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L’Enseignement Mathématique (2) 54 (2008), 351-395

INFINITE TOPOLOGY OF CURVE COMPLEXES AND
NON-POINCARE DUALITY OF TEICHMULLER MODULAR GROUPS

by Nikolai IvaANov and Lizhen Ji*)

ABSTRACT. In this note, we fill a gap in the literature by proving that the
Teichmiiller modular groups (mapping class groups) are not virtual Poincaré duality
groups and that the complexes of curves of surfaces have infinite homotopy type (i.e.
are not homotopy equivalent to a finite CW-complex).

1. INTRODUCTION

Let S be an orientable surface. Let Diff™(S) be the group of all
diffeomorphisms of §, and let DiffO(S) be its identity component. Then
M0d§E = Diff(S)/DiffO(S) is called the extended mapping class group or the
extended Teichmiller modular group of S. Let DIff(S) be the subgroup of
orientation preserving diffeomorphisms of §. Then Mods = Diff(S)/DiffO(S)
is called the mapping class group or the Teichmiiller modular group of §.

When S is a closed surface of genus 1, for example, when S = ZQ\R2
is the standard torus, then MoalgE can be identified with GL(2,Z), and Mods
can be identified with SI(2,7Z). If § is a closed surface of genus g > 2, or
more generally an oriented surface of negative Euler characteristic x(3), then
ModgE and Mods can be considered as natural generalizations of GL(2,7Z)
and SL(2,7Z) respectively.

*) The first author was partially supported by the NSF Grant DMS-0406946, and the second
author was partially supported by the NSF Grant DMS 0604878.
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The group SL(2,Z) is an important example of arithmetic subgroups of
semisimple linear algebraic groups; in particular, it is the first group in
the classical family of arithmetic subgroups SL(n,Z), n > 2 of SL(n,R).
Arithmetic subgroups I' of semisimple linear algebraic groups G (defined
over Q) enjoy many good properties and are special among discrete groups.
For example, they are finitely presented and enjoy other finiteness properties
such as being of type I'P,, and of type FL. Borel and Serre showed in [BoS]
that arithmetic subgroups I' are virtual duality groups and that their virtual
cohomological dimension can be computed explicitly (we outline parts of
this theory below). The cohomology groups of a natural family of arithmetic
subgroups such as SL(n,Z) stabilize as n — oo. See [Se] and [Bol] for
a summary and [Bo2] for a computation of the stable real cohomology
groups.

Let G = G(R) be the real locus of G, let K C G be a maximal compact
subgroup, and let X = G/K be the associated symmetric space. Assume that
I' is a torsion-free arithmetic subgroup of G(Q). Then the locally symmetric
space I'\X is an aspherical manifold with fundamental group T'. If T is a
cocompact subgroup of G, then the Poincaré duality for I'\X implies that
I' is a Poincaré duality group. On the other hand, if the arithmetic subgroup
I is not a cocompact discrete subgroup of G (as is SL(n,Z) or rather its
finite index torsion-free subgroups, for example), then [BoS] (as was noted
by Serre; see [BiE], p. 124, Note Added in Proof) implies that I" is not a
Poincaré duality group, in particular, it cannot be realized as the fundamental
group of a closed aspherical manifold. Instead of being a Poincaré duality
group, I’ enjoys a weaker property, being a duality group in the sense of
Bieri-Eckmann [BiE]. In Section 2, we will recall the definition of duality
groups and of Poincaré duality groups (see, in particular, the formulas (2.1),
(2.2), (2.3)).

In the context of Teichmiuller modular groups, the Teichmiiller space Ts of
S plays the role of the symmetric space X, and the canonical action of Mods
on Ts plays the role of the action of I' on X. This analogy was discovered
by Harvey [Harvl], [Harv2] who, in particular, was motivated by the problem
of providing analogues of some constructions of Borel-Serre [BoS].

In a series of remarkable papers [Ha3]-[Hal] (see also [Iv1] for another
approach to these and other related results, and [Ha4], [Iv5] for expository
accounts), Harer, motivated by the analogy between the groups Mods and the
arithmetic groups (which was also originally pointed out by Harvey [Harvl],
[Harv2]) established many properties of Mods similar to those of arithmetic
subgroups.
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For simplicity, in the sequel we assume that § is a closed orientable
surface of genus g > 2, and Mods will be also denoted by Mod,, . All results
are also true for surfaces with non-empty boundary, with minor modifications.

