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NORMAL SURFACES IN TOPOLOGICALLY FINITE 3-MANIFOLDS

by Stephan TILLMANN *)

INTRODUCTION

Spun-normal surfaces made their first appearance in unpublished work by
Thurston. He described essential surfaces in the figure eight knot complement
as spun-normal surfaces with respect to the ideal triangulation by two regular
ideal hyperbolic tetrahedra. There have since been interesting applications of
spun-normal surfaces; for instance in work by Weeks [14], Kang [8], Kang
and Rubinstein [9]. They are also part of the repertoire of many people
working in the field. There does not however appear to be a basic reference
for fundamental properties of these surfaces. This paper attempts to fill this
gap.

Let M be the interior of a compact 3-manifold with non-empty boundary.
Then M admits an ideal triangulation and this gives the end-compactification
of M the structure of a triangulated, closed pseudo-manifold P (see Propo-
sition 1.2). The complement of the O-skeleton in P is identified with M,
and spun-normal surfaces in M can be studied using the triangulation of P.
The remainder of this introduction restricts to this setting; Figure 1 shows
a spun-normal surface in a pseudo-manifold with boundary and indicates the
more general situation.

A spun-normal surface meets each 3-simplex in a union of pairwise
disjoint normal discs such that there are at most finitely many normal
quadrilaterals but possibly infinitely many normal triangles which accumulate
at the O-skeleton of P. A spun-normal surface is therefore properly embedded
in M. Two spun-normal surfaces are regarded as equivalent if there is an
isotopy taking one to the other whilst leaving all simplices invariant (normal

*) This work was supported by a Postdoctoral Fellowship by the CRM/ISM in Montréal and
under the Australian Research Council’s Discovery funding scheme (project number DP0664276).
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FIGURE 1

A spun-normal surface in a non-orientable pseudo-manifold with boundary. The triangu-
lation has a single 3-simplex with two faces identified as indicated by the arrows. There
are two vertices; the link of v is a Mobius band, and the link of the other vertex is a disc.
The shown spun-normal surface spins into v ; it is a disc minus a point on its boundary
and it meets a suitable vertex linking surface, By, in a 2-sided, non-separating arc.

isotopy). One may choose a small open neighbourhood of each O-simplex o
in P such that its boundary, B, , is a closed (possibly non-orientable) normal
surface. The topology of spun-normal surfaces is analysed in Section 1, and
the main observations are the following :

1. A spun-normal surface without vertex linking components is up to normal
isotopy uniquely determined by its quadrilateral discs (see Lemma 1.19).

2. If two spun-normal surfaces meet every 3-simplex in quadrilateral discs of
the same type, then their geometric sum is well-defined (see L.emma 1.28).

3. For ecach spun-normal surface § and each O-simplex v there is a well-
defined element 0,(S) € H1(By;Z) which determines S in a neighbourhood
of v uniquely up to normal isotopy (see Lemma 1.33 and Lemma 1.35).

4. A spun-normal surface S is topologically finite unless there is some
0-simplex v such that 3,(5) # 0 and x(By) < 0 (see Corollary 1.36).

5. (Kneser—Haken finiteness) If § is a spun-normal surface no two components
of which are normally isotopic, then the number of components of § which
are not vertex linking is at most 12f, where ¢ is the number of 3-simplices
in the triangulation (see Lemma 1.37 which includes a stronger bound).

Section 2 analyses algebraic properties of a spun-normal surface S
derived from the quadrilaterals in its cell structure. Recording the number
of quadrilaterals of each type gives the normal Q-coordinate of S. The
Q-matching equations described by Tollefson [12] for compact 3-manifolds
result from the fact that a properly embedded surface meets a small regular
neighbourhood of an edge in a collection of discs, and that each of these
discs is uniquely determined by its intersection with the boundary of the



NORMAL SURFACES IN TOPOLOGICALLY FINITE 3-MANIFOLDS 331

neighbourhood. The equations are shown to give a necessary and sufficient
condition on a collection of quadrilateral discs to be (up to normal isotopy)
contained in the cell structure of some spun-normal surface. A spun-normal
surface without vertex linking components is thus uniquely determined by its
normal @-coordinate (see Theorem 2.4).

The triangulation of P is denoted by 7 and the solution space of the
Q-matching equations by Q(7). This is a real vector subspace of R¥.
The projective solution space PQ(T) is the intersection of Q(7) with the unit
simplex; it is a convex rational polytope. Rational points are therefore dense
in PQ(T) and correspond to the projective classes not merely of spun-normal
surfaces (which are embedded), but also of immersed and branched immersed
spun-normal surfaces (see Proposition 2.7).

Section 3 introduces the boundary curve map

d: Q(T) — @1 (By;R),

which is linear and generalises the above map d,. It is thus possible to
compute J,(S) directly from the normal Q-coordinate of S. The definition of
0 is motivated by the boundary map used by Kang and Rubinstein [9] in the
case where each vertex linking surface is a torus or Klein bottle, and their
methods are generalised to prove the following:

THEOREM 0.1. Let P be a closed 3-dimensional pseudo-manifold with
triangulation T. Then
1. Q(UT) has dimension v, —e + 3t = x(P)+ 2t — v, ;
2. 0. AT) — ©H1(By;R) is onto, and its restriction to integer lattice
points in Q(T) has image of finite index in ®yH\(By;Z); and
3. PQ(T) is non-empty and hence of dimension dim Q(7) — 1.
Here t,e,v is the number of 3-simplices, 1-simplices, O-simplices respec-
fively; so x(P)=v — e+ . Moreover, v = v, + vy, Where v, Is the number
of O-simplices with non-orientable linking surface.

Note that y(P) = 0 = v, if P 1s a manifold, and x(P) = v if the link
of each vertex is a torus or Klein bottle. The above dimension of Q(7) and
target of @ correct the main result of [9] in the case of pseudo-manifolds
with non-orientable vertex links.

The set of projective classes of (embedded) spun-normal surfaces has
a natural compactification, PF(7) C PQ(T), points of which correspond
to projective classes of certain transversely measured singular codimension-
one foliations of the complement of the O-skeleton, M. The restriction
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0: PF(T) — $.H(By;R) determines the (possibly singular) foliation of
each B,. If P is orientable, then the intersection pairing on GHi(By; R)
defines a bi-linear skew-symmetric form on Q(7); for any N,L € Q(T):

(N,L) = ZL(@U(N),GU(L)) .

This is used to analyse the structure of the components of PF(7).

THEOREM 0.2. Let P be a closed 3-dimensional pseudo-manifold with
triangulation T . The set PF(T) is a finite union of convex rational polytopes.
Each maximal convex polytope R in this union satisfies dimR <  — 1.
Moreover, if P is orientable then :

(0.1) x(P)—1<dimR < x(P)+ dim(R N ker 9),
and if P is non-orientable then:
(0.2) x(P)—v,—1<dimR < 2x(P) — v, + dim(R N ker J),

where dim @ = —1 throughoul.

The lower bounds in Equations (0.1) and (0.2) are shown to be sharp by
the examples given in Section 4, the complement of the figure eight knot and
the Gieseking manifold.

This article does not address many topics which are standard in algorithmic
topology. For instance, work by Jaco and Oertel [3] implies that there is
an algorithm to determine whether a topologically finite manifold is large,
i.e. whether it contains a closed, incompressible, 2-sided surface distinct from
a 2-sphere or a vertex linking surface. The extension of such algorithms to
spun-normal surfaces (for instance, to determine whether there are essential
discs or annuli) is left for future research; it presupposes the ability to put
incompressible surfaces into spun-normal form and to decide whether a spun-
normal surface is incompressible — neither of which is addressed in this

paper.
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1. SPUN-NORMAIL SURFACES

This section defines spun-normal surfaces in a 3-dimensional pseudo-
manifold (possibly with boundary) and analyses their basic properties. It is
also shown that a topologically finite 3-manifold is homeomorphic to the
complement of the O-skeleton in a closed, triangulated pseudo-manifold.
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1.1 PSEUDO-MANIFOLD

Let A = {33, . ,Z?} be a disjoint union of 3-simplices, each of which
is a regular Euclidean 3-simplex of edge length one. The subsimplices of the
clements in A are referred to as simplices in A. Let @ be a collection of
Euclidean isometries between 2-simplices in A with the property that for each
2-simplex A? there is at most one isometry having A? as its range or domain
(but not both). There is a natural quotient map p: A— A/(I) Let P= A/(I)
and note that P inherits a singular PL cone-metric. Since p restricts to an
embedding of the interior of every 2-simplex and every 3-simplex, the only
possible non-manifold points in P are at images of vertices and barycentres
of 1-simplices.

DEFINITION 1.1 (Pseudo-manifold). The quotient space P = Z/CI) is a
pseudo-manifold if p restricts to an embedding of the interior of every
l-simplex in A.

A pseudo-manifold is closed if each 2-simplex in A is the range or
domain of an element in @, otherwise it 18 a pseudo-manifold with boundary.
A pseudo-manifold is orientable if all 3-simplices in A can be oriented such
that all elements in & are orientation reversing. For the remainder of this
paper, it is assumed that P is a pseudo-manifold and a quotient map p: A — P
is fixed; additional hypotheses will be added.

1.2 TRIANGULATION

The image under p of an n-simplex in A is called an n-singlex in P.
The resulting combinatorial cell-decomposition of P is termed a friangulation
of P and denoted by 7 = (K, @, p). If p restricts to an embedding of
each simplex, then 7 is a triangulation in the traditional sense; it will then
be referred to as a simplicial triangulation. The image in P of the set of
i-simplices in A is denoted by P? and termed the i-skeleton of P.

The number of 3-singlices in P is f, and we denote by f the number
of 2-singlices, ¢ the number of 1-singlices and v the number of O-singlices.

1.3 IDEAIL TRIANGULATION

A manifold is fopelogically finite if it is homeomorphic to the interior
of a compact 3-manifold. If P is closed, then removing the O-skeleton
yields a topologically finite 3-manifold M = P\ P® and P is called
the end-compactification of M. This motivates the following terminology.
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An ideal i-simplex, i € {1,2,3}, is an i-simplex with its vertices removed;
the vertices of the i-simplex are referred to as the ideal vertices of the ideal
i-simplex. Similarly for singlices. The restriction (A '\ A(O),q)|g(2)\g(0), Pliio)
of the triangulation of P to P\ P9 is an ideal triangulation of P\ PY.
A O-simplex of P is referred to as an ideal vertex of the ideal triangulation
or of M.

If M is the interior of a compact 3-manifold M with non-empty boundary
and M is homeomorphic to P\ P for some pseudo-manifold P, then M
is said to admit an ideal triangulation. The following result is implicit in
Matveev [10] and shows that every topologically finite 3-manifold arises in
this way from a closed pseudo-manifold:

PROPOSITION 1.2 (Topologically finite manifold has ideal triangulation).
If M is the interior of a compact 3-manifold M with non-empty boundary, then
M admits an ideal triangulation. The ideal vertices of the ideal friangulation
are in one-to-one correspondence with the boundary components of M.

Proof. 'This derives from the following results in [10]. Theorem 1.1.13
due to Casler asserts that M possesses a special spine X it has the
property that M is homeomorphic to a regular neighbourhood of £ in M.
Theorem 1.1.26 implies that X is dual to an ideal triangulation of M with
the property that the ideal vertices are in one-to-one correspondence with the
boundary components of M. [

1.4 NORMAL DISCS, ARCS AND CORNERS

A normal corner 1s an interior point of a 1-simplex. A normal arc is
a properly embedded straight line segment on a 2-simplex with boundary
consisting of normal corners.

A normal disc is a properly embedded disc in a 3-simplex whose boundary
consists of normal arcs no two of which are contained on the same face of the
3-simplex ; moreover, the normal disc is the cone over its boundary with cone
point the barycentre of its normal corners. It follows that the boundary of a
normal disc consists of either three or four normal arcs, and it is accordingly
called a normal triangle or a normal quadrilateral. A normal disc is uniquely
determined by its intersection with the 1-skeleton.

