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L'Enseignement Mathématique (2) 54 (2008), 381-395

INFINITE TOPOLOGY OF CURVE COMPLEXES AND
NON-POINCARÉ DUALITY OF TEKTI.MIT I ER MODULAR GROUPS

by Nikolai IVANOV and Lizhen Ji*)

Abstract. In this note, we fill a gap in the literature by proving that the
Teichmüller modulai' groups (mapping class groups) are not virtual Poincaré duality
groups and that the complexes of curves of surfaces have infinite homotopy type (i.e.
are not homotopy equivalent to a finite C.W-complex).

1. Introduction

Let S be an orientable surface. Let Diff^A) be the group of all

diffeomorphisms of S, and let Diff°(S) be its identity component. Then

Modf Diffi.S't Diff i.V! is called the extended mapping class group or the

extended Teichmiiller modular group of S. Let Diff(S) be the subgroup of
orientation preserving diffeomorphisms of S. Then Mods Diff(5)/DiffJ(S)
is called the mapping class group or the Teichmiiller modular group of S.

When S is a closed surface of genus 1, for example, when S Z2\R2
is the standard torus, then Modf can be identified with GL(2,Z), and Mods

can be identified with SL{2,Z). If S is a closed surface of genus g> 2, or

more generally an oriented surface of negative Euler characteristic x(S), then

Modf and Mods can be considered as natural generalizations of GL(2, Z)
and SL(2, Z) respectively.

* The first author was partially supported by the NSF Grant DMS-0406946, and the second
author was partially supported by the NSF Grant DMS 0604878.
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The group SL{2, Z) is an important example of arithmetic subgroups of
semisimple linear algebraic groups; in particular, it is the first group in

the classical family of arithmetic subgroups SL(n,Z), n > 2 of SL{n,R).
Arithmetic subgroups T of semisimple linear algebraic groups G (defined
over Q) enjoy many good properties and are special among discrete groups.
For example, they are finitely presented and enjoy other finiteness properties
such as being of type FPm and of type FL. Borel and Serre showed in [BoS]
that arithmetic subgroups F are virtual duality groups and that their virtual
eohomological dimension can be computed explicitly (we outline parts of
this theory below). The cohomology groups of a natural family of arithmetic

subgroups such as SL(n, Z) stabilize as n -»• oo. See [Se] and [Bol] for
a summary and [Bo2] for a computation of the stable real cohomology

groups.
Let G G(R) be the real locus of G, let K c G be a maximal compact

subgroup, and let X — G/K be the associated symmetric space. Assume that
T is a torsion-free arithmetic subgroup of G(Q). Then the locally symmetric

space T\X is an aspherical manifold with fundamental group T. If T is a

cocompact subgroup of G, then the Poincaré duality for r\X implies that

T is a Poincaré duality group. On the other hand, if the arithmetic subgroup
T is not a cocompact discrete subgroup of G (as is SL(n, Z) or rather its

finite index torsion-free subgroups, for example), then [BoS] (as was noted

by Serre; see [BiE], p. 124, Note Added in Proof) implies that F is not a

Poincaré duality group, in particular, it cannot be realized as the fundamental

group of a closed aspherical manifold. Instead of being a Poincaré duality
group, F enjoys a weaker property, being a duality group in the sense of
Bieri-Eckmann [BiE], In Section 2, we will recall the definition of duality
groups and of Poincaré duality groups (see, in particular, the formulas (2.1),

(2.2), (2.3)).
In the context of Teichmüller modular groups, the Teichmiiller space Ts of

S plays the role of the Symmetric space X, and the canonical action of Mods
on Ts plays the role of the action of T on A. This analogy was discovered

by Harvey [Harvl], [Harv2] who, in particular, was motivated by the problem
of providing analogues of some constructions of Borel-Serre [BoS].

In a series of remarkable papers [Ha3]-[Hal] (see also [Ivl] for another

approach to these and other related results, and [Ha4], [Iv5] for expository
accounts), Harer, motivated by the analogy between the groups Mods and the

arithmetic groups (which was also originally pointed out by Harvey [Harvl],
[Harv2]) established many properties of Mods similar to those of arithmetic

subgroups.
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For simplicity, in the sequel we assume that S is a closed orientable
surface of genus g >2, and Mods will be also denoted by Modg. All results

are also true for surfaces with non-empty boundary, with minor modifications.
We are especially interested in the following result (see [Ha3], Theorem 4.1,

and [Ivl], Theorem 6.6 for a different proof).