We are especially interested in the following result (see [Ha3], Theorem 4.1,
and [Ivl], Theorem 6.6 for a different proof).

THEOREM 1.1.  For every torsion-free subgroup 1" C Mod, of finite index,
I' is a duality group (in the sense of Bieri-Eckmann [BiE]) of dimension
4g — 5. Therefore, Mod, is a virtual duality group of virtual cohomological
dimension 4g — 5.

This theorem is an analogue of some results of Borel-Serre [BoS]. The
crucial ingredient of the proof of these results of Borel-Serre is the Solomon-
Tits theorem about the homotopy type of the spherical Tits building A(G),
which (as proved by Borel-Serre) is homotopy equivalent to the boundary of the
partial Borel-Serre compactification of X constructed in [BoS]. An analogue
of the Borel-Serre compactification for the Teichmiiller spaces was suggested
by Harvey [Harv2], as also an analogue of the Tits building A(G). The latter
analogue is the complex of curves C(S) of S, which plays a fundamental role
in the theory of Teichmiuller modular groups Mods and, in particular, in the
present paper. See the beginning of Section 2 for the definition of C(S).

The underlying topological space of the spherical Tits building A(G)
consists of a non-disjoint, countably infinite union of spheres with one
sphere for every apartment. Hence it is not surprising that A(G) is homotopy
equivalent to a countably infinite bouquet of spheres, as is indeed the case
by the Solomon-Tits Theorem. Basically, this is proved by showing that the
intersection of any two distinct apartments is contractible (see [Brl], p.92,
Theorem 2, and [Ku]). On the other hand, the curve complex C(S) does not
have any structure of apartments, and its homotopy type is not clear (or easy
to guess) from the definition,

In [Ha3] (see also [Ha4], Chap. 4, § 1, and [Iv1], § 3 or [Iv5], Theorem 3.3.A
for a different proof), Harer proved the following analogue of the Solomon-Tits
Theorem.

THEOREM 1.2. The curve complex C(S) is homotopy equivalent to a
bouquet of spheres \/ 8", where the dimension n=2g — 2.

The proof of this theorem given in [Ha3], [Had] proceeds in two steps:
(1) C(S) is (n—1)-connected; (2) the homotopy dimension of C(S) is bounded
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from above by n. Therefore, C(S) is homotopy equivalent to a bouquet \/ S”.
The alternative proof of [Iv5], §3.3, p. 546, [Iv1], §3 follows the same general
outline. These arguments leave open the possibility that the number of spheres
in the above bouquet is equal to 0, and C(S) is contractible. In fact, this is
not the case, as the following theorem shows.

THEOREM 1.3. The curve complex C(S) is not contractible, and hence
the bouquet of spheres \/ S" in Theorem 1.2 contains at least one sphere.

Motivated by Theorems 1.2, 1.3, and by the Solomon-Tits Theorem, it is
also natural expect the following improvement of Theorem 1.2.

THEOREM 1.4, The curve complex C(S) is homotopy equivalent to a
countably infinite bouquet of spheres S, where n =2g — 2.

The algebraic counterpart of Theorems 1.3, 1.4 is the following result.

THEOREM 1.5. For every torsion-free subgroup 1" C Mods of finite index,
I" is not a Poincaré duality group. Equivalently, Mods is not a virtual Poincaré
duality group. In particular, no subgroup U of finite index of Mods can be
realized as the fundamental group of a closed aspherical manifold.

If we take seriously the analogy between the modular groups Mods and
the arithmetic groups, and, in particular, the analogy between the Teichmuller
space Ts of S and the symmetric spaces X = /K, this result was to be
expected. Namely, the arithmetic groups I' are virtual Poincaré duality groups
if and only if they act on X cocompactly, and the action of Mods on Ty
is not cocompact, as is well known. This heuristic argument is based only
on the fact that the complex of curves C(S) is non-empty (this is equivalent
to the action on 7y being non-cocompact). But the actual proof proceeds
differently. Namely, the proof of Theorem 1.4 is based on Theorem 1.5, the
proof of which is, in turn, based on properties of the Mess subgroups [M] of
Mods . The proof of Theorem 1.3 is more direct, but also uses properties of the
group Mods ; namely, the fact that Modg has non-zero (virtual) cohomological
dimension.