A normal isotopy is an isotopy of a simplex which preserves all its
subsimplices. There are exactly three normal isotopy classes of normal arcs
in a 2-simplex. A normal arc is called v-fype if it separates the vertex v
from the other two vertices of the 2-simplex. There are exactly seven normal
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FIGURE 2

Normal discs in a 3-simplex and normal arcs in a 2-simplex

isotopy classes of normal discs in a 3-simplex (four of normal triangles and
three of normal quadrilaterals). Given a normal triangle t in a 3-simplex, there
i1s a unique complementary region containing precisely one O-simplex v; t is
said to be dual to v.

A piecewise linear arc in a 2-simplex is termed an elementary arc if it
is normally isotopic to a normal arc. A piecewise linear disc in a 3-simplex
is termed an elementary disc if it is normally isotopic to a normal disc.
The following lemma provides a useful normal isotopy for any collection of
clementary cells.

LEMMA 1.3 (Straightening). Given an arbitrary collection of pairwise
disjoint elementary arcs in a 2-simplex, there is a normal isotopy keeping the
1 -skeleton fixed and taking each elementary arc to a normal arc. Given an
arbitrary collection of pairwise disjoint elementary discs in a 3-simplex, there
is a normal isotopy keeping the 1-skeleton fixed and taking each elementary
disc to a normal disc.

Proof. TLet A’ be a 2-simplex containing an arbitrary collection of pairwise
disjoint elementary arcs. There is a homeomorphism A> — A’ which fixes
the boundary and takes each elementary arc to a normal arc. The first part of
the lemma now follows from the fact that a homeomorphism of a closed ball
which fixes the boundary is isotopic to the identity.

Given an arbitrary collection of pairwise disjoint elementary discs in a
3-simplex A*, there is a homeomorphism 7: A* — A’ which fixes the
1-skeleton and takes each elementary disc to a normal disc. The first part of the
lemma shows that the restriction of # to 9A® is isotopic to the identity. One
can therefore isotope /i in a neighbourhood of JA® such that the boundary
of ecach elementary disc is straight and the result follows as above. O
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The image under p of a normal disc (respectively arc, corner) in A is
called a normal disc (respectively arc, corner) in P. Note that a normal disc
in P may have fewer arcs or corners in its boundary than its pre-image in A.
Two normal discs in P are said to be of the same type if they are the images
of normally isotopic normal discs in A. A normal isotopy of P is an isotopy
of P which leaves all singlices invariant.

The above definitions apply verbatim to define normal cells in ideal
simplices and ideal singlices, and normal isotopies in P\ PV,

1.5 NORMAIL SURFACES AND NORMAIL CURVES

This subsection collects some well-known facts about normal surfaces;
the reader should consult Jaco and Rubinstein [4] and Thompson [11] for
details and proofs.

DEFINITION 1.4 (Normal surface). A subset § of P is a normal surface
in P if it meets every 3-singlex in P in a (possibly empty) finite union of
pairwise disjoint normal discs.

Note that a normal surface is a properly embedded (not necessarily
connected) compact surface in (P\ P C P.

LEMMA 1.5. Let A be a finite union of pairwise disjoint normal arcs
in A>. Then A is uniquely determined by its intersection with the 1-skelefon
up to normal isotopy.

A curve on a compact, triangulated surface is normal if it meets each
2-singlex in a finite collection of pairwise disjoint normal arcs. (A curve will
always be connected, whilst a surface may not be connected.)

LEMMA 1.6. Every non-empty normal curve in OA® is simple and closed.
Moreover, it bounds some properly embedded disc in A°.

Consequences of Lemma 1.5 are the following:

COROLLARY 1.7. A finite union of pairwise disjoint normal curves on OA>
is uniquely determined by its intersection with the 1-skeleton up to normal
isotopv.
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COROLLARY 1.8. Let S be a normal surface in P. Then S is uniquely
determined by its intersection with the 1-skeleton of P up to normal isotopy.

The length of a normal curve is the number of intersections with the
1-skeleton (equivalently: the number of normal arcs it is composed of).

LEMMA 1.9. Every normal curve ~ bounds a disc in ON® containing one
or two vertices. In the former case, v has length three, in the latter, its length
is @ multiple of four.

LEMMA 1.10. If a non-empty normal curve ~y does not meet some edge
of A, then ~ has length three or four.

1.6 SPUN-NORMAI. SURFACES

The definition of a normal surface is now extended; the following notions
are defined with respect to the PL. cone-metric on P.

DEFINITION 1.11 (Normal subset). Let P be a pseudo-manifold (possibly
with boundary). A subset S of P is normal if
1. § intersects each 3-singlex in P in a (possibly empty) countable union of
pairwise disjoint normal discs;

2. the set of accumulation points of SN PY is contained in P ;
3. if {x;} C S has accumulation point x € P, then x € S or x € P,

Note that any normal subset of P is contained in P\ P, The following
two facts follow from the observation that whenever a normal subset S of P
meets a 3-singlex A* in a point x € A®, then it meets A’ in a normal disc
containing x.

LEMMA 112, Let S be a normal subset of P. Then p~US) is a normal
subset of A.

LEMMA 1.13 (Normal subset is a surface). Let S be a normal subset
of P. Then every point on S has a small closed neighbourhood in S which
is homeomorphic to a disc.

For each 0O-singlex v € PY choose a small, open neighbourhood N, with
the property that the neighbourhoods are pairwise disjoint and 9N, \ 9P = B,
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is a normal surface in P. Note that all normal discs in B, are normal triangles
no two of which are normally isotopic. A normal subset in P is called a
vertex linking surface if it is normally isotopic to B, for some 0-singlex v,
Let P° =P\ |JNy.

REMARK 1.14. Condition (2) in Definition 1.11 is not redundant. For
instance, it rules out that countably many pairwise disjoint copies of B,
accumulate on B, .

Each surface B, consists of normal triangles and hence inherits an induced
triangulation 7,. A path in B, is called normal if it intersects each triangle
in 7, in a (possibly empty) disjoint union of normal arcs.

LEMMA 1.15 (Vertex linking surface). If S is a normal subset of P
consisting only of normal triangles, then each connected component of S is
a vertex linking surface.

Proof. Without loss of generality, it may be assumed that S is connected.
Given a normal triangle in S dual to v € P, the normal triangles it meets
along its boundary arcs are all dual to v. Whence all normal triangles in S
are dual to a fixed O-singlex v. Since SN P°NPY consists of finitely many
points, one may (up to normal isotopy) assume that § is contained in N,.
Since § meets every 3-singlex in a union of pairwise disjoint normal discs,
it follows that it meets every 3-singlex incident with v in at least one normal
triangle contained in N, . This forces S to be normally isotopic to B,. [

LEMMA 1.16 (Finiteness). A normal subset S of P contains at most
Jinitely many normal quadrilaterals.

Proof. 1If § contains infinitely many normal quadrilaterals, then it contains
infinitely many quadrilaterals of the same type. Using condition (2), there are
finitely many possibilities for the limit points of the normal corners of these
quadrilaterals. In each case, one can construct a sequence of points on §
which accumulates on a point not on § but in the interior of a 1-simplex
in P, contradicting the third condition. [

LEMMA 1.17. Every connected component of a normal subset of P is a
properly embedded surface in P\ P,
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Proof. It suffices to assume that S is connected and contains a normal
quadrilateral. Then S contains finitely many normal quadrilaterals. If S
contains only finitely many normal triangles, then § is a normal surface and
therefore a closed, properly embedded surface in P\ P'”’. Hence assume that S
contains infinitely many normal triangles. We may assume that P contains all
normal quadrilaterals contained in § and that dP°NS is transverse. Conditions
(2) and (3) in Definition 1.11 imply that P° N PV NS contains finitely many
points. Since normal triangles are flat, it follows that $ M JP¢ consists of
finitely many pairwise disjoint simple closed curves and arcs. Hence SMP° 1s
a properly embedded surface in P°. Since N, can be made arbitrarily small,
the conclusion follows. [

It follows from Lemmas 1.15 and 1.16 that a normal subset may have
infinitely many connected components at most finitely many of which are not
vertex linking.

DEFINITION 1.18 (Spun-normal surface). A normal subset of P is termed
a spun-normal surface in P if it has finitely many connected components.
If a spun-normal surface contains infinitely many normal triangles dual to
v € PO, then it is said to spin infe v. In particular, a normal surface is a
spun-normal surface which spins into no vertex.

LEMMA 1.19 (Uniqueness). Let So and S1 be normal subsets in P with
the property that for any type of normal disc, So and S, contain the same
(not necessarily finite) number of normal discs of this type. Then Sy and S
are normally isotopic.

Proof There is a normal isotopy in A which takes p~1(So) to p~1(Sy)
and, in particular, takes the intersection of p‘l(So) with the 1-skeleton to the
intersection of p~(S;) with the 1-skeleton. From the latter, a normal isotopy
taking p~'(Sy) to p~!(S;) can be constructed which descends to P. [

1.7 REGULAR EXCHANGE AND GEOMETRIC SUM: NORMAL ARCS

Given two normal subsets § and F of P, one may perturb § by an
arbitrarily small normal isotopy so that S and F have no common point of
intersection with the 1-skeleton, and one can attempt to produce a new normal
subset from SUF by performing a canonical cut and paste operation along
SN F. Such a geometric sum of S and I was first used by Haken, Since a
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normal disc is uniquely determined by its boundary, it is convenient to start
with the geometric sum of normal arcs.

DEFINITION 1.20 (Normal subset of A?). A subset A of a 2-simplex A
18 normal if

1. A is a (possibly empty) countable union of pairwise disjoint normal arcs;
2. the set of accumulation points of A N AT is contained in A ;
3. if {x;} € A has accumulation point x € A, then x € A or x € AV,

DEFINITION 1.21 (General position). Two normal subsets of a 2-simplex
A” are said to be in general position if their intersection is contained in the
interior of A”.

Let a be a normal arc on a 2-simplex A’ dual to vertex v. Denote by Cj
the complementary region of A?\ a containing v. Given normal arcs a,b on
A? in general position, denote by D a small (piecewise linear) disc in int A?
with centre a M b. Then define a Wb to be the union of two normal arcs
obtained as follows. Remove from a U b the intersection with D and adjoin
to it two arcs on OD (termed circular arcs) as follows. If a and b are of
different types, then add the intersection of gD with (Cy U Cp) \ (Cq N Cy).
Otherwise take the intersection with the complement thereof. This procedure
is termed a regular exchange at the intersection poini, and the position of the
circular arcs is referred to as the switch condition at the intersection point.
The result is a disjoint union of two elementary arcs which can therefore be
straightened to a disjoint union of two normal arcs which is denoted by aWb
and termed the geomeiric sum of a and b. This is illustrated in Figure 3.

Let A and B be two normal subsets of a 2-simplex A’ which are in
general position. For each intersection point p € AN B, one can choose a
sufficiently small disc D with centre p so that if p =anb for a CA and
b C B, then DNAUB)=DN(aUb), and any two such discs are disjoint.
One can then perform a regular exchange at each intersection point and
the result, C, is (a priori) a collection of embedded arcs (possibly open or
half-open) and circles in A?. This is termed the regular exchange at AN B
since C is uniquely determined up to normal isotopy fixing the 1-skeleton.

The definition of regular exchange extends to any two elementary arcs
meeling transversely in a single point in the interior of A?. Since the resulting
normal arcs are uniquely determined by the relative position of the intersection
points of the elementary arcs with 9A?, it follows that performing a regular
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(a) Regular exchange of normal arcs of different types
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(b) Regular exchange of normally isotopic arcs

FIGURE 3

exchange between two elementary arcs and then straightening gives the same
result as first straightening the elementary arcs, then taking the geometric
sum. The following argument is similar to the one given in lecture notes by
Cameron Gordon [2].