Theorem 1.1. For every torsion-free subgroup F c Moda offinite index,

T is a duality group (in the sense of Bieri-Eckmann [BiE]) of dimension

4g — S. Therefore, Modg is a virtual duality group of virtual cohomological
dimension 4g - 5.

This theorem is an analogue of some results of Bprel-Serre [BoS], The

crucial ingredient of the proof of these results of Borel-Serre is the Solomon-
Tits theorem about the homotopy type of the spherical Tits building A(G),
which (as proved by Borel-Serre) is homotopy equivalent to the boundary of the

partial Borel-Serre compactification of X constructed in [BoS], An analogue

of the Borel-Serre compactification for the Teichmüller spaces was suggested

by Harvey [Harv2], as also an analogue of the Tits building A(G). The latter

analogue is the complex of curves C(S) of S, which plays a fundamental role
in the theory of Teichmüller modular groups Mods and, in particular, in the

present paper. See the beginning of Section 2 for the definition of CIS).
The underlying topological space of the spherical Tits building A(G)

consists of a non-disjoint, countably infinite: union of spheres with one

sphere for every apartment. Hence it is not surprising that A(G) is homotopy
equivalent to a countably infinite bouquet of spheres, as is indeed the case

by the Solomon-Tits Theorem. Basically, this is proved by showing that the

intersection of any two distinct apartments is contractible (see [Brl], p. 92,

Theorem 2, and [Ku]). On the other hand, the curve complex CIS) does not
have any structure of apartments, and its homotopy type is not clear (or easy
to guess) from the definition.

In [Ha3] (see also [Ha4], Chap. 4, § 1, and [Ivl], §3 or [Iv5], Theorem 3.3.A
for a different proof), Harer proved the following analogue of the Solomon-Tits
Theorem.

Theorem 1.2. ne curve complex C(S) is homotopy equivalent to a

bouquet of spheres \J S", where the dimension n — 2g - 2.

The proof of this theorem given in [Ha3], [Ha4] proceeds in two steps:
(1) C(S) is (n-1) -connected ; (2) tire homotopy dimension of C(S) is bounded
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from above by n. Therefore, C(S) is homotopy equivalent to a bouquet \J S".
The alternative proof of [Iv5], §3.3, p. 546, [Ivl], §3 follows the same general
outline. These arguments leave open the possibility that the number of spheres

in the above bouquet is equal to 0, and C(S) is contraetible. In fact, this is

not the case, as the following theorem shows.

THEOREM 1.3. The curve complex C{S) is not contraetible, and hence

the bouquet of spheres \/S" in Theorem 1.2 contains at least one sphere.

Motivated by Theorems 1.2, 1.3, and by the Solomon-Tits Theorem, it is

also natural expect the following improvement of Theorem 1.2.

Theorem 1.4. The curve complex C(S) is homotopy equivalent to a

countably infinite bouquet of spheres S", where n — 2g - 2.

The algebraic counterpart of Theorems 1.3, 1.4 is the following result.

THEOREM 1.5. For every torsion-free subgroup T c Mods offinite index,

F is not a Poincaré duality group. Equivalently, Mods is not a virtual Poincaré

duality group. In particular, no subgroup F of finite index of Mods can be

realized as the fundamental group of a closed aspherical manifold.

If we take seriously the analogy between the modular groups Mods and

the arithmetic groups, and, in particular, tire analogy between the Teichmüller

space Ts of S and the symmetric spaces X G/K, this result was to be

expected. Namely, the arithmetic groups F are virtual Poincaré duality groups

if and only if they act on X cocompactly, and the action of Mods on Ts

is not cocompact, as is well known. This heuristic argument is based only
on the fact that the complex of curves C(S) is non-empty (this is equivalent
to the action on Ts being non-cocompact). But the actual proof proceeds

differently. Namely, the proof of Theorem 1.4 is based on Theorem 1.5, the

proof of which is, in turn, based on properties of the Mess subgroups [M] of
Mods The proof of Theorem 1.3 is more direct, but also uses properties of the

group Mods ; namely, the fact that Mods has non-zero (virtual) cohomological
dimension.