Theorem 1.3, while undoubtedly known to people working in this field
(including J. Harer and the first author), was for a long time not stated or
proved explicitly in the literature. At the same time it was used in several
places, for example, in understanding relations between the automorphism
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group of the curve complex C(S) and the mapping class group of § (see
[Iv4], [Korl], [Kor2], and [T.uo]), and was also used implicitly in the proof of
Theorem 1.1, We have included the relevant part of the proof of Theorem 1.1
at the end of Section 3.

While Theorem 1.3 is at least implicitly contained in the papers [Ha3],
[Ivl], Theorems 1.4 and 1.5 are not discussed there, and the proof of these
theorems which we offer below is based on later results due to Mess [M].
One can safely say that everybody assumed that these results were true, but
nobody cared to write down a proof. (After a preliminary version of this note
was written up, T. Farrell pointed out that Harer claimed in [Ha4], p. 180,
lines 20-22, that the dualizing module I (denoted by C in this note) for a
torsion-free subgroup I of Mods of finite index has infinite rank, which is
equivalent to Theorem 1.4 of this note.)

This question on the nontrivial topology of C(S) has been raised by several
persons and has caused some confusion. The goal of this note is to provide
proofs of Theorems 1.3, 1.4 and 1.5.

The proofs are based on a consideration of cohomology groups of torsion-
free subgroups of Mods of finite index and on the relation of the curve complex
C(S) to the boundary structure of a Borel-Serre type partial compactification
TSBS discovered by Harvey [Harv2] (or a truncation 7s(e)) of the Teichmiller
space Ts of S. These ideas form the foundation of the theory presented in
[Ha3], [Ha4], and [Iv1]. In particular, to a large extent our proof of Theorem 1.3
is already contained in these papers.

In order to have a fuller analogy between the arithmetic and the Teich-
miuller modular cases, it seems desirable to have a proof of Theorem 1.3 using
the internal structure of C(S) as in the case of the Solomon-Tits theorem for
spherical Tits buildings. Note that cohomology of arithmetic groups and the
action of arithmetic subgroups on the spherical Tits buildings A(G) are not used
to prove the Solomon-Tits Theorem. So the proof of Theorem 1.3 presented
below looks like putting the cart before the horse. It is also worthwhile to
understand if there are some special subcomplexes of C(S) which play the
role of apartments in Tits buildings.

ACKNOWLEDGEMENTS. This work started during a workshop Aspects of Teich-
miiller spaces at the University of Michigan in April 2007 when Feng Luo brought
the lack of a proof of Theorem 1.3 to the attention of the second author. This problem
was also pointed out by Yair Minsky and Benson Farb. The workshop Aspects of
Teichmiiller spaces at the University of Michigan (April 12-14, 2007) was supported
by the RTG grant 0602191 in Geometry, Topology and Dynamics, and the FRG grant
Geometric Function Theory.
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2. PRELIMINARIES

For simplicity, we assume that S is a closed oriented surface of genus
g > 2. By the definition, the vertices of the curve complex C(S) are free
homotopy classes (c) of simple closed curves ¢ in S. Vertices {(c1), ..., (Ck+1)
form the vertices of a k-simplex if and only if they are all different and every
two curves ¢;, and ¢, for 1 < i < ip < k41 are isotopic to disjoint
curves. It is well known and ecasy to see that C(S) is a simplicial complex of
dimension 3g — 4.

Let Ts, which is also denoted by T, be the Teichmiiller space of hyperbolic
metrics on S. The curve complex C(S5) was first introduced by Harvey [Harv2]
in order to construct a partial compactification TQBS of T, (his project was
completed by the first author in [Iv2]), which is similar to and motivated by
the Borel-Serre partial compactification X B ot symmetric spaces X = G/K.
The latter is a manifold with corners whose boundary faces (or components)
are parametrized by simplexes of a spherical Tits building associated with G.