LEMMA 1.22 (Geometric sum of normal arcs). Let A and B be two
normal subsets of a 2-simplex A> which are in general position. Then the
regular exchange at ANB vields a family of pairwise disjoint elementary arcs.
It can be straightened to a normal subset of A’ ; this is denoted by AWB and
called the geometric sum of A and B. Moreover, if ||, € NU{oo} denotes
the number of normal arcs dual fo vertex v of A%, then [AWB|, = |A],+|Bo.

Proof. Choose discs for the regular exchange at A N B, and hence two
circular arcs at each intersection point determined by the switch condition.
These discs and arcs will be fixed throughout the proof; the set of circular
arcs is denoted by C. Since A and B are normal subsets, the normal subset
Ap consisting of all normal arcs a C A with the property that a meets an
arc in B not normally isotopic to a is finite. Define By C B analogously.
Assume that some arc in Ap meets an arc in By which is not normally
isotopic to it. The properties that will be used are the following: (1) each
connected component of Ag (resp. Bg) is an elementary arc which is made
up of straight subarcs of arcs in AU B and circular arcs in C; (2) the arcs
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in Ay (resp. By) are pairwise disjoint; (3) whenever an elementary arc in Ag
meets an elementary arc in Bg, then they meet in a single point, and the
corresponding regular exchange can be done by deleting subarcs from AU B
and inserting arcs from C.

Denote the vertices of A*> by x,v,z and the opposite edges by S, Sy, Sz
respectively. Label the normal corners of elementary arc a dual to b by v.
For each side of A?, this gives a finite word in the labels. Consider the side s,.
If some arc dual to x meets an arc dual to vy, then on s,, read from x to y,
the word has the form wo(x,v) - v-wi(x,y) - x - wa(x,y). Consequently, if the
word is of the form x"v", then there are no intersections between arcs dual
to x and arcs dual to y. Assume that there is some point of intersection. Then
the word contains the subword vx. Since arcs in Ay are pairwise disjoint, the
two labels do not correspond to endpoints of two normal arcs in Ag. Similarly
for Bp. Without loss of generality, assume that v is the label of an endpoint
of a C Ag and x is the label of an endpoint of b C Bg. Perform the regular
exchange at anb using circular arcs from C. This yields two elementary arcs,
one containing a portion of b between sy and the intersection point as well
as the corner aMs,. This elementary arc, denoted by by, has the property that
bo N(Bo\b) =@ as well as by MNAy = (6NAg)\ (anb). Moreover, the switch
condition at any point of by M Ay coincides with the switch condition at that
point with respect to b, since by and b are normally isotopic. In particular,
it can be realised using circular arcs from C. Moreover, any elementary arc
met by by has at most one point of intersection with it since none of the
subarcs in which by and b differ meet any other arc. The same discussion
applies to the other elementary arc, og, arising from the regular exchange.
Let A; be the collection of elementary arcs obtained from Ag by deleting a
and adding ap, and define B; likewise. Then |Ao|y + |Bolo = |A1|o + |Bilo
for each v € {x,v,z}, |A1]| = |Ao|, |B1]| = |Bo|, A1 NBy| = |AgNBy|—1 and
A1 and B; satisty the above properties (1)~(3). It follows that this process
can be iterated to yield two normal subsets A and Bp with the property that
|Ax| = |Ao|, |Bx| = |Bo|, and whenever arcs in Ay and Bp meet, then they
are normally isotopic. Moreover, the number of arcs dual to x (resp. y,z) in
Ap U By equals the number of normal arcs in Ag dual to x (resp. v,z) plus
the number of normal arcs in By dual to x (resp. y,z).

Letting A" = (A\ Ag) UA; and B’ = (B \ By) U By gives sets with the
property that each point in A’ M B’ is the intersection point of normally
isotopic arcs; A" and B’ can be viewed as obtained by performing all regular
exchanges at all points in A M B corresponding to intersection points of
arcs of different normal types. Let A, and B, be the sets of all elementary
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arcs dual to x in A" and B’ respectively. The elementary arcs in A, can

be labelled ap,ai,... with the property that Cy, O Cq, D .... Similarly
for B,.

Since A and B are in general position, the intersection points of A, U By
with the side s, (resp.s;) can be labelled yi,¥2,... (resp.zi,22,...) such

that (v, x) C (vi—1,Xx) (resp.(z;,x) C (zgi—1,x)) for each i > 1. It now
follows inductively that performing all regular exchanges at A, N B, yields
a union of pairwise disjoint elementary arcs {n;} with n; having endpoints
v; and z;. The resulting number of normal arcs dual to x is thus uniquely
determined by the intersection points with the 1-skeleton. Whence the claimed
relationship.

It follows that performing all regular exchanges at ANB yields a union of
pairwise disjoint elementary; it can be pulled straight to a union of pairwise
disjoint normal arcs, A W B. The other parts of Definition 1.20 are verified as
follows. We have (A& B)NA*D = A NA*D)YU (BN A", whence the set of
limit points of (A W B) N A*™ is contained in AX?,

It follows from Definition 1.20 that for each vertex v there is a
neighbourhood N, with the property that N, only meets normal arcs dual
to v in AU B. It follows from the construction that N, can be chosen such
that it meets only normal arcs dual to v in AW B. Thus, AW B is a normal
subset of A2, O

The method of pre-assigning switch conditions at intersection points fails
for certain immersed sets of normal arcs. Assume A = {a;} is a set consisting
of three normal arcs on a 2-simplex A? which are pairwise in general position
and no two of which are normally isotopic. Then for any distinct a;,a; € A,
the regular exchange at a; M a; is defined.

However, if all these regular exchanges are performed, then the result may
not be elementary; Figure 4(a) shows a constellation where this fails. However,
we have (agWa))War = ag(aiwar) = (apWax)Wa; even though intersection
points are possibly resolved differently. See Figure 4(b) and notice that the last
picture is invariant under rotation by %’r whilst the first and second are not.

LEMMA 1.23. Let A,B,C be three normal subsets of a 2-simplex which
are pairwise in general position. Then AW (BW C) =AW B) W C.

Proof. Let A’ be the set of all normal arcs in A which meet normal arcs
of different types in B or C; define B’ and (’ similarly. Then the previous
lemma applies to show that A’ W (B’ W ') and (A" W B YW C’' are normal
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subsets with the property that for every vertex v,

|A’ L'H (B, Lﬂ C’)‘n — ‘Alln + |B’ L'H Clln
= A" + |B'y + ']
=|A"WB|, +|C'|, = A" WBYW |, .

Whence A’w(B' W) and (A'"B )W’ are identical, since they have identical
intersection with the 1-skeleton.

It remains to analyse arcs which are pairwise in general position and dual
to a common vertex. Here the switch conditions at intersection points are
uniquely determined regardless of the order in which regular exchanges are
performed. The lemma follows. [

Given two normal subsets A and B on a triangulated, compact surface,
let

AwB=]J (Anau@NAY) ),
A2

where the union is taken over all 2-singlices in the triangulation. Then AW B
is a well-defined normal subset.
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LEMMA 124, Let A and B be two finite unions of pairwise disjoint
normal curves on OA® with the property that for each face A*, the sets
ANA? and BN A are in general position. Then C = AW B is a finite
collection of normal curves. Moreover, if A and B only contain curves of
length three or four, and each curve of lengih four does not meet the same
edge A of A%, then C contains only curves of length three or four and each
curve of length four does not meet Al

Proof. The statement follows from Corollary 1.7 and Lemma 1.22.
By assumption, one may normally isotope A to a normal subset A" which
is disjoint from B. Then the intersection of A’ U B with the 1-skeleton is
normally isotopic to the intersection of A U B with the l-skeleton. It follows
that A’ U B is normally isotopic to AWB. [

1.8 REGULAR EXCHANGE AND GEOMETRIC SUM: NORMAL DISCS

DEFINITION 1.25 (General position). Two normal subsets § and F of
a 3-simplex A’ are said to be in general position if SNFNADY = &,
In particular, for every face A> of A®, the normal subsets SMA® and FnA?
are in general position.

Let 09 and 0; be two normal discs in a 3-simplex A? which are in general
position, A geometric sum of 9y and 0; should restrict to the geometric sum
of Jvy and 00y and yield two normal discs. Whence each normal curve in
00p W 30, should have length three or four. It follows that g and ?; cannot
be quadrilateral discs of different types since otherwise dvg W 30, is a single
curve of length eight.

Hence assume that if both 95 and 0; are normal quadrilaterals, then they
are normally isotopic. Also assume that o« = 99Ny # @. Recall the definition
of a normal disc as the cone to the barycentre of its vertices. Any normal
triangle is a flat Euclidean triangle, and a normal quadrilateral is made up of
(at most) four Euclidean triangles. The incidence between two normal discs
does not change under a normal isotopy of their union, so to determine the
possibilities for «, it may be assumed that if Dy is a normal quadrilateral,
then it is flat.

It follows that if not both ¥y and ©; are normal quadrilaterals, then «
is a properly embedded arc in each disc and necessarily has endpoints on
distinct faces of A*. If both discs are normal quadrilaterals, then o cannot
contain a connected component not meeting OA® for otherwise d, would
separate the vertices of 0 from the barycentre of 0,. Moreover, o meets
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(a) (b) (c) (d)

FIGURE 5

Regular exchange of normal discs (not shown are the two
possible intersections of two quadrilateral discs in one arc)

JA® in either two or four points. It follows that « is either a single arc,
the disjoint union of two arcs, or a cross; each properly embedded in A3,
In particular, the above definition allows a piecewise linear analogue of saddle
tangencies.

Let N, be a regular neighbourhood of « in A*. A regular exchange of
0g and 9, af o consists of deleting the portion of 9;UD; in N, and adding
discs contained in the complement of 9o UD; on 9(N,) as follows.

If 90 and ©; are normal quadrilaterals, then let Xy, and X; be the
connected components of A? \ (0g U D1) containing 1-simplices. If 95 and
0; are a normal quadrilateral and a normal triangle, let Xy (resp. X1) be
the component containing a 1-simplex (resp.the vertex dual to the triangle).
If 99 and 0; are normal triangles of the same type, let Xo (resp. X;) be
the component containing a 2-simplex (resp. the vertex dual to the triangles).
If 0 and ®; are normal triangles of the different types, let Xy, and X;
be the components containing the vertices dual to the triangles. Then let
C=XoUX))NIN,.

It follows that ((00 U®1) \ No)U C is a union of two disjoint elementary
discs which can be straightened to give two disjoint normal discs, denoted
by 09 W 0;, and the restriction of C to each face coincides with the switch
condition at each endpoint of « on that face. For each connected component
o/ of a, the placement of the discs in ON, is termed the switch condition
at o,
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DEFINITION 1.26 (Compatible normal subsets). Two normal subsets S
and F of P are compatible if they are in general position and if the normal
quadrilaterals in SNA* and FNA® are all of the same type for each 3-singlex
A’ in P.

The above definition of regular exchange extends to a regular exchange at
SNF where S and F are compatible normal subsets. It remains to show that
the result (after straightening) is a normal subset.

For the proof of the lemma below, it is necessary to extend the above defi-
nition of regular exchange to elementary discs 0 and 0; in the 3-simplex A®
subject to (1) 95 Nd; NA* = &, (2) if one of the discs has three corners,
then they have precisely one arc of intersection with endpoints on differ-
ent faces of A*, and (3) if both elementary discs meet the 1-skeleton in
four normal corners, then the discs are normally isotopic and have inter-
section consisting of either one or two arcs or a cross and no two end-
points of 09 M 0; are on the same face of A3, This generalisation is
straightforward; it should be noted that in the realm of elementary discs,
saddle tangencies can be eliminated by an arbitrarily small isotopy fix-
ing OA*,

LEMMA 1.27 (Geometric sum of compatible normal subsets). Let S and I
be compatible normal subsets of a 3-simplex A°. Then the regular exchange
at SN F vields a family of pairwise disjoint elementary discs. It can be
straightened to a normal subset of A®; this is denoted by Sw F. Moreover,
the number of discs in SWF of any type equals the sum of the number
(possibly infinite) of the discs of that type in S and F.