Theorem 1.3, while undoubtedly known to people working in this field
(including J. Harer and the first author), was for a long time not stated or
proved explicitly in the literature. At the same time it was used in several

places, for example, in understanding relations between the automorphism
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group of the curve complex C{S) and the mapping class group of S (see

[Iv4], [Korl], [Kor2], and [Luo]), and was also used implicitly in the proof of
Theorem 1.1. We have included the relevant part of the proof of Theorem 1.1

at the end of Section 3.

While Theorem 1.3 is at least implicitly contained in the papers [Ha3],

[Ivl], Theorems 1.4 and 1.5 are not discussed there, and the proof of these

theorems which we offer below is based on later results due to Mess [M],
One can safely say that everybody assumed that these results were true, but

nobody cared to write down a proof. After a preliminary version of this note

was written up, T. Farrell pointed out that Harer claimed in [Ha4], p. 180,

lines 20-22, that the dualizing module I (denoted by C in this note) for a

torsion-free subgroup F of Mods of finite index has infinite rank, which is

equivalent to Theorem 1.4 of this note.)

This question on the nontrivial topology of C(S) has been raised by several

persons and has caused some confusion. Ihe goal of this note is to provide
proofs of Theorems 1.3, 1.4 and 1.5.

The proofs are based on a consideration of cohomology groups of torsion-
free subgroups of Mods of finite index and on the relation of the curve complex
C{S) to the boundary structure of a Borel-Serre type partial compactification
Ts discovered by Harvey [Harv2] (or a truncation Zs(e)) of the Teichmüller

space Ts of S. These ideas form the foundation of the theory presented in

[Ha3], [Ha4], and [Ivl], In particular, to a large extent our proof of Theorem 1.3

is already contained in these papers.

In order to have a fuller analogy between the arithmetic and the
Teichmüller modular cases, it seems desirable to have a proof of Theorem 1.3 using
the internal structure of C(S) as in the case of the Solomon-Tits theorem for
spherical Tits buildings. Note that cohomology of arithmetic groups and the

action of arithmetic subgroups on tire spherical Tits buildings A(G) are not used

to prove the Solomon-Tits Theorem. So the proof of Theorem 1.3 presented
below looks like putting the cart before the horse. It is also worthwhile to

understand if there are some special subcomplexes of C(S) which play the

role of apartments in Tits buildings.

ACKNOWLEDGEMENTS, This work started during a workshop Aspects of
Teichmüller spaces at the University of Michigan in April 2007 when Feng Luo brought
the lack of a proof of Theorem 1.3 to the attention of the second author. This problem
was also pointed out by Yair Minsky and Benson Farb. The workshop Aspects of
Teichmiiller spaces at the University of Michigan (April 12-14, 2007) was supported
by the RTG grant 0602191 in Geometry, Topology and Dynamics, and the FRG grant
Geometric Function Theory.
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The first author would like to thank the organizers of this workshop (and the
second author among them) for the invitation to speak at the workshop and for the

stimulating atmosphere.
The second author would like to thank Peng Luo also for comments on an earlier

version: he would like to thank Tom Farrell for conversations and references on duality
groups, and also for other valuable advice on writing: he would also like to thank
S. Wolpert and R. Spatzier for helpful conversations and comments, and J. Harer,
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2. Preliminaries

For simplicity, we assume that S is a closed oriented surface of genus

g > 2. By the definition, the vertices of the: curve complex C(S) are free

homotopy classes (c) of simple closed curves c in S. Vertices (cr),..,,, (ot+i)
form the vertices of a k-simplex if and only if they are all different and every
two curves and q2 for 1 < Ï) < j2 < k 1 are isotopic to disjoint
curves. It is well known and easy to see that C(S) is a simplicial complex of
dimension 3g — 4.

Let ï's, which is also denoted by Ta, be the Teichmüller space of hyperbolic
metrics on S. The curve complex C(S) was first introduced by Harvey [Harv2]
in order to construct a partial compactification Tg of Tg (his project was

completed by the first author in [Iv2]), which is similar to and motivated by
the Borel-Serre partial compactification X of symmetric spaces X — G/K.
The latter is a manifold with corners whose boundary faces (or components)
are parametrized by Simplexes of a spherical Tits building associated with G.