More specifically, if G = G(R) is the real locus of a linear semisimple
algebraic group G defined over Q, then the boundary of X B s decomposed
into boundary components e(P) parametrized by Q-parabolic subgroups P of
G satistying the following two conditions:

1. The closure of every e(P) in X B5 s contractible.

2. e(Py) is contained in the closure of e(P,) if and only if Py is contained
in P2 .

Recall that the spherical Tits building A(G) of an algebraic group G
defined over Q is a simplicial complex with one simplex op for each proper
parabolic subgroup P (defined over Q) of G satisfying the following two
conditions :
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1. Vertices of A(G) correspond to maximal proper Q-parabolic subgroups

of G.
2. op, 1s contained in op, if and only if P, is contained in P;. In particular,
maximal proper Q-parabolic subgroups P, ,Pry1 form the vertices

of a k-simplex if and only if their intersection Py N ---NPryy 18 a
parabolic subgroup of G.

The boundary components e(P) of X B correspond to the simplexes of the
Tits building A(G) of G. Furthermore, the partial Borel-Serre compactlﬁcatlon
%% is a real analytic manifold with corners whose boundary o%™ has the
same homotopy type as the (geometric realization of the) building A(G).

For every torsion-free arithmetic subgroup I' C G(Q), the action of I on X
extends to a proper and continuous action on X such that the quotient T\ X B3
is a compact manifold with corners. In particular, it is a finite BI'-space, i.e., a
classifying space BT which is a finite CW-complex. These results are used in
an essential way in studying cohomology groups of I'. In fact, it is shown in
[BoS] (see also [BiE]) that every arithmetic subgroup I' of G(Q) is a virtual
duality group with virtual cohomological dimension equal to dim X —r, where
r is equal to the Q-rank of G. This result motivated the work [Ha3] and
other related results on mapping class groups (see [Ha4] for a summary).

Note that the dimension of A(G) is equal to r — 1. It is a well-known
theorem of Solomon-Tits (see [Brl], p. 93, Theorem 2) that A(G) is homotopy
equivalent to a countably infinite bouquet of spheres of dimension r — 1. In
fact, if we fix a chamber C of the building A(G), there is one sphere for
each apartment of the building A(G) containing C. This implies that when
the Q-rank r is positive, every arithmetic subgroup of G(Q) is not a Poincaré
duality group, in particular, cannot be realized as the fundamental group of
a closed aspherical manifold. (This was noted by Serre; see [BiE], p. 124,
Note Added in Proof.) Note also that the condition that r > O is equivalent to
the condition that every arithmetic subgroup I' of G(Q) is not a cocompact
discrete subgroup of G.

For the convenience of the reader, we recall (see, for example [BiE]) that
a discrete group I is called a Poincaré duality group of dimension »n if there
exists a right I'-module structure on Z such that

(2.1) HYNT,A) >~ H,_ (T, Z @A)
for all £ and all T"-modules A. In this case,

(2.2) H'(T,ZT) = 7.
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If T" admits a classifying space which is a closed (i.e. compact without
boundary) manifold M or equivalently if T" is the fundamental group of a
closed aspherical manifold M, then the Poincaré duality for M implies that
I' is a Poincaré duality group.

A discrete group I is called a duality group of dimension n (in the
sense of Bieri-Eckmann [BiE]) with respect to a right T'-module C, called
the dualizing module, it there is an element e € H,(I',C) such that the
cap-product with e induces isomorphisms

(2.3) HYT,A) = H, (T,C®A)

for all k£ and all left I"-modules A. In this case, the cohomological dimension
of T' is equal to n.

Let us turn to the Teichmuller case. The Borel-Serre partial compactification
TQBS of [Harv2] is also a manifold with corners with boundary faces B,
parametrized by simplexes o of the curve complex C(S) such that B, is
contained in the closure of B, if and only if o, is contained in oy. In this
sense, the curve complex C(S) is similar to spherical Tits buildings A(G).
The construction of TgBS was not worked out in detail in [Harv2] and Tg

was later constructed in [Iv2].

A version of TgBS which is easier to construct and to deal with is provided
by a truncation T4(c) of the Teichmuller space T, . It is due to the first author
[Iv3] (see also [Iv5], Theorem 5.4.A). For every point x = (S,d) € T,,, where d
is a hyperbolic metric on §, denote the length of a closed geodesic ¢ in S
with respect to the hyperbolic metric d by #.(c). For ¢ sufficiently small,
define

Tye)={x=(S,d) e T, | for every closed geodesic ¢ C S, £(c) > ¢e}.