Proof. The structure of the proof is as in Lemma 122, and only an
outline is given. Let Sp be the set of all normal discs in S meeting normal
discs in F of a different normal type; define Fy analogously. Then Sy and
Fy are both finite (possibly empty) sets of normal discs.

Let A' be an edge of A* and denote its vertices by v and to. Choose
an ordering of the faces A7 and A} incident with A'. A normal triangle
dual to v (resp.to) meets each face in a v-type arc (resp. mw-type arc),
and a normal quadrilateral with a corner on A' meets one of the faces
in a v-type and the other in a w-type arc. With respect to the ordering,
the corner of a normal disc on A! is labelled by (b,b), (b,t0), (tv,v)
or (to,to) accordingly. Since § and F are compatible, the corners of all
quadrilaterals have the same label, say (v,tv). Read from v to o, this
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gives a word of finite length in these tuples, and if no disc meets a disc
of different type, then the word has the form (v, o) (v, )" (10, 10)", where
n,m,l >0,

Given a word not of this form, as before, an inductive argument
allows to successively perform regular exchanges which move a pair
(b,v) to the left or a pair (mo,tn) to the right. Having done this for
all edges, it follows that whenever two discs meet, then they are of
the same type. The proof is now completed similarly to the proof of
Lemma 1.22. [

LEMMA 1.28. The geometric sum of compatible normal subsets of P is
well-defined and associative.

Proof. et § and I’ be compatible normal subsets of P. Then for each
3-simplex A3 in A, p~U(S)NA® and p~LF)NA® are compatible. It follows
that the geometric sum p~1(S) W p~'(F) is well-defined. Since the definition
of regular exchange between normal subsets of a 2-simplex is defined without
reference (o0 a 3-simplex, it follows that p(p‘l(S)&J p~NF )) is a well-defined
normal subset of P. [

This has the following, classical, consequence:

COROLLARY 1.29. Let S and F be two normal subsets of P which are
in general position, and let v be a simple closed curve in SNF. Then ~ is
either 2-sided in both S and F or it is 1-sided in both S and F.

Proof. 1f v is non-separating in S, but not in 7, then the switch condition
at an intersection point of v with the 2-skeleton changes upon a full traverse
of ~. But this is not possible. [

LEMMA 1.30 (Additive identity). If @ normal subset S in P contains
infinitely many normal triangles dual to v € PV, then SW B, is normally
isotopic to S.

Proof. The intersection S M B, consists of at most finitely many pair-
wise disjoint simple closed curves and arcs. Since B, contains only nor-
mal triangles, it follows that S W B, and § satisty the hypothesis of
Lemma 1.19. [
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1.9 BOUNDARY CURVES OF SPUN-NORMAIL SURFACES

Let S be a normal subset in P which is transverse to B, for some
v € PO, It may be assumed that N, meets only normal triangles in S and
that S and B, are in general position. Note that S and B, are compatible,
and that SN B, is a finite union of pairwise disjoint simple closed curves or
properly embedded arcs. Since B, is 2-sided in P, it follows that SN B, is
2-sided in § and hence, by Corollary 1.29, SN B, is 2-sided in By, . This
implies that SN B, can be given a transverse orientation in B,,, and we will
make the following canonical choice.

Since N, is the cone over B, on v, it inherits a triangulation which is the
cone on b over the triangulation of B, . Moreover, SN, is a normal subset
in N, with respect to this triangulation. Any normal disc n in N, contained
in the 3-singlex A3 in N, inherits a well-defined transverse orientation by
assigning +1 to the component of int(A)\n containing v. These orientations
match up to give SNN, a transverse orientation, and SNB, is given the induced
transverse orientation. In particular, this shows that SN N, is 2-sided in N,.

LEMMA 1.31 (Boundary curves are non-separating and 2-sided). Let § be
a normal subset in P. Each curve or arc in SN\By is 2-sided in B, and in S.
Up to normal isotopy of S, one may assume that SN B, is a (possibly empity)
union of pairwise disjoint, non-separaiing, 2-sided simple closed curves or
properly embedded arcs on By.

Proof. It remains to show that each component of SMB, is non-separating
in B,. If S contains at most finitely many normal discs dual to v, then there
is a normal isotopy of § making S disjoint from By, and there is nothing
to prove. Hence assume that S contains infinitely many normal triangles dual
to v. To simplify notation, let B =B, .

Let ¢ be a connected component of SN B. Perform the regular exchange
at ¢ and denote the result by S(¢). If ¢ is separating in B, then there are
subsets of S(c) corresponding to the components By and B_ of B\ ¢ and
there is a normal homotopy of S(¢) which pushes one of these subsets towards
v and the other out of Ny so that the result, also denoted by S(c¢), is transverse
to B and meets B in one separating curve fewer than §.

Performing regular exchanges along all singular curves in S(c¢) yields a
normal subset S'(¢) with the properties that S’'(¢)NB = S(¢)N B and S'(c)
is normally isotopic to SW B. Hence S'(¢) is normally isotopic to S by
Lemma 1.30. Since SN B has finitely many connected components, one may,
by induction, assume that no component of $N B is separating, [
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COROLLARY 1.32 (Spun-normal surface = normal surface in a manifold).
If P is a 3-manifold, then every connected component of a normal subset is
a normal surface.

Proof. 'This follows from the above lemma since if P is a 3-manifold,
then every vertex linking surface is a sphere or disc. [

1.10 THE ORIENTABLE DOUBLE COVER

If P is non-orientable, denote by P the orientable double cover of P and
by B, a connected component of the pre-image of B, for each v € P©,
A spun-normal surface S C P lifts to a spun-normal surface S C P which is
invariant under the non-trivial deck transformation. Either P or P is given a
fixed orientation.

Each boundary component can be given a transverse orientation by choosing
a normal vector pointing towards the dual O-singlex. It is then oriented such
that the tuple (orientation, transverse orientation) agrees with the orientation
of the ambient pseudo-manifold.

1.11 THE BOUNDARY CURVE MAP

A transversely oriented normal curve on B, defings an element in
Hi(By,0B,;Z) as follows. The triangulation of B, can be given the structure
of a A-complex (see [7], Section 2.1). Thus, each edge in the triangulation
of B, is given a well-defined direction, and can be used for a well-defined
simplicial homology theory. If B, is non-orientable, denote by B, the chosen
lift in the double cover; otherwise let EU = B, . Recall that §n is oriented.

Let a be a transversely oriented normal curve on B,, and consider its
pre-image a in B,. Using the transverse orientation and the orientation of By,
give a an orientation such that the tuple (orientation, transverse orientation)
associated to @ agrees with the orientation of By,. Then homotope @ in the
direction of the transverse orientation into the 1-skeleton of B,. Using the
orientation gives a well-defined element of Z; (En, 6‘§n), and hence an element
of Hl(ﬁn,ﬁgu). This maps to a non-torsion element @ € H{(B,,dB,) since
a is 2-sided on B,. One may therefore view @ € H(B,, 0B,;Z) and let

0o(S) = T E Hi(By,0By;7),

where the sum is taken over all connected components of B, N S.
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LEMMA 1.33 (Boundary curves are well-defined). Let Sq and S; be
normally isotopic normal subsets of P. Then 0,(S0) = 04(S1). Moreover,
0. (S) is trivial if and only if SN B, may be assumed empty.

Proof. A dual statement will be proved. It suffices to assume that
B, is orientable. T.et By and B; be two vertex linking surfaces normally
isotopic to B, and meeting S transversely in normal triangles. The normal
isotopy gives a canonical identification Hi(B,,0By,Z) = Hi(B, OBy, 7).
Denote the corresponding families of transversely oriented intersection curves
by Cp. Then By and By bound a submanifold X of P homeomorphic to
B, x [0,1]. The surface SN X is given a well-defined transverse orientation
using the construction in Subsection 1.9 which proves that S NN, 1is
2-sided. It follows that its set of transversely oriented boundary curves
is precisely the union Cy U C;, which therefore determines an element of
Bi(B,,0By; 7).

The argument given in the last paragraph in the proof of Lemma 1.31
is now adapted to prove the second part. Let B = B,. Assume there is a
subset C of SN B with the property that there is a subsurface B’ of B with
OB' = C and B’ is on the positive side of each component of C. Then the
cited argument can be applied with By = B’ and B_ = B\ B’ to show that
the components in C can be deleted from SN B by a normal isotopy. This
completes the proof. [

COROLLARY 1.34. A spun-normal surface S spins into v € PV if and
only if 0,(8) # 0.

1.12 THE SPINNING CONSTRUCTION

An interesting normal subset in N, is constructed as follows (this
generalises the construction of an infinite normal annulus in [8]).

Let C be a finite collection of pairwise disjoint, transversely oriented,
non-separating normal curves on B, with the property that the intersection
with every normal triangle in B, consists of k£ copies of a normal arc dual to
a corner ¢p with transverse orientation pointing towards ¢y, and [ copies of a
normal arc dual to ¢; # ¢y with transverse orientations pointing away from ¢; ;
both k,I are non-negative integers. For instance, the system of transversely
oriented normal curves in SN B, is of this form.

Let {B;}, i € N, be a countably infinite family of vertex linking surfaces
dual to v in N, such that | JB; is a normal subset. On each B;, there is
a copy, C;, of C. For each i and for each ¢; € C, delete a small open
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neighbourhood of ¢; in B;. Since ¢; separates its neighbourhood, label the
boundary component in the positive direction by ¢, and the other by c¢; .
Since there is a normal isotopy of N, taking c¢; to cj_’i_l for each 7 and
each c¢, they can be joined by an annulus in N,. Similarly, annuli can be
attached between ¢ and cfr for each ¢ € C. There is a normal isotopy fixing
]Vél) such that the result is a normal subset of N, ; this is said to be obtained
by spinning on C.

LEMMA 1.35 (Controlled spinning). Deleting SNN, from S and attaching
the result of spinning on SNB, (with the induced transverse orientation) vields
a normal subset which is normally isotopic to S.

Proof. Delete the portion of § in N, and replace it by a normal subset in
N, obtained from the spinning construction on SMB,, where each component
is spun in the +1 direction on B, according to the convention in the proof
of Lemma 1.31. The result meets each 3-singlex in elementary discs and
straightening gives a normal subset S' in P with the property that S and S’
satisfy the hypothesis of Lemma 1.19. It follows that S and S’ are normally
isotopic. [

COROLLARY 1.36. Let § be a spun-normal surface which spins into
b € PO Then x(By) < 0. If x(B,) < 0, then S is topologically infinite.
If x(By) =0, then S is homeomorphic to the interior of SN (P \ Ny) for
suitably chosen N,.

Proof. Assume that § spins into v. If x(By) > 0, there are no 2-sided,
non-separating curves or arcs on B, and S cannot be spun into v. Hence
x(By) < 0. Since § can be viewed as obtained from the spinning construction,
one has

XS < XSOPY+ D x(Bo)
i=1

for suitably chosen P°. So if x(B,) < 0, then § is topologically infinite.

If v(By) =0, then B, may be chosen such that SN B, contains no collec-
tion of curves which is homotopically trivial. It follows that SN N, consists
of properly embedded half-open annuli (i.e.annuli having one boundary curve
removed) or discs with one point on the boundary removed meeting B, along
a boundary arc. [
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1.13 KNESER’S LEMMA FOR SPUN-NORMAL SURFACES

LEMMA 1.37 (Kneser—Haken finiteness). Lei P be a triangulated pseudo-
manifold (possibly with boundary), and S be a spun-normal surface such that
no two components of S are normally isotopic and no component is a vertex
linking suiface. Then the number |S| of components of S satisfies |S| < 12t
and

(L) |8 <30+ %dimHz(Pc, AP 7)) — 31 + %dimHl(PC;ZZ).