More specifically, if G — G(R) is the real locus of a linear semisimple
algebraic group G defined over Q, then the boundary of X is decomposed
into boundary components e(P) parametrized by Q-parabolic subgroups P Of

G satisfying the following two conditions :

1. The closure of every e{P) in XBS is contractible.

2. e(P\) is contained in the closure of e(P2) if and only if Pi is contained
in P2.

Recall that the spherical Tits building A(G) of an algebraic group G
defined over Q is a simplicial complex with one simplex dp for each proper
parabolic subgroup P (defined over Q) of G satisfying the following two
conditions :
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L Vertices of A(G) correspond to maximal proper Q -parabolic subgroups

of G.

2. cjpj is contained in up, if and only if P2 is contained in Pi. In particular,
maximal proper Q-parabolic subgroups Pi, • • • Pr+i form the vertices

of a ^-simplex if and only if their intersection Pi ft • • • n P^+i is a

parabolic subgroup of G.

The boundary components e(P) of XBS correspond to the Simplexes of the

Tits building A(G) of G. Furthermore, the partial Borel-Serre compactification
% is a real analytic manifold with corners whose boundary dX '

has the

same homotopy type as the (geometric realization of the) building A(G).
For every torsion-free arithmetic subgroup T c G(Q), the action of F on A

^ ^extends to a proper and continuous action on X such that the quotient F\A
is a compact manifold with corners. In particular, it is a finite BT-space, i.e., a

classifying space BT which is a finite CW-complex. These results are used in

an essential way in studying cohomology groups of F. In fact, it is shown in

[BoS] (See also [BiE]) that every arithmetic subgroup T Of G(Q) is a virtual

duality group with virtual cohomological dimension equal to dimA-r, where

r is equal to the Q-rank of G. This result motivated the work [Ha3] and

other related results on mapping class groups (see [Ha4] for a summary).

Note that the dimension of A(G) is equal to r - 1. It is a well-known
theorem of Solomon-Tits (see [Brl], p. 93, Theorem 2) that A(G) is homotopy
equivalent to a countably infinite bouquet of spheres of dimension r — 1. In
fact, if we fix a chamber C of the building A(G), there is one sphere for
each apartment of the building A(G) containing C. This implies that when

the Q-rank r is positive, every arithmetic subgroup of G(Q) is not a Poincaré

duality group, in particular, cannot be realized as the: fundamental group of
a closed aspherical manifold. (This was noted by Serre; see [BiE], p. 124,

Note Added in Proof.) Note also that the condition that r > 0 is equivalent to

the condition that every arithmetic subgroup F of G(Q) is not a cocompact
discrete subgroup of G.

For the convenience of the reader, we recall (see, for example [BiE]) that

a discrete group F is called a Poincaré duality group of dimension n if there

exists a right F -module structure on Z such that

(2.1) Hk(T,A)^H„_k(T,Z0A)

for all k and all F -modules A. In this case,

(2.2) /nr. ZD m z.
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If F admits a classifying space which is a closed (i.e. compact without

boundary) manifold M or equivalently if T is the fundamental group of a

closed aspherical manifold M, then the Poincaré duality for M implies that

T is a Poincaré duality group.

A discrete group T is called a duality group of dimension n (in the

sense of BierbEckmann [BiE]) with respect to a right F -module C, called
the dualizing module, if there is an element e e //„(T. C) such that the

cap-product with e induces isomorphisms

(2.3) H\T,Ä)^H„_k(T,C®A)

for all k and all left F-modules A. In this case, the cohomological dimension

of T is equal to n.