The smallness of ¢ is required so that two geodesics of lengths less than ¢
do not intersect. Such & always exists due to the collar theorem (see [Bul,
§4.1 for example).

Let Mod, = Mods be the Teichmiller modular group of §. Then Mod,
acts properly on T,. Since points of every orbit of Mod, in T, represent
isometric metrics on S, it i clear that Mod, leaves T,(<) invariant. It follows
from the Mumford compactness criterion that the quotient Mod,\Ty(g) is
compact.

The following result (see [Iv5], Theorem 5.4.A) is crucial for us.
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PROPOSITION 2.1, The space T,(¢) is a contractible manifold with corners.
Its boundary faces when T,(e) is considered as a manifold with corners are
contractible and parametrized by the simplexes of the curve complex C(S), and
the whole boundary 0T,(¢) is homotopy equivalent to C(S). In particular, for
every torsion-free subgroup I C Mod, of finite index, the guotient T\T4(¢)
is a finite BU'-space.

The crucial part of the proof of this theorem is to show that T,(¢) is
contractible, and this follows from the fact T4(¢) is a deformation retract of 7.
The correspondence between its boundary components and the simplexes of
C(S) is described as follows. Each simplex o of C(S) gives a collection of
disjoint and non-isotopic simple closed geodesics. The corresponding boundary
face of 9T,(¢) consists of those marked hyperbolic metrics on § where the
geodesics in this collection have length exactly equal to . Therefore, each
boundary face of 0T,(e) is basically the product of a truncated Teichmiiller
space and an Euclidean space (corresponding to the Fenchel-Nielsen twist
parameters), and hence also contractible.

3. PROOFS OF THEOREMS 1.3, 1.4 AND 1.5

We start with the proof of Theorem 1.3. It is similar to the arguments in
[Ha3], [Ha4], [Ivl], [Iv5], and, of course, to the arguments in [BoS] where
Borel and Serre prove that arithmetic subgroups of linear semisimple algebraic
groups are virtual duality groups.

Proof of Theorem 1.3. Let I' C Mod, be a torsion-free subgroup of finite
index. The idea of the proof is to show that if C(S) is homotopy trivial, i.e.,
if there is no §” in the bouquet \/ S" of spheres in Theorem 1.2, then the
cohomological dimension of T', denoted by c¢dT', is equal to zero. But this
is impossible since I is a torsion-free infinite group.

By Proposition 2.1, T\T,(¢) is a compact BI'-space. Hence by [Iv5],
Corollary 6.1.G, ¢dI' is equal to the maximum number n such that

Hi(Ty(e),Z) # 0,

where H](-) denotes the cohomology with compact supports. Denote the
dimension of T,(¢) by d. Following [Iv5], Theorem 6.1.H (or [BoS]), we see
that by the Poincaré-Lefschetz duality,

3.1 H{(Ty(e), 2) = Hy_n(Ty(e), 0T4(e), Z) .
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Since T,(e) is contractible, the homology long exact sequence gives
(3.2) Hy_n(Ty(e), 0Ty(e), Z) = Hi_y1(0Ty(e), Z) .

By Proposition 2.1, 8T,(¢) is homotopy equivalent to C(S). Therefore,
(3.3) HI(Ty(2),Z) =~ Hy_yer (C(S)) .

Suppose that C(S) is homotopy equivalent to a point. Then equation (3.3)
implies that for every n > 1,

H(T,(e),Z)=0.

This in turn implies that cdI” = 0.

