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THE X"-CONJECTURE FOR METABELIAN GROUPS

by Robert BIERI

Let G be a finitely generated group, m the Z-rank of its abelianization
G/G', and A a G-module. The geometric invariant ¥*(G;A) is a conical sub-
set of the R-vector space Hom(G, R*) =2 R which collects information on
the finiteness properties of A, when regarded as a module over certain subrings
A C ZG. Recall that A is said to be of type FP, over A if A admils a reso-
lution by free A-modules which are finitely generated in all dimensions < n.
To say that G is of tvpe FP, means that the trivial G-module Z is of type
FP,. Following [4] we consider, for each homomorphism y: G — R* | the
submonoid G, = {g € G| x(g) > 0}, and define

DEFINITION 13.1.
2'(G;A) :={x | A is of type FP, over the monoid ring ZG, },
in particular,

0 XM(G;A) < ZG,A) # @ < A is of type FP, as ZG-module.

It is of considerable interest to have information on these invariants, as they
allow one to find all normal subgroups N < G of type FP,, with Q = G/N
abelian,

THEOREM 13.2 ([4]). N < G, with G/N abelian, is of type FP,, if and
only if x(N) =0 implies x € (G, Z).

Properties of X*(G;A) are often easier to state in terms of its complement
in Hom(G, R). We will use the following notation: if X and Y are subsets
of Hom(G, R) then X° := Hom(G, R) — X stands for the complement and
X+Y:={x+v|xeX, yeY} for their sum.
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The group G is metabelian if it contains a normal subgroup A < G with
both A and Q:= G/A abelian. A is then a Q-module via conjugation in G.
Since the group G is finitely generated, we have X°(G;Z) = Hom(G, R).
In the metabelian case one observes that X(G;Z) depends only on the
Q-module A, and that its complement is contained in the linear subspace
Hom(Q, R) € Hom(G, R); in fact,

NG Z) = TG AY

T(Q; AY is fairly well understood. By [2] it is a closed rational polyhedral
cone (i.e., it can be described in terms of finitely many inequalities with integer
coefficients). In principle it can effectively be constructed, by Groebner-basis
techniques, from a presentation of the ¢Q-module A.

Examples show that the higher invariants 2"(G;Z) are, in general,
independent of NG, Z); not so in the metabelian case:

CONIECTURE 13.3 (X" -Conjecture). If G is a finitely generated meiabelian
group, and n > 0, then

GZY = | EGZY +.. +IZNGZY) .

1<k<n bl
- k copies

Note that this contains the older

CONIJECTURE 13.4 (FP,-Conjecture). If G is a finitely generated metabe-
lian group, and n > 0, then

G is of ype TP, <= 0¢INGZY +...+I(GZY.
n copies

The power of these conjectures (and the partial result on low dimensions
and special classes of groups) lies in the fact that neither of the two inclusions
is easy. It has a number of intriguing consequences like:

o If a metabelian group G is of type FP,, so is every homomorphic image

of G.

e If A< G, Q:= G/A as above then whether or not G is of type FP,

depends only on the Q-module A.

e If A G, Q:=G/A as above and P = {(x,y) | XA = vA} < G x G is
the (untwisted) fiber product then G is of type FP, if and only if P is
of type IP,.
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The Conjectures have been open for twenty years. Progress on the
2" -Conjecture in special situations was always triggered by progress on the
FP, -Conjecture [5], [1], [9], [6], [13], [3]. The ¥"-Conjecture has been settled,
by Holger Meinert [12], in the case when G has finite Priifer rank and by
Dessislava Kochloukova [10] when A is torsion with Krull dimension 1.
Kochloukova [11] and Harlander—Kochloukova [8] established it when n =2
and, in the semi-direct product case, for n =3 [7].
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