Let us turn to the Teichmüller case. The Borel-Serre partial compactification
__^Tg of [Harv2] is also a manifold with corners with boundary faces Ba

parametrized by simplexes a of the curve complex C{S) such that Bai is

contained in the closure of B„z if and only if <j2 is contained in <j\. In this

sense, the curve complex C{S) is similar to spherical Tits buildings A(G).^ ßg
The: construction of Tg was not worked out in detail in [Harv2] and Tg

was later constructed in [Iv2],

A version of TgBS which is easier to construct and to deal with is provided
by a truncation Tg(.e) of the Teichmüller space Tg. It is due to the first author

[Iv3] (see also [Iv5], Theorem 5.4.A). For every point x — (S, d) G Tg, where d
is a hyperbolic metric on S, denote the length of a closed geodesic c in S

with respect to the hyperbolic metric d by 4(e). For e sufficiently small,
define

Tg(e) — {.t (S, d) Tg j for every closed geodesic c t S, 4(c) 4 s}

The: smallness of f is required so that two geodesies of lengths less than e

do not intersect. Such e always exists due to the collar theorem (see [Bu],
§4.1 for example).

Let Modg — Mods be the Teichmüller modular group of S. Then Modg
acts properly on Tg. Since points of every orbit of Modg in Tg represent
isometric metrics on S, it is clear that Modg leaves Tg(e) invariant. It follows
from the Mumford compactness criterion that the quotient Modg\Tg(e) is

compact.

The following result (see [Iv5], Theorem 5.4.A) is crucial for us.
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Proposition 2.1. The space Tg(e) is a contractible manifold with corners.
Its boundary facets when is considered as a manifold with corners are
contractible and parametrized by the Simplexes of the cun'e complex C(S), and
the whole boundary dTg(e) is homotopy equivalent to C{S). In particular, for
every torsion-free subgroup F c Modg of finite index, the quotient F\Tg{ë)
is a finite BT -space.

The crucial part of the proof Of this theorem is to show that is

contractible, and this follows from the fact Tg(ß) is a deformation retract of Tg.
The correspondence between its boundary components and the Simplexes of
C{S) is described as follows. Each simplex a Of C(S) gives a collection of
disjoint and non-isotopic simple closed geodesies. The corresponding boundary
face of dTg{e) consists of those marked hyperbolic metrics on S where the

geodesies in this collection have length exactly equal to e. Therefore, each

boundary face of dTg(e) is basically the product of a truncated Teichmüller

space and an Euclidean space (corresponding to the Fenchel-Nielsen twist
parameters), and hence also contractible.

3. Proofs of Theorems 1.3, 1.4 and 1.5

We start with the proof of Theorem 1.3. It is similar to the arguments in

[Ha3], [Ha4], pvl], [Iv5], and, of course, to the arguments in [BoS] where

Borel and Serre prove that arithmetic subgroups of linear semisimple algebraic

groups are virtual duality groups.

Proof of Theorem 1.3. Let F c Modg be a torsion-tree subgroup of finite
index. The idea of the proof is to show that if C{S) is homotopy trivial, i.e.,

if there is no S" in the bouquet V S" of spheres in Theorem 1.2, then the

cohomological dimension of F, denoted by cdF, is equal to zero. But this
is impossible since T is a torsion-free infinite group.

By Proposition 2.1, r\ra(s) is a compact 5F-space. Hence by [Iv5],
Corollary 6.1.G, cd F is equal to the maximum number n such that

H?(Tg(e), Z)/0,
where H"(-) denotes the cohomology with compact supports. Denote the

dimension of Tg(e) by d. Following [Iv5], Theorem 6.1.H (or [BoS]), we see

that by the Poincaré-Lefschetz duality,

(3.1) H"(Tg(e), Z) - H^„(Tg(sfdTg(sY, Z).
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Since Tg(e) is contractible, the homology long exact sequence gives

(3.2) Hd-„(Ta{e), dTg(e); Z) S Z).

By Proposition 2.1, dTg(e) is homotopy equivalent to C(S). Therefore,

(3.3) H''(Tg(e),Z)^Hd_„_l(C(S)).

Suppose that C(S) is homotopy equivalent to a point. Then equation (3.3)

implies that for every n > 1,

Il"( Tg( : )//.)

This in turn implies that cd F • 0.

It is well known that for every pair of groups F c T, we have cdT' < cdT.
(See [Brl], Proposition 2.4, p. 187 or [Iv5], §6.4, p.584.) Since F is torsion-
free and infinite, it contains Z as a subgroup. A classifying space of Z is

given by the circle S1, and hence clearly cd Z 1. This implies that cd F > 1.

