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PUTATIVE RELATION GAPS

by Martin R. BRIDSON and Michael TWEEDALE

Given I' = (A | R), the action of the free group F(A) by conjugation
on R = ((R) induces an action of I'" on the abelian group M = R/[R,R].
It is obvious that the rank of M as a ZI'-module serves as a lower bound
on the minimal number of relators that one requires to present I' on the
generators A. This lower bound seems so crude that one cannot imagine it
would be sharp in general. And yet, despite sustained attack over many years,
not a single example has been established to lend substance to this intuition.
The question of whether or not there exists such an example has become
known as the relation gap problem.

The problem has its origins in the early work of Karl Gruenberg and others
on relation modules in the 1960s and 1970s; it first seems to have appeared
in print in [5] and occurs twice in different guises in Wall’s famous problem
list [10], though the name does not enter the literature until 1993 [7]. It belongs
to a circle of notoriously hard problems concerning the homotopy properties of
finite 2-complexes — the Andrews—Curtis conjecture, Whitehead’s asphericity
conjecture, the Eilenberg—Ganea conjecture, and the question (resolved by
M. Bestvina and N. Brady [1]) of finite presentability versus FPs .

To clarify our convictions regarding the relation gap problem we state

CONIECTURE 15.1. There exist finite group presentations with arbitrarily
large relation gaps.

This conjecture is closely related to the D(2) conjecture: if a group I' with
H*(T;ZT) = 0 admits a presentation that both realizes the group’s deficiency
and has a relation gap, then the D(2) conjecture is false, i.e. there exists a
finite 3-complex that looks homologically like a 2-complex, in the sense that
it possesses Wall’s property D(2), but that does not have the homotopy type



M.R. BRIDSON AND M. TWEEDALE 47

of a finite 2-complex. (This result is due to M. Dyer; a published proof can
be found in J. Harlander’s survey article [8].)

In the remainder of this note, we’ll describe two families of groups and
indicate why we think that they ought to have relation gaps, making explicit
conjectures to that effect. The two families are of a very different nature: the
first consists of groups with finite classifying spaces, based on the Bestvina—
Brady construction; the second is comprised of virtually free groups and it is
the nature of the torsion that dictates the key features of the relation module
that we believe lead to a relation gap.

CYCLIC COVERINGS AND RIGHT-ANGLED ARTIN GROUPS

Let X be a connected flag complex with non-trivial, perfect fundamental
group, and let G be the associated right-angled Artin group. This group has
a presentation with generating set the vertices v; of X, and defining relations
asserting that two generators commute if and only if the corresponding vertices
in X are joined by an edge. Let n: G — Z be the homomorphism sending
each v; to a fixed generator. The kernel of 7 is the Bestvina—Brady group Hsx,
which is FP> but not finitely presented [1].

Let I, C G be the index n subgroup 7~ (nZ). Notice that Hy is the
intersection of the I,. We construct in [2] a presentation for I', where the
generators S, are indexed by the vertices of X and the ZI'-rank of the relation
module is bounded independently of #n.

CONIECTURE 15.2.  The number of relators needed to present 1, on the
generators S, goes 1o infinity as n — oo, so I'y, has a relation gap for n
sufficiently large.

SOME VIRTUALLY FREE EXAMPLES

We consider groups similar in spirit to ones considered by D. Epstein [4],
C. Hog-Angeloni, W. Metzler and M. Lustig [9], and more recently by
K. Gruenberg and P. Linnell [6].

Given letters x, and &, let p, be the word

Pm = ([mxmtn_gl)xm(tmxgltnjl)xn:m
We look at the groups I', ., = O * Q,, Where
Qm = <xm7[m | pmaxz_1>

and (m™ ' — 1) and (n"~! — 1) are coprime.
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One of the main attractions we see in these new examples is that one can
give a short, transparent and natural proof [3] that the relation module of the
obvious presentation of I',,, can be generated by three elements, namely the
images of p,, p, and X"~y —1,

The groups T’ = T, are virtually free, so H3 (I, ZI') = 0. Thus one could
find both a relation gap and a counterexample to the D(2) conjecture simply
by solving the following concrete problem:

CONIJECTURE 15.3. The kernel of the map Fi — ' associated to the
presentation

F i <xmytm7xmtm ‘ pm7xnm’t_17p”7'xz_1>

is not the normal closure of three elements.
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