It is well known that for every pair of groups I' C I, we have ¢cdI” < c¢dT.
(See [Brl], Proposition 2.4, p. 187 or [Iv5], §6.4, p.584.) Since T is torsion-
free and infinite, it contains Z as a subgroup. A classifying space of Z 1s
given by the circle S!, and hence clearly ¢dZ = 1. This implies that cdT" > 1.
This contradiction implies that the homotopy type of C(S) cannot be trivial.
The proof of Theorem 1.3 is complete. [

REMARK 3.1. The proof of Theorem 1.3 can be arranged in slightly
different ways. By Theorem 1.2 and the arguments based on equations (3.1),
(3.2) and (3.3) (and taking into account that H*(I',ZT") = H!(T,(c),Z); see
[Iv5], Lemma 6.1.F), we see that for i # v = 4g — 5, H(T,ZI) = 0. By
Proposition 2.1 (see Remark 3.2 below), T' is of type FP. It H*(I',Z1") = O,
then [Brl], Proposition 6.7 (see p.202) implies that the cohomological
dimension c¢dI” is equal to O.

Since T is torsion-free and contains Z, the last paragraph of the above proof
of Theorem 1.3 implies cd" > 1. This, in turn, implies that H*(I", ZI") # 0.
By the above equations again, it follows that the bouquet \/S" for C(S)
contains at least one sphere.

Or, alternatively, by [Brl], Theorem 10.1 (see p.220), and its proof, this
non-vanishing result implies that T is a duality group of dimension v. Since
the lower dimensional cohomology groups of I' are known to be non-zero
(see [Hal] for example), the dualizing module ﬁn(C(S),Z) is not 0, which
implies that C(S) is not contractible,

The last approach has the disadvantage of being dependent on very difficult
calculations of Harer [Hal].
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REMARK 3.2. We also note that although it is not stated explicitly in [Br2],
Chapter VIII, Theorem 10.1(c), under the assumption that I' is a torsion-free
infinite group of type FP, the non-vanishing of HY(I', ZI') 1s implied by other
conditions : H'(I',ZI") = 0 for i # v. In fact, since I" contains Z, it follows
from the second paragraph of the previous remark that the group HY(I', ZI)
must be non-zero.

This non-vanishing of H¥(I',ZI") is used at several places in the book of
Brown [Br2]. For example, to show that the cohomological dimension of I’
is equal to n in [Br2], Chapter VIII, Proposition 6.7, in the proof (¢) implics
(d) in [Br2], Chapter VIII, Theorem 10.1, and also in [Br2], Exercise 5(b) in
Section VIIL6.

Note that if I' is a torsion-free subgroup of finite index in Mod,, then the
condition that I' is of type FP follows from the fact that I acts freely on the
manifold with corners T4(¢) with a compact quotient I'\T,(¢) together with
the fact that a compact manifold with corners admits a finite triangulation,
which implies that I" admits a finite BI -space and hence is of type FL,
which is stronger than being of type FP.

Proof of Theorem 1.5. Suppose that I' is a Poincaré duality group. Then,
by a theorem of R. Strebel (see [St], 1.2), for every subgroup I" C T' of
infinite index, ¢dI” < cdT.

Therefore, in order to prove Theorem 1.5, it suffices to find a subgroup T”
of T' of infinite index (i.e. [[': '] = 400) with ¢dI” = ¢dI". One can take
a Mess subgroup B, [M] as such a group. See [Iv3], §6.3 for an accessible
exposition of the relevant part of the Mess work. The Mess subgroups B, are
constructed by an induction on g. The construction involves a lot of arbitrary
choices, so actually there are (infinitely) many Mess subgroups of Mod,, for
any given g. The last step of the construction of By is to take a subgroup of
Mod, supported on a subsurface of genus g—1 with one boundary component
(it is constructed from a B,—;) and to add to it a Dehn twist f. about a
nontrivial circle ¢ disjoint from this subsurface. Clearly, the subgroup B, is
contained in the centralizer of f.. In particular, it does not contains nontrivial
powers of Dehn twists about circles not isotopic to a circle disjoint from c¢.
It follows that B, is of infinite index in Mod,, . The intersection I = B, NI
is of infinite index in I'. A crucial result about the Mess subgroups B, is
that B, is the fundamental group of a closed topological aspherical manifold
of dimension equal to the ¢dI” = 49 — 5; see [IvS], §6.3, Theorem 6.3.A.
In particular, cdT” = ¢d B, = cdI'. This completes the proof that T" is not a
Poincaré duality group. [



392 N. IVANOV AND L. IT

Proof of Theorem 1.4. Suppose that C(S) is homotopy equivalent to a
bouquet of finitely many spheres 5.
Let v = 4g — 5 be the virtual cohomological dimension of Mod,.
If d =dimT,(c) =6g—06,then d—v—1=6g—6—(4g—5)—1 =2g—-2 =n.
For any torsion-free subgroup I' of Mod, of finite index, we have by [Iv5],
Lemma 6.1.F,
HY(T,ZT) = H (T, (e),Z) .