This contradiction implies that the homotopy type of C(S) cannot be trivial.
The proof of Theorem 1.3 is complete.

Remark 3.1. The proof of Theorem 1.3 can be arranged in slightly
different ways. By Theorem 1.2 and the arguments based on equations (3.1),
(3.2) and (3.3) (and taking into account that //"(T. ZT) H%(Tg(e), Z) ; see

[Iv5], Lemma 6.1.Fs. we see that for i g6 v — 4g - 5, H'(T, ZT) ~ 0. By
Proposition 2.1 (see Remark 3.2 below), F is of type FP. If HV(T, Zr) -= 0,
then [Brl], Proposition 6.7 (see p. 202) implies that the cohomological
dimension cdT is equal to 0.

Since T is torsion-free and contains Z, the last paragraph of the above proof
of Theorem 1.3 implies cd F > 1. This, in turn, implies that II" (Y. 7,T ^2 0.

By the above equations again, it follows that the bouquet V f°r ftp)
contains at least one sphere.

Or, alternatively, by [Brl], Theorem 10.1 (see p. 220), and its proof, this

non-vanishing result implies that F is a duality group of dimension v. Since

the tower dimensional cohomology groups of F are known to be non-zero
(see [Hal] for example), the dualizing module H„(C(S), 7) is not 0, which

implies that C(S) is not contractible.

The last approach has the disadvantage of being dependent on very difficult
calculations of Harer [Hal],
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Remark 3.2. We also note: that although it is not stated explicitly in [Br2],
Chapter VU I, Theorem 10.1(c), under the assumption that T is a torsion-free
infinite group of type FP, the non-vanishing of JPJJP, ZF) is implied by other

conditions: H'(T, ZT) — 0 for i fk v. In fact, since F contains Z, it follows
from the second paragraph of the previous remark that the group HV(T, ZF)
must be non-zero.

This non-vanishing of //"{F, ZI") is used at several places in the book of
Brown [Br2], For example, to show that the cohomological dimension of F
is equal to n in [Br2], Chapter VIII, Proposition 6.7, in the proof (c) implies
(d) in [Br2], Chapter VIII, Theorem 10.1, and also in [Br2], Exercise 5(b) in
Section VI11.6.

Note that if F is a torsion-tree subgroup of finite index in Modg, then the

condition that T is of type FP follows from the fact that F acts freely on the

manifold with corners Fff(e) with a compact quotient r\rô(s) together with
the fact that a compact manifold with corners admits a finite triangulation,
which implies that F admits a finite BT -space and hence is of type FL,
which is stronger than being of type FP.

Proof of Theorem 1.5. Suppose that F is a Poincaré duality group. Then,

by a theorem of R. Strebel (see [St], 1.2), for every subgroup r' c F of
infinite index, cdF' <cdF.

Therefore, in order to prove Theorem 1.5, it suffices to find a subgroup Ff

of T of infinite index (i.e. [F : F'] «= +oo with cdT' cdT. One can take

a Mess Subgroup Bg [M] as such a group. See [Iv5], §6.3 for an accessible

exposition of the relevant part of the Mess work. The Mess subgroups Bg are

constructed by an induction on g. The construction involves a lot of arbitrary
choices, so actually there are (infinitely) many Mess subgroups of Modg for

any given g. The last step of the construction of Bg is to take a subgroup of
Modg supported on a subsurface of genus g-1 with one boundary component
(it is constructed from a Bg-\} and to add to it a Dehn twist tc about a

nontrivial circle c disjoint from this subsurface. Clearly, the subgroup Bg is

contained in the centralizer of tc. In particular, it does not contains nontrivial

powers of Dehn twists about circles not isötöpic to a circle disjoint from C.

It follows that Bg is of infinite index in Modg. The intersection f B„ ft; F
is of infinite index in F. A crucial result about the Mess subgroups Bg is

that Bg is the fundamental group of a closed topological aspherical manifold
of dimension equal to the cdT 4g - 5; see [Iv5], §6.3, Theorem 6.3.A.
In particular, cdF' cdBg — cdF. This completes the proof that F is not a

Poincaré duality group.
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Proof of Theorem 1.4. Suppose that C(S) is homotopy equivalent to a

bouquet of finitely many spheres S".