Moreover, if S is 2-sided, then |S| < 6t and |S| < 31+ 1 dim Hy(P°, 0P, Z,).

Proof. Whenever § does not spin into v, one may add B, to S disjointly
since no component of § is a vertex linking surface; the result is again denoted
by S. The normal discs of p~'(S) divide a 3-simplex in A into the following
types of regions:

1. slabs: trivial I-bundles over normal discs,
2. thick regions: truncated tetrahedra and truncated triangular prisms,
3. vertex regions: “small” tetrahedra which contain a vertex of 7.

In total, there are at most v + 2¢ components of P\ S which contain the
image under p of at least one of the latter types of regions. The remaining
components of P\ S are entirely made up of slabs. Each such slab component
is either a trivial or a twisted 7-bundle over a spun-normal surface.

It it is a trivial 7-bundle, then there is a 2-sided surface in § which
is the boundary of a twisted 7-bundle over a 1-sided surface in S (since
otherwise there would be two normally isotopic components of §). All other
slab components are twisted 7-bundles over a spun-normal surface not in §.
Since this core surface is not normally isotopic to any of the components
of §, we may add it disjointly to S. Let F be a 1-sided component of §.
A small regular neighbourhood of F is a twisted I-bundle with boundary a
2-sided spun-normal surface, N, in P, If N is not normally isotopic to a
component of S, we join it to S.

Let {V:} be the set of all vertex linking surfaces in S, {F;} be the set of
1-sided surfaces, the set of corresponding 2-sided surfaces be {N;}, and the
set of all remaining 2-sided surfaces be {S;}. Then [{F;}| = [{N:}|. Note that
P may be chosen such that the intersection of each component of S with it
is connected. Let §¢ = SN P, and similarly for its components. Each F7 is a
1-sided and therefore non-separating surface in P¢. Since FY is 1-sided, there is
a closed loop in a small regular neighbourhood of FY meeting FY transversely

i

in a single point. Using the intersection pairing with Z, coefficients, it follows
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that F¥ determines a non-zero element of Ho(P¢,0P°;Z,) and that {FF} is
in bijective correspondence with a linearly independent set of elements of
Hy(P°, 0P 7).

Assume S’ is a 2-sided component of S which is not a vertex linking
surface and meets no thick region. Then §’ bounds an 7-bundle to either
side. If one of them is trivial, then there is a component in S which is
normal isotopic to §’. Hence both of these I-bundles are twisted. But then P
is decomposed into two twisted I-bundles glued along their boundaries, and
S =S5 does not meet any thick region. This is not possible. So each element of
{N;}U{S;} meets at least one thick region. There are at most 6¢ normal discs
in the boundaries of thick regions. Each surface in {N;} U {S;} meets at least
one thick region in at least one disc. This implies that |[{N;}| + [{Si}| < 6t.
Thus |[{F;}| < 6¢, and the first bound is obtained.

We now use a doubling trick from [1]. Each N; meets thick regions
only on one side, and each S; meets at least one thick region on each
side. Push each N; off itself away from the twisted [-bundle, and call
the resulting copy N/, and push each S§; off itself and call the resulting
copy S.. This can be done such that all surfaces are still pairwise disjoint.
Each surface in {N/} U {S;} U {S/} meets at least one thick region in
at least one disc. Thus, 2|S| = 2{Vi}| + 2[{F:i}| + 2l{N:}| + 2|{S:}| =
26ViH + 31 F:H + N 4+ 218 < 2{Vi}H + 3dim Hy(P¢, 0P Z,) + 6.
Dividing by two and subtracting the vertex linking surfaces gives the second
inequality. The stated equality follows since Lefschetz duality and the universal
coefficient theorem yield Ho(P¢, 0P Zy) = H((PS;Zy). O

1.14 NORMALISING PROPERLY EMBEDDED SURFACES

Haken’s approach to normalising properly embedded closed surfaces as
described in Chapter 3 of [10] applies to ideal triangulations without change.
However, it does not apply to properly embedded non-compact surfaces;
an obstruction for putting such a surface into spun-normal form is, for instance,
given by Corollary 1.36. Moreover, it is shown by Kang [8] that there is an
ideal triangulation of the complement of the figure eight knot with two ideal
3-simplices, such that no Seifert surface for the knot can be put into spun-
normal form (see also Section 4.2). A result due to Thurston (see Walsh [13])
states that essential surfaces other than virtual fibres can be normalised in any
hyperbolic 3-manifold with torus cusps and ideal triangulation with essential
edges. A general theory of normalisation with respect to ideal triangulations
is implicit in the work of Brittenham and Gabai [6].
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2. MATCHING EQUATIONS

A normal subset S is (up to vertex linking components and normal isotopy)
uniquely determined by its quadrilateral discs. Recording the number of
quadrilaterals of each type gives the normal Q-coordinate of S. This satisfies
two necessary conditions: (1) it is admissible, and (2) it satisfies a Q-maltching
equation for each edge not contained in the boundary of P. This equation
is given by Tollefson [12] for compact 3-manifolds. The main result of this
section (Theorem 2.4) states that, conversely, any admissible solution to the
(-matching equation is realised by a spun-normal surface which is unique up
to normal isotopy.

2.1 NORMAL (J-COORDINATE

There are ¢ 3-singlices in P. Let {q1,...,¢s3:} be the set of all quadrilateral
types in P. A normal subset § in P meets each 3-singlex in at most
finitely many quadrilateral discs of each type. If x; is the number of
normal quadrilaterals of type g;, then let N(S) = (x1,...,X3,) be the normal
Q-coordinate of §. Thus, N(S) is a well-defined point in R with the
coordinate axes labelled by the quadrilateral types. A point (xi, ..., x3;) € R¥
is called admissible if each x; > O and if g;,q;,qr are the three distinct
quadrilateral types contained in any 3-singlex, then at most one of Xx;,X;,Xx
is non-zero. The cell structure of § allows normal quadrilaterals of at most
one quadrilateral type in each ideal 3-singlex, and hence N(S) is admissible.

2.2 (CONVENTION FOR ORIENTED 3-SIMPLICES

Let A* be an oriented, regular Euclidean 3-simplex. The edges of A’
are labelled with parameters z,7',z”, such that opposite edges have the
same parameter, and the ordering z,7’,7” agrees with a right-handed screw
orientation of A’ this is pictured in Figure 6. It follows that the labelling
is uniquely determined once the parameter z is assigned to any edge of A®.
The vertices of a normal triangle dual to a vertex of A% inherit moduli from
the edge parameters; this labelling is always viewed from the vertex.

There are three quadrilateral types in A®; let g% denote the quadrilateral
type which does not meet the edges labelled z¥ for & € {0,1,2}. The
symmetry group of A is the alternating group on its four vertices. It contains
a normal Kleinian four group which leaves pairs of opposite edges invariant
and hence fixes quadrilateral types. The quotient group is Zs; it may be
identified with the group of even permutations of the three quadrilateral types,
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FIGURE 6

Edge labels, quadrilateral types and (-moduli

and is hence generated by the cycle 7 = (q,4',¢”). If p and g are quadrilateral
types in A?, let:

s,(q) = k if 7(p) = q for k € {~1,0,1}.

An isometry ¢: AS — A} between oriented 3-simplices induces a bijection
between quadrilateral types, and one has 5,(q) = S, (©(q)) if ¢ is orientation
preserving, and s,(q) = —5,()(p(q)) otherwise. The above extends to normal
quadrilateral types in an oriented 3-singlex since the quotient map from a
3-simplex to a 3-singlex induces a bijection between normal quadrilateral

types.

2.3 DEGREE AND ABSTRACT NEIGHBOURHOOD

The degree of a 1-singlex A in P, deg(Al), is the number of 1-simplices
in A which map to Al. Given a 1-singlex Al in P, there is an associated
abstract neighbourhood B(A') of Al which is a ball triangulated by deg(Al)
3-simplices with the property that there is a well-defined simplicial quotient
map pa: BAA)) — P taking Al to Al.

If Al has at most one pre-image in each 3-simplex in A, then B(A!)
is obtained as the quotient of the collection ZAI of all 3-simplices in A
conlaining a pre-image of A' by the set @, of all face pairings in @
between faces containing a pre-image of A!. There is an obvious quotient
map b B(Al) — P which takes into account the remaining identifications
on the boundary of B(Al).

We now describe B(A') if Al has more than one pre-image in some

3-simplex. In this case deg(A!) > 1. For each 3-simplex Zf if Al has k
pre-images in A7, take k copies of this 3-simplex, AY,,... A7, each with

an isometry i, A} — A2, . To each pre-image A' of A" in AS assign one of
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the maps i;, and call ijjh(Zl) the marked edge of Zﬁh. This gives a collection
Ay of deg(Al) 3-simplices.

A face pairing ¢ of faces of Zf-’ and Zi gives rise to a face pairing
between faces of A%, and A}, if and only if it identifies the edges of A} and

A} corresponding to the marked edges of Zfz and sz Denote the resulting
set of face pairings by @1

The quotient map 1is denoted by pai: ZAI — ZAI [P = B(AD).
If deg(A') > 1 or if Al € 9P, then the triangulation of B(A!) is simplicial.

We now describe the map b, in the case where A' has more than one
pre-image in some 3-simplex. Since deg(Al) > 1, the given triangulation of
B(A!) is simplicial and hence for each simplex A3 ', in B(A') the inverse p; i
is well-defined. Since the face pairings deﬁmng B(AD arlse from the face
pairings in @, the map pu:: B(A') — P defined by p ol OpAll A3
for each 3-simplex is well-defined.

The unique edge in B(A') which is the image of all marked edges is termed
the axis of B(A'). One of the endpoints of the axis is termed the north pole
and the other the south pole. The set of all 1-singlices not containing a pole
is termed the equator of B(AD). See Figure 7(a).

LEMMA 2.1. Let S be a normal subset of P. Then pA_ll(S) is a normal
subset of B(A').

Proof. The set p~(S) is a normal subset of A with the property that
whenever a C p~1(S) is a normal arc on a 2-simplex in the range of some
face pairing ¢ € @, then ¢(a) C p~!(S). The result now follows from the
definitions of EAl and @, . [

LEMMA 2.2. Any normal subset in B(A') is a (possibly infinite) union of
pairwise disjoint properly embedded discs in B(A').

Proof. This follows from the fact that B(A!) is a manifold and from
Corollary 1.32, O

2.4 SLOPES OF QUADRILATERAI TYPES

Let A' be a 1-singlex not contained in OP. The abstract neighbourhood
B(Al) of a 1-singlex A in P is a ball and hence the 3-singlices in B(A!) may
be oriented coherently. In particular, the convention of Subsection 2.2 applies
to each oriented 3-singlex in B(A'). To simplify notation, write e = A!. If p
is the type of a normal quadrilateral in the oriented abstract neighbourhood



NORMAL SURFACES IN TOPOLOGICALLY FINITE 3-MANIFOLDS 359

equator

(a) Abstract neighbourhood (b) Positive (left) and negative (right) slope

FIGURE 7

B(e) which does not meet the axis ¢’, let s.(q) = 5,(¢) for any quadrilateral
type ¢ in the same 3-singlex as p. This gives a function s, defined on the
set of all quadrilateral types in B(e), and the value s.(q) is termed the slope
of q with respect to e. The two quadrilateral types in a 3-singlex meeting ¢’
have slopes of opposite signs, and a quadrilateral type which does not meet ¢’
has slope zero. See Figure 7(b), where the shown 3-singlex is oriented using
a right-handed screw orientation.

The orientation of B(e) induces an orientation of its hemispheres, and the
equator will be given the orientation induced from the southern hemisphere.

