having an infinite-
dimensional H%(—, R), including the non-Abelian free group F». Interestingly,
the surjectivity of the map (%) (with more general coetficients) in degree two
characterises non-elementary Gromov-hyperbolic groups (Mineyev [9]).

It appears that new techniques are required in higher degrees. Here is a
test on which to try them:
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QUESTION 18.3. For which degrees n is Hy(F2,R) non-trivial ?

It is known to be non-trivial for n = 2,3. (Triviality for n = 1 and
non-triviality for n = 0 are elementary to check for any group.)
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