Let v 4g - 5 be the virtual cohomological dimension of Modg.
If d — dimTg(ff) 6g-6, then d — v— l — 6g — 6 — (4g — 5) — 1 2g —2 =5 n.
For any torsion-free subgroup F of Modg of finite index, we have by |Ev5|.
Lemma 6.1.F,

inr. zr) s //"!/;„!-!. z).
Further, by tlie equations (3.1), (3.2) and (3.3) above (and the fact that

d — v — 1 n), we have

(3.4) IT (V. zr) - //' /;„(,: Z) S U„U)T.f :•). Z) - H„(C(S), Z)

is a finitely generated abelian group.
By a theorem of Farrell (see [Fa], Theorem 3), if F is a finitely presented

group Of type FP, is a duality group of dimension o, and if HV(T, ZT) is

finitely generated, then /•/"( F. ZD is cyclic and hence F is a Poincaré duality
group. By Theorem 1.1, a torsion-free subgroup F of Mods of finite index
is a duality group. By Remark 3.2, such a subgroup T is of type FP. This

implies that F is a Poincaré duality group. But this contradicts Theorem 1.5.

It follows that C(S) is homotopy equivalent to a bouquet of infinitely
many spheres S". Since C(S) is a countable simplicial complex, there are

only countably many spheres in the bouquet \/S"

Remark 3.3. One can avoid using [Fa], Theorem 3 in the proof of
Theorem 1.4 by applying [Brl], Exercise 4 in Section VIII.6. According to

this exercise, if Hv(r, Zr) is finitely generated (where: v — cdT), then for

every subgroup F C V of infinite index, cdT' < cdF. Notice that, if there

are only finitely many spheres in the bouquet, then Hv(r, Zr) is finitely
generated. Using the Mess subgroups as in the proof of Theorem 1.5, one can

complete the proof.

Remark 3.4. In order to prove Theorem 1.4, i.e. that the bouquet V S"

contains infinitely many spheres, it would be sufficient to show that the bouquet

V S" contains at least two spheres. In fact, by equation (3.4), in this case

IF'd". ZF) contains a subgroup isomorphic to Z2. Since for the Poincaré

duality groups the equation (2.2) holds, this implies that T is not a Poincaré

duality group, and then one would be able to complete the proof by appealing
to Farrell's theorem again. Unfortunately, it seems that there is no direct proof
of the fact that the bouquet \/ S" contains at least two spheres. Compare
Remark 3.5.
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Sketch of a proof of Theorem 1.1. For the sake of completeness and

clarification of any possible confusion, we outline a proof of Theorem 1.1.

The arguments are the same as in [Ha3], [Ha4], [Ivl], and [BoS] (see [BoS],
Theorem 8.6.5), and prove that Moclg is a virtual duality group of dimension

I/ (65-6)-(2ff-2)- 1 =4ff-5.
Specifically, let T be a torsion-free subgroup of Modg of finite index.

By [BiE], Theorem 2.3 (see also [Br2], Theorem 10.1, p. 220), it suffices to

prove the following claim:
(3.5)

H"(T, ZT) 0 for n u, and HU(T, ZT) is nonzero and torsion-free.

Since T\Tg(e) is a finite RF-space, by [Iv5], Lemma 6.1.F, we have

(3.6) II"i\\ ZT) - H"(T\Tg(el ZT) S //"('/",,(£•). Z).

Since the boundary dTg(e) is homotopy equivalent to a nonempty bouquet
of spheres \J S", where n 2g - 2, the same arguments as in the proof of
Theorem 1.3 above (see equations (3.1), (3.2) and (3.3)) prove (3.5). Therefore,
T is a duality group and hence Modg is a virtual duality group.

Remark 3.5. The analogy between the arithmetic and the Teichmüller
cases breaks down in one important respect. Recall that the topological
dimension of C{S) is equal to 3g-4, since there are at most 3g -3 disjoint
non-homotopic simple closed curves in the surface S of genus g. It is not
clear why, in contrast to the Solomon-Tits theorem for spherical Tits buildings,
the topological dimension 3g - 4 of C(S) is much higher than its homotopy
dimension 2g-2. This is quite different from spherical Tits buildings whose

topological and homotopy dimensions agree.
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