If D C B(e) is a properly embedded disc such that the poles are contained
in different components of 9B(e) \ 0D, then 9D is given the orientation
induced from the component containing the south pole. If P is a point in
the intersection of @D and the equator, let s(P) = 1 if 9D crosses the
equator from the southern to the northern hemisphere at P, and let s(P) = —1
otherwise. Thus 0 = > s(P), where the sum is taken over all points in the
intersection of 9D and the equator; the empty sum is defined to be zero
throughout.

Now assume that D is a connected normal surface in B(e) which meets ¢’ .
Then D is a disc; it is the join of @D to DNe’. In particular, 9D is a normal
curve separating the poles on dB(e) and D meets each 3-singlex in exactly
one normal disc. The boundary of a normal triangle in D does not meet the
equator, and a quadrilateral disc of type ¢ in D contributes two normal arcs
to its boundary which meet in a point P at the equator. The above conventions
imply that s(P) = s.(g). Thus, > s.(¢) =0, where the sum is taken over all
quadrilateral types in D, If D is any normal subset in B(e¢) which does not
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FIGURE 8
B(A!Y cut open along Pal (EZ)

meet ¢, this equation is trivially satisfied since a quadrilateral disc meets the
equator if and only if it has a vertex on e’.

Note that the equation is well-defined up to sign since reversing the
orientation of B(A') changes the sign of the slope of each quadrilateral
meeting A'. If Al is contained in AP, then define su(g) = 0 for each
quadrilateral type in B(A!).

LEMMA 2.3. A normal subset S C ZAl which contains infinitely many
normal triangles of each type can be normally isotoped such that pa (S) is
a normal subset of B(A') if and only if dosal@x, = 0, where x, is the
number of normal quadrilaterals of type g in pa (S).

Proof. Tt follows from the above discussion that the equation is a necessary
condition, and it remains to show that it is sufficient. Given two 3-simplices
in KAI , the pattern on each face is the same: there are three countably infinite
stacks of parallel copies of normal arcs. Fix the discs of S in one 3-simplex A°.
If there are no face pairings for faces of A, then B(A!) = A3 and there is
nothing to prove.

Next assume that there is precisely one face pairing, i, involving faces
of A3, Then the equation is trivial. Let A3 be a simplex with one face A
in the range or domain of ;. Then there is an ideal normal isotopy of A3
which fixes all subsimplices not in A? such that w1 matches the normal arcs
on A2 bijectively with the normal arcs on its counterpart. If there are no
other face pairings involving A3, we are done. Otherwise there is exactly one
other face pairing, and the above procedure can be iterated. It terminates after
deg(Al) — 1 steps.

Hence assume that there are two face pairings for the faces of every
3-singlex. Then the equation 1s non-trivial. Ignoring one of the face pairings,
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po, for faces of A3 one can proceed as in the previous paragraph. Denote by
A3 the last simplex in the iteration, and assume that goo(Az) — A,%, where A2 is
a face of q. It follows from the construction that SﬂA3 can only be altered by
a normal isotopy which fixes all edges of Zi other than the non-marked edges
of A,% ; see Figure 8. To obtain a normal subset of B(Al)N, the no;vmal arcs dual
to the vertices not contained on the marked edges on A? and A7 have to be
identified in pairs, and this determines a unique bijection between the normal
corners on the edges which are not marked. This bijection determines a unique
normal isotopy of SN A} such that equivalent corners have the same image
under pai. Note that pa (§) N OB(AY) is a normal subset.

If pa(S) is a normal subset, then p,i(S) N AB(AL) is a countably infinite
union of circles and the equation > sai(q)x, = O is satisfied. Assume that
pAl(SV) is not a normal subset. Then some component of pAl(E) N dBAY)
crosses the equator an odd number of times, and, since par (S) N AB(AY) is
properly embedded in &B(A!) minus the poles, it follows that >~ s (@)x, # 0.
This proves the lemma. [

2.5 THE Q-MATCHING EQUATION

For each 1-singlex A! in P, the total slope with respect to A', su(q), of
a quadrilateral type g in P is defined to be the sum over all pre-images of
g in B(A!) of the signs of their slopes. If S is a normal subset of P, then it
follows from Lemma 2.3 that the normal Q-coordinate N(S) = (x1,...,X3)
of § satisfies a linear equation for A!, called the Q-matching equation of A' :

3t
0= smlgdx.
=l

This equation is well-defined up to sign since reversing the orientation of
B(A') changes the sign of the slope of each quadrilateral meeting Al.

THEOREM 2.4. Let P be a triangulated pseudo-manifold. For each
admissible integer solution N of the (Q-malching equations there exists a
spun-normal surface S in P with no vertex linking components such that
N(S) = N. Moreover, S is unique up to normal isotopy.

Proof. Tt suffices to show existence; uniqueness follows from ILem-
mata 1.15 and 1.19.

Recall that there is a bijective correspondence between normal disc types in
A and P. Given an admissible integer solution (x1,...,X3), place x; pairwise
disjoint normal discs in A each of which maps to a normal disc of type
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¢; in P. Then place infinitely many normal triangles of each type in each
3-simplex in A such that the resulting collection of normal discs is a normal
subset, denoted by S, of A. Tt suffices to show that there is a normal isotopy 1
of A such that p(z(S)) 1s a normal subset of P.

The normal isotopy is uniquely determined by defining it on the 1-skeleton.
The normal subset S determines a normal subset §A1 in AAI It follows from
Lemma 2.3 that this may be normally isotoped so that pa (SAl) is normal in
B(A"). For each 1-simplex Al in A there exists a unique marked edge Al i
some Ah &. Define i on Al to be an normal isotopy taklng the normal corners
in §NAL to the corresponding normal corners in i Sy NAL). Since each

1-simplex in A corresponds to a unique marked edge, this is well defined and
extends to the desired normal isotopy. [

REMARK 2.5. There are proofs for two special cases of Theorem 2.4 in
the literature. The proofs by Tollefson [12] (for compact manifolds) and Kang
[8] (for topologically finite manifolds with torus ends) construct an explicit
surface. A different proof for 3-manifolds with torus cusps is sketched by
Weeks in the documentation of SnapPea [14]. The above proof is inspired by
the latter.

2.6 PROJECTIVE SOLUTION SPACE

Let B be the coefficient matrix of the (J-matching equations. Considering B
as a linear transformation R — R¢, the set of all solutions to the (Q -matching
equations is ker B. This will be denoted by Q(7). One often considers the
projective solution space PQ(T), which consists of all elements of Q(7T)
with the property that the sum of the coordinates equals one. This is a convex
polytope, and its vertices are called verfex solutions. Since the entries in B are
integers, the vertices of PQ(7) are rational solutions, and hence the subset
of all rational points is dense in PQ(7). Such a polytope is termed rational.
The vector in R¥ with each coordinate equal to one is contained in Q(7).
Thus, dimg PO(T) =dimg Q(7) — 1.

The subset of all admissible solutions in PQ(7T) is denoted by PF(T).
If N € PF(T) is rational, then there is a countable family of spun-normal
surfaces S; without vertex linking components such that N(S;) = a;N for
some «; € R. A spun-normal surface i1s a minimal representative for N, if
the corresponding scaling factor is minimal. Since the admissible solutions
can be found by setting in turn two coordinates from each tetrahedron equal
to zero, it follows that PF(7) is a finite union of convex rational polytopes,
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each of which is contained in a (f—1)-dimensional rational polytope. Addition
of solutions within a convex cell of PF(7) corresponds to the geometric sum
operation,

2.7 SPUN-NORMAI. BRANCHED IMMERSIONS

DEFINITION 2.6 (Spun-normal branched immersion). Let P be a pseudo-
manifold (possibly with boundary). Let § be obtained from a compact
(not necessarily connected or closed) surface by removing some boundary
components. Suppose that S has a cell structure with 2-cells which are either
triangles and quadrilaterals, and that f: & — P is a piecewise linear map such
that the interior of every 2-cell of § is mapped homeomorphically onto the
interior of a normal disc in P satisfying the following extra conditions.

1. f is normally isotopic to an immersion in the complement of the 0-skeleton
of §;

2. f is transverse to the 2-singlices in P;

3. the set of accumulation points of f(S) N PY is contained in P ;

4. if {x;} C f(S) has accumulation point x € P, then x € f(S) or x € P,

Then S contains finitely many quadrilaterals and f is proper. The map f is

called a spun-normal branched immersion, and if f is in general position, then

£(8) is termed a branched immersed spun-normal surface in P. Let x(f) € Z**

be the point defined as follows: the coefficient for each normal quadrilateral

type is the number of 2-cells in S which map to discs of this type.

PROPOSITION 2.7. Let P be a 3-dimensional pseudo-manifold with
triangulation T . If f: S — P is a spun-normal branched immersion, then
x(f)y € QUT). Every non-zero point in Q(T) with non-negative integral
coordinates is represented by a (not necessarily unique) spun-normal branched
immersion with finitely many branch points.

It follows from the definition that x(f) € Q(7); the remainder of the
proposition is proved in Subsection 3.2.

2.8 TRADITIONAL NORMAL SURFACE THEORY

To the 3¢ quadrilateral coordinates (qi,...,q)) adjoin 4¢ further coordi-
nates, one for each normal triangle type. If § is a closed normal surface in P,
let NA(S) € R”" be its normal coordinate. The normal coordinate of a closed
normal surface satisfies three compatibility equations for each 2-singlex not
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FIGURE 9

Normal surface coordinates

contained in P, arising from the fact that the total numbers of normal arcs
“on either side” have to match up. Denote by C(7) the space of all solutions
to the compatibility equations.

Since the compatibility equations can be viewed as conditions associated
to normal arc types, there is precisely one such equation for each edge in
the induced triangulation of 9P° not contained in its boundary. T.et ¢ € BE]O)
be contained in the interior of B,. Then each element of C(7) satisfies
one compatibility equation for each normal arc in B, which ends in ¢ (see
Figure 9(b)). Pick one of the arcs, and write the compatibility equation in
the form ¢/, ; — ¢! = t; — ;1. Then, proceeding to the next arc, one obtains
Gy — @iy = fiz1 — Liyn, etc. Summing all these equations gives on the
left hand side (up to sign) the Q-matching equation of the 1-singlex in P
containing ¢, and the right hand side equals zero. Hence there is a well-defined
linear map

pr: C(T) = Q(T)

defined by projection onto the quadrilateral coordinates.

A canonical basis for C(7) consisting of t tetfrahedral solutions and
e edge solutions is given in [9]. Let A be a 3-singlex in P, and let
{qnt; | i=1,...,3, j=1,...,4} be the set of normal discs types in A3.
The tetrahedral solution associated to A® is:

Wep=LU+b+b+l—q —q—10qs.

For cach edge Al contained in a 3-simplex A% in A there is a unique normal
quadrilateral typewq(Al) in é3 disjoint from it, and there are two normal
triangle types t;(A") and (A!) meeting it. The edge solution associated to
a l-singlex Al in P is:
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wo=p( Y @)+ 6AEY - @),

AlCp—1(Al)

Using signed intersection numbers with edges, it follows from work in [9]
that these solutions form a basis for C(7) (even though this is not stated
in [9] in this generality):

PROPOSITION 2.8 (Kang—Rubinstein). Let P be a pseudo-manifold with
triangulation T. The set of all tetrahedral and edge solutions is a basis for
C(T) as a vector space over R. In particular, C(T) has dimension t+ e.

2.9 (CONVENTION FOR ORIENTABLE PSEUDO-MANIFOLDS

If P is oriented, it is possible to fix a convention for the quadrilateral
labels which determines the (-matching equations without reference to the
abstract neighbourhoods as follows. The orientation of P is pulled back to A.
Assign the parameter z; to any edge of Z?, and label the remaining edges
according to the convention in Section 2.2 in the unique resulting way with
7;,20,27, and denote the quadrilateral types in Zf by 4i.q',q". There is a
1-1 correspondence between quadrilateral types in A} and in A} = p(AD),
and the quadrilateral types in A} are denoted by the same symbols.