Further, by the equations (3.1), (3.2) and (3.3) above (and the fact that
d—v—1=n), we have

(3.4)  HY([,ZD) = HY(Ty(e), Z) = H,(9T,(), Z) = H,(C(S), Z)

is a finitely generated abelian group.

By a theorem of Farrell (see [Fa], Theorem 3), if T" is a finitely presented
group of type FP, is a duality group of dimension v, and if HY(I,ZI") 1s
finitely generated, then H”(I',ZI") is cyclic and hence I' is a Poincaré duality
group. By Theorem 1.1, a torsion-free subgroup I' of Mods of finite index
is a duality group. By Remark 3.2, such a subgroup I is of type FP. This
implies that T" is a Poincaré duality group. But this contradicts Theorem 1.5,

It follows that C(S) is homotopy equivalent to a bouquet of infinitely
many spheres S”. Since C(S) is a countable simplicial complex, there are
only countably many spheres in the bouquet \/ S". [

REMARK 3.3. One can avoid using [Fa], Theorem 3 in the proof of
Theorem 1.4 by applying [Brl], Exercise 4 in Section VIIL.6. According to
this exercise, if HY(I',ZI") is finitely generated (where v = ¢dTI'), then for
every subgroup I C I' of infinite index, ¢dI” < ¢dI". Notice that, if there
are only finitely many spheres in the bouquet, then H¥(I',ZI") is finitely
generated. Using the Mess subgroups as in the proof of Theorem 1.5, one can
complete the proof.

REMARK 3.4. In order to prove Theorem 1.4, ie. that the bouquet \/ 5"
contains infinitely many spheres, it would be sufficient to show that the bouquet
\/ 8" contains at least two spheres. In fact, by equation (3.4), in this case
H"(T,ZT") contains a subgroup isomorphic to Z?. Since for the Poincaré
duality groups the equation (2.2) holds, this implies that I" is not a Poincaré
duality group, and then one would be able to complete the proof by appealing
to Farrell’s theorem again. Unfortunately, it seems that there is no direct proof
of the fact that the bouquet \/S" contains at least two spheres. Compare
Remark 3.5,
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Sketch of a proof of Theorem 1.1. For the sake of completeness and
clarification of any possible confusion, we outline a proof of Theorem 1.1.
The arguments are the same as in [Ha3], [Ha4], [Ivl], and [BoS] (see [BoS],
Theorem 8.6.5), and prove that Mod, is a virtual duality group of dimension
v=(6g—6)—2g—2)—1=4g-75.

Specifically, let I' be a torsion-free subgroup of Mod, of finite index.
By [BiE], Theorem 2.3 (see also [Br2], Theorem 10.1, p.220), it suffices to
prove the following claim:

(3.5)
H'T,ZIy =0 for n # v, and HY(I',ZT") is nonzero and torsion-free.

Since F\Tg(e) is a finite BI'-space, by [Iv5], Lemma 6.1.F, we have
(3.6) H'(T,ZT) = H'(I\Ty(e), ZT) = H}(Ty4(e), Z) .

Since the boundary 07,(s) is homotopy equivalent to a nonempty bouquet
of spheres \/ 8", where n = 2¢g — 2, the same arguments as in the proof of
Theorem 1.3 above (see equations (3.1), (3.2) and (3.3)) prove (3.5). Therefore,
I' is a duality group and hence Mod, is a virtual duality group.

REMARK 3.5. The analogy between the arithmetic and the Teichmuller
cases breaks down in one important respect. Recall that the topological
dimension of C(S) is equal to 3g — 4, since there are at most 3g — 3 disjoint
non-homotopic simple closed curves in the surface S of genus g. It is not
clear why, in contrast to the Solomon-Tits theorem for spherical Tits buildings,
the topological dimension 3g —4 of C(S) is much higher than its homotopy
dimension 2g — 2. This is quite different from spherical Tits buildings whose
topological and homotopy dimensions agree.
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