The orientation of B(A') can be chosen such that the quotient map
pat: B(AY) — P is orientation preserving. It can be deduced from Figure 7 that
if a 1-simplex in p~!(A') has parameter z;, then the normal quadrilaterals
of type ¢ have positive slope on JB(A'), and the normal quadrilaterals
of type ¢ have negative slope. Label the 1-singlices in P by Al, ... Al
It follows that if a; is the number of pre-images of A] with label z;, then

the contribution to the @Q-maiching equation is a;(g; — ¢gi'). Defining a;; and
H

a;; accordingly, one obtains the (-matching equation of A} :
f
(2.1) 0= (@ — apg; + (a; — d)q; + (@} — apq! ,
i=1

and the coefficient matrix of the system of (-matching equations is given by

1 ! 1 / !
(22) B=

1 / !
ale_ale soa Cl[e—a[e
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3. BOUNDARY MATTERS

It was shown in the first section that a spun-normal surface is uniquely
determined by the quadrilateral discs in its cell decomposition, and that it has
well-defined boundary curves. This section introduces an algebraic version of
the boundary curve map which is defined on the whole solution space to the
(2-matching equations. The discussion is restricted to closed pseudo-manifolds
merely for pragmatic reasons: more notation and words are required if P is
not closed.

3.1 'THE BOUNDARY CURVE MAP REVISITED

Let t be a normal triangle in B, and A’ be the 3-singlex which contains ¢.
Let a be a normal arc in Jt, and A? be the face of A® containing a. There is
a unique quadrilateral type g in A* such that ¢ and t have the same arc type
on A®; see Figure 6. Let g be the Q-modulus of a (with respect fo t), and
give a a transverse orientation (with respect to t) by attaching a little arrow
pointing into the interior of t. This construction is dual to the labelling of
the vertices. The orientation conventions of Subsections 1.10 and 1.11 will be
used throughout this section. Lift the labelling to Eu if B, is non-orientable;
otherwise write B, = By .

FIGURE 10

Quadrilateral slopes and transverse orientation

Let ~ be an oriented path in B, which is disjoint from the O-skeleton,
has endpoints in the 1-skeleton, and whose interior meets the 1-skeleton
transversely. To + one can associate a linear functional v(y) in the quadrilateral
types by taking the positive Q-modulus of an edge if it crosses with the
transverse orientation, and by taking the negative Q-modulus if it crosses
against it (where each edge in B, is counted twice — using the two adjacent
triangles). Evaluating v(~) at a solution N to the Q-matching equations, gives
a real number vy ().
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FIGURE 11
0=v(y)= Z]iczl(— l)iqi is the Q-matching equation

Let ¢ be a vertex in the triangulation of B, contained in the 1-singlex Al
in P, and consider a pre-image ¢ of ¢ in En. Then the linear functional ()
associated to a small circle v with clockwise orientation around ¢ gives the
Q-matching equation of Al by setting v(v) = 0. This can be deduced from
Figure 11.

LEMMA 3.1. Lei ~ be an oriented, closed loop in §n and N € O(T).
The number vn(7y) € R depends only on the homotopy class of v and defines
a homomorphism vy . m(By) — (R, +).

Proof. Since vy(v) = 0 if ~ is a small circle about a vertex of En,
it follows that vy is well-defined for homotopy classes of loops which intersect
the 1-skeleton transversely away from the O-skeleton. [

Assume that B, is a closed, orientable surface of genus g, . Corresponding
to a basis of H;(B,) choose the system of 2g, closed oriented curves shown
in Figure 12. Then one obtains a linear map v,: Q(7) — R defined by

3.1 va(N) = (=on(An), un(p), - -y =g, )y o (itg,,)) -

Let g = Zg(ﬁu), and let v: Q(T) — R% be the map defined by v = @, .

There is the following canonical isomorphism Z29v = Hi(By;Z). Let 7y
be an oriented closed curve on B,. Then (X1, V15 - -5 Xgys Vg, ) € Z29° maps
to [v] € Hi(By:Z) if and only if e(v, \;) = —x; and «(~, ;) = v; for each i,
where ¢ denotes the algebraic intersection number, This convention identifies
the standard system of curves with the standard basis of Z29 . This extends
to a unique homomorphism

hy: R¥ 2 H/(B,;R) — H{(B,:R).
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#1 Hi P

M \i /@ Ak

FIGURE 12

The shown surface S of genus k, k> 0 even or odd, is placed in R® such that it
is invariant under reflection in any of the three coordinate planes. It follows that the
antipodal map (x,y,2) —+ (—x, —y, —2) restricts to an orientation reversing homeo-
morphism with quotient S so that the quotient map S Sisa covering of degree two.

It follows from the definitions that h,(Z>9°) C H,(B,;Z).

DEFINITION 3.2 (Boundary curve map). Let dy = iy 01y, and let
9: Q(T) = @eH1(Bu; R)
be the map defined by 9 = $©,0,.

The map v, and hence the boundary curve map, has the following
geometric property :

PROPOSITION 3.3. If N is the normal Q-coordinate of the spun-normal
surface S, then hy o vy(N) = 0,(9).

Proof. It suffices to assume that P is oriented. Let S be a spun-normal
surface in P, and denote by S the subcomplex consisting of all normal
quadrilaterals in S. Orient the edges of normal quadrilaterals such that the
orientation of the normal arc, the corresponding normal vector #, pointing
towards the dual vertex and the transverse orientation form a positively oriented
basis (see Figure 13). It follows that whenever the quadrilateral disc § has
positive slope with respect to Al, then its oriented edges point away from
§ N A!, and if it has negative slope then they point towards the intersection
point. It follows that at each point of intersection of § with a 1-singlex, the
number of oriented edges pointing towards it equals the number pointing away
from it. In particular, on¢ obtains an oriented 1-chain ¢ of quadrilateral edges
in 98" along which subcomplexes made up of triangles meet S' in S.

The normal vector 7, and the orientation of P determine an orientation of
cach vertex linking surface B, . Give each transversely oriented curve in B, NS
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(a) Orientation of quadrilateral sides (b) Construction and labelling of oriented arcs

FIGURE 13
Oriented 1-chains of quadrilateral edges

the orientation induced from the orientation of B,. Then [B, NS] = 9,(S) €
H,(By; 7). It suffices to show that ¢ can be viewed as a union of oriented
closed curves |J¢; with the property that each ¢; is homotopic in SUB, to
an oriented simple closed curve &; in B, such that [B, NS1= > [h].

The following construction determines |Jc; and (Jh;. Given N = N(S),
associate a modulus and a transverse orientation to 1-singlices in B, as
follows. Identify (-moduli with the values given by N. Let s be an edge
in By, and let t and t' be the triangles in B, meeting in s, and n and »’
be the associated Q-moduli. If # = #’, then give s the modulus zero and
no transverse orientation. If n > »n’, then give s the modulus n — n’ and
the transverse orientation inherited from t, and if n < n’, then give s the
modulus n’ —n and the transverse orientation inherited from t'. The modulus
of s determines the number of quadrilateral edges of the same arc type as s
which are identified with edges of normal triangles in §, and the transverse
orientation determines the 3-singlex containing the corresponding quadrilaterals
(see Figure 14),

Let ¢’ be the union of edges in B, with non-zero modulus. A unique
collection of transversely oriented simple closed curves on B, is derived
from ¢’ as follows. If s is an edge in ¢ with modulus n and transverse
orientation pointing into t, place n arcs in t, each of which has endpoints
identical to s, any two of which only meet in their endpoints, and give
all of them the induced transverse orientation (pointing towards the vertex
of t opposite s; see Figure 13). These arcs are in a natural bijective
correspondence with edges of quadrilaterals in S meeting edges of triangles.
A bijection between endpoints of arcs at a vertex v of B, is now defined
which corresponds to the identifications of quadrilaterals and triangles in §.
Please refer to Figure 14(b) and 14(d). Let H, be the union of all triangles
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(c) Example 2 (d) Example 2

HFIGURE 14

Two examples; Figures (b) and (d) show : (Top left) The pattern on
the upper hemisphere of B(A'); (Top right) The edge labelling on
By ; (Bottom) Introducing arcs and resolving intersection points at v

in B, containing v, and let A be the set of arcs which have not been
paired yet. An outermost pair ~ and § satisfies the following two criteria
(this is a variant of constructions in [12, 8]):

1. If the endpoints of v and ¢ are identified at v, then the transverse
orientations of ~ and 0 match.

2. The disc cut out from H, by ~Ud which the transverse orientation of
points away from does not contain any arcs in A.

If an outermost pair is found, identify their endpoints and isotope the union
away from v (opposite to their transverse orientation). Then repeat the above
by replacing A by A — {~,d}. Thus, after glueing and isotopy, one obtains a
unique disjoint collection C of simple closed curves, each with a transverse
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orientation. Orient these curves using the above convention for orientation of
(Q-edges. Tt follows from the construction that:

1. Each ¢; € C is homotopic in SU B, to a unique closed (possibly not
simple) curve ¢!’ of quadrilateral edges in 95" (e.g.introduce labels for the
arcs specifying a 1- and a 2-simplex of B, and a normal quadrilateral). In
particular, ¢! inherits a well-defined orientation from ¢; which agrees with
the orientation of the quadrilateral edges.

2. The element in Hi(B,;Z) represented by C is 9y(S).

This completes the proof. [

3.2 SPUN-NORMAL BRANCHED IMMERSIONS

Proof of Proposition 2.7. Tet N = (x;) be a point in Q(7) with non-
negative integral coordinates. If P is not closed, one may double P along its
boundary and construct a spun-normal branched immersion corresponding
to the doubled solution (noting that doubling reverses signs of corners).
The restriction of this to either half gives the desired map. Hence assume that
P is closed. At first, a normal branched immersion i8 constructed which is
not in general position. For each quadrilateral type ¢; place x; copies of
this type in P such that all vertices are barycentres of 1-singlices; this is
viewed as a map f;: S, — P, where S, is an abstract union of } x; pairwise
disjoint quadrilateral discs. Choose each B, such that its intersection with the
1-skeleton consists of barycentres.

Using the construction in the proof of Proposition 3.3, a finite family, C,,
of pairwise disjoint transversely oriented simple closed curves in By can be
constructed with the property that each curve in C, is homotopic to a unique
curve in the I-skeleton of B, ; denote the resulting homotopy taking C, into
the 1-skeleton of By, by hy: By x I — By

Note that the spinning construction can be applied to any finite collection
of pairwise disjoint, transversely oriented, non-separating (not necessarily
normal) curves on B,. After performing the straightening, the result is a
union, S, of normal discs in N, and normal discs in P which meet B, in
normal cells; S NN, is properly embedded in N,. Applying this spinning
construction to C, yields a subset F, of N,. Then A, can be extended in a
neighbourhood of B, in N, such that h,(Fy, 1) meets P in normal triangles
and Fy NNy = ho(Fy,0) NNy is isotopic o Ae(Fy, 1) NNy . Let S, be the
union of all connected components of /,(F,, 1) which are not vertex linking.
There is a triangulated (possibly non-compact) surface S, and a simplicial
isomorphism f,,: S, — S} .
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Lift 8" = £,(S,)Us/a(Sy) to A. Let a be a normal arc in P with endpoints
barycentres of 1-singlices, and denote its pre-images in A by ag and o;.
It follows from the definition of moduli that there are as many normal discs
in p~1(S') containing ay as there are normal discs containing a; . Moreover,
these numbers are finite. One can therefore define an arbitrary bijection between
these two sets which determines a unique bijection between the corresponding
boundary arcs in S, Uy S,. Do this for all such normal arcs and denote the
resulting quotient by S. Then § is a triangulated (possibly non-compact)
surface S and there is a well-defined normal branched immersion f: S — P
obtained from glueing the maps f, and f,. The set of branched points is
contained in the pre-image of all barycentres; hence there are finitely many
branched points. It follows from the construction that x(f) = N, and the
map f can be homotoped into general position if desired. [

33 ANALYSIS OF THE LINEAR MAPS AND PROOF OF THEOREM 0.1

If B, is non-orientable, then it may be assumed that the non-trivial deck
ransformation P — P induces an involution o on En which coincides with
the antipodal map in Figure 12. Whence opu; — ,u,;ul_H_i and oA = Ag, 41-i.
Denote the resulting involution on Hl(ﬁn) by o also. It follows that
vn(pi) = vnlop) = —un(ptg,+1-i), and vn(N) = vn(oA) = vn(Ag,11-4).
This observation yields the following upper bound:

LEMMA 34, dim(imv) < 2x(P) —v,.

Proof. 1f B, is orientable, then 2g, = 2 — X(En) =2 — x(By).

If B, is non-orientable, then g, = 1—x(By). It follows from the description
of 7 that the kernel of v., has dimension at least g, if g, is even.
If go = 2k+ 1 is odd, then wy(ugps1) = va(operr) = —vn(pgyr) implies
vn(pe+1) = 0, and the kernel of v., has again dimension at least gy .

Thus:

dimimy) <} 2-xBo)+ Y 1-x(B)

or’ble non-or’ble

=20, + v, — xX(OP°) = 2x(P) — vy,
since P is closed and hence x(9P°) =2v —2x(P). O
LEMMA 3.5. Omne has kerv = impr. Moreover, if N € kerv, then

proY(N) = L+ span{Na(By), . .., Nx(B,)} for some L € C(T). In particular,
the image of pr: C(T) — Q(T) has dimension t+e —v.
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Proof. First assume that B, is orientable. Let N € Q(7). Assume that
the induced triangulation 7, of B, supports the triangle coordinates fq, ..., &.
If a value is assigned to fy, then the Q-moduli of the common edges uniquely
determine values for the adjacent triangle coordinates such that the matching
equations are satisfied. It needs to be shown that these assignments are well
defined globally if and only if N € kerv.

Indeed, choose a closed, oriented, simple path ~ in By, disjoint from the
0-skeleton, transverse to the 1-skeleton and meeting 2-cells in at most one
normal arc. Let t be a 2-cell of B, which ~ passes through, and assume
that fy is the associated triangle coordinate. If fy 1s given any value, then the
adjacent coordinate f; of the next triangle that ~ passes through must take the
value t; = (go—q;)+f, where —(go—q;) 1s the oriented sum of the Q-moduli
associated to the edge crossed by ~v. In this way, uniquely determined values are
given to the coordinates of triangles traversed by ~, and upon returning to the
initial triangle, one has the equation fy = —wn(v)+io, which is satisfied if and
only if vy(v) = 0. Similarly, values can be assigned to the remaining triangle
coordinates supported by 7,. This procedure is well defined, if and only
if vy : m(By) — (R, +) is the trivial homomorphism. Changing the initial
value assigned to fy changes the triangle coordinates by a multiple of Na(By).

Now assume that B, is non-orientable. Then the above can be done for
the lift of the triangulation of P to the orientable double cover P.let Ty and
f; be normal triangles on §n which are exchanged by the non-trivial deck
transformation o. Let v be a closed normal path in By passing through 7, and
f; which is invariant under o . Then -~ can be written as the union of arcs a and
o(a) with vy(a) = vn(o(a)). Then 0 = UN(’y) = vy(a) + vn(o(a)) = 2uy(a).
Whence the above procedure assigns the same values to 7y and 7. It follows
that the normal triangles constructed in P can be isotoped to be invariant
under o. [

LEMMA 3.6. The matrix B has rank e — v,, and we have dim Q(7) =
t—e4v, =2t+ x(P) — v, and dim imv = 2x(P) — v,.

Proof. 1t will first be shown that the rank of B is at most e—w,. The rank
of B equals 3t — dimker(B) = ¢ — dimker BT . It therefore suffices to find
v, linearly independent elements in ker BT . The dual system of equations
described by the transpose has one equation for each quadrilateral type and
one variable, x,, for each 1-singlex A' in P. The equation associated to g
is 0 = > sa(g)xa, where the sum is taken over all 1-singlices in P and
sa(g) is the total slope of ¢ with respect to A! introduced in Section 2.1,
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Assume that P is orientable. In this case, g has the same slope at opposite
normal corners, and opposite signs at normal corners sharing a normal arc.
Let S be a vertex linking surface. Then the assignment x,:(S) = #(S N Al)
defines an element in ker BY . Since each triangle disc is uniquely determined
by its intersection with the 1-simplices, it follows that the set of v solutions
thus obtained from the v vertex linking surfaces is linearly independent, giving
rank at most ¢ — v.

Hence assume that P is non-orientable. Considering its lift to the orientable
double cover, one finds that if the edge of a quadrilateral disc in P is
normally isotopic into an orientable vertex linking surface, then the signs
at the respective corners are opposite. This implies that the above argument
can be applied to an orientable component of dP°. It does not, however,
work for non-orientable components. This gives rank at most e¢ — v, in
general.

Thus, dim Q(7) > 3t — e + v, = 2t + x(P) — v,. It needs to be shown
that this is also an upper bound. One has 2t + x(P) — v, < dmQ(7) =
dimker v + dim imv = dim impr + dim imv = t + ¢ — v + dim imv. Thus
2x(P) — v, > dimimvy > 2x(P) — v,. This forces equality and hence the
conclusion. [

LEMMA 3.7. kerd =kerv.

Proof. Tt follows from the definition that kerrv C kerd. Assume that
d(N) = 0. If B, is orientable, then A, is an isomorphism which implies
vo(N) = 0. Hence assume that B, is non-orientable.

Since dim im v = 2x(P)—vy, it suffices to show that whenever ¢ represents
the homotopy class of an oriented 1-sided simple closed curve in B, with
the property that v,(N) determines &, then «(v,8) = O for each standard
generator.

Indeed, since § is 1-sided, we have o(0) = 6. Thus, ¢(6,7) = vy(y) =
n(a() = 1, o)) = (e (0), (7)) = —u(d,v). Whence «(5,~) = 0 for each
standard generator, which gives v,(N)=0. [

Proof of Theorem 0.1. 'The first part of the statement follows from the
above lemmata in conjunction with the discussion in Subsection 2.6.

Since kerd = ker v, it follows that dim imv = dim im @, and hence that
d is surjective. Since v is defined over the integers, its restriction to integer
lattice points in Q(7) has image in Z?9, whence O has image of finite index
in ©uH1(By;Z). O



NORMAL SURFACES IN TOPOLOGICALLY FINITE 3-MANIFOLDS 375

FIGURE 15

Orientation of quadrilateral sides and intersection numbers

3.4 INTERSECTION NUMBERS AND PROOF OF THEOREM 0.2

Assume that P is oriented. The material in this subsection is based on
the observation that one can determine the algebraic intersection number of
the oriented boundary curves of two spun-normal surfaces from their normal
(Q-coordinates. The intersection pairing on H;(B,; R) pulls back to a bi-linear,
skew-symmetric pairing + on R29° . Taking sums gives a pairing » on R29
with the property that for any N,L € Q(7), we have:

VN R L) = 3 n W) R () = Y o(B), 8(0))

pe PO pec PO

To obtain a corresponding bi-linear, skew-symmetric form on Q(7), let

0 |

and let C; be the (3¢ x 3¢) block diagonal matrix with ¢ copies of C on its
diagonal, Then for any N,L € Q(T), define:

(3.2) (N,L) = NTC, L.

LEMMA 3.8. Let P be an oriented, closed pseudo-manifold. For all
N,Le Q(T):
(N,L) = v(N)*v(L).

Proof. One can compute (N,L) by summing intersection numbers ob-
tained for normal quadrilaterals over all 3-singlices as follows (see Figure 15).
If N and L have different non-zero (@ -coordinates in some 3-singlex, the
associated normal quadrilaterals are naturally transverse, and the contribution
to (N,L) is (up to sign) twice the product of the Q-coordinates, and the sign
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is determined by the order of the surfaces. If they have the same non-zero
(2-coordinate in some tetrahedron, the contribution is zero, independent of
the chosen transverse intersection. Given the map v and the orientation con-
ventions, this gives precisely the intersection pairing in homology of vertex
links. [

Proof of Theorem 0.2. If R is a maximal convex polytope in PF(T),
then it is the intersection of a (dimR + 1)-dimensional vector space R’
with the unit simplex. The set PF(7) is obtained by setting in turn two
coordinates from each 3-singlex equal to zero. Thus R’ is the intersection of
Q(T) with a t-dimensional subspace of R¥, and its dimension is at least
2t 4+ x(P) —vy)+ 1 =3t = x(P) — u,.

Assume that P is oriented. For any N,L € R, one has v(N)x v(L) =
(N,L) = 0. The image v(R') therefore lies in a self-annihilating subspace
of R% . Its dimension is thus at most g = y(P), giving dimR’ < y(P) +
dim(R’ Nkerv). Thus dimR = dimR — 1 < x(P) + dim(R' Nkerv) — 1 =
x(P) + dim(R N kerv).

If P is non-orientable, the previous paragraph applies to P, and we have
X(ﬁ) = 2x(P) — v,. This completes the proof. [

4, EXAMPLES

A general procedure to determine the boundary slope of a spun-normal
surface on a vertex linking torus is given. Then the figure eight knot
complement and the Gieseking manifold are discussed. These examples can
be found in [9].

4.1 BOUNDARY SLOPES ON TORI

If B, is a torus, then the boundary curve map gives a convenient way
of determining the boundary curves of a spun-normal surface § from its
normal (-coordinate N = N(S). In this case B, may be chosen such that
it meets S in a finite family of parallel simple closed curves, all with the
same transverse orientation, and it meets N, in the same number of parallel
open annuli. The homology class of such a curve is termed the slope of S
on B,. Since N, \ {v} is orientable, one can choose generators {A, u} for
m1(By) such that together with a normal vector n pointing into Ny, {A, u,n}
is a positively oriented basis for TN, . This corresponds to the orientation
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FIGURE 16

An ideal triangulation of the figure eight knot complement

convention of a standard meridian-longitude pair of a knot complement. Since
vy is a homomorphism, the following holds under the above assumptions.
1. TIf vy(p) = vn(A) =0, then § is disjoint!) from B,.
2. If wn(u) #0 or wa(A) # 0, then let d > 0 denote the greatest common
divisor of the numbers |un(p)| and |wy(N)|. Put p = —ew(A)/d and
g =wvn(p)/d. Then s = P A7 has vn(s) = 0 and hence it is a boundary
slope of §. Furthermore, S has ¢ boundary curves on By .
Now assume that each vertex linking surface is a torus; label the surfaces
B, by Ti,...,T,. Choose generators {A;, u;} for each T; as above. The
oriented boundary curves of a spun-normal surface S with normal Q-
coordinate N = N(§) are then determined by the vector:

(4.1) (—enD, on (), - —ow(A), (i) € 277

and boundary curves of linear combinations of compatible surfaces can be
determined using linear combinations of vectors of the form (4.1) since v is
additive. Moreover, the intersection pairing has the following form:

1 (o,
(4.2) vN)* L) = = > (v ) = Qv (i)
i=1

4.2 'THE FIGURE EIGHT KNOT COMPLEMENT

Let M denote the complement of the figure eight knot. An oriented,
ideal triangulation of M is encoded in Figure 16. Since M is oriented, the

1) This is also shown in the file normal_surface_construction.c in [14].
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convention given in Subsection 2.9 will be used, with the quadrilateral types
dual to w® and z%® denoted by p* and g™ respectively. One computes :

-1 -1 2 -1 -1 2
= ( 1 1 -2 1 1 —2) ’
which determines a single (-matching equation :

O=p+p —22"+q+4q —29".

This implies that the space PQ(7) is four-dimensional.

FIGURE 17

The induced triangulation of the vertex linking torus, where the sides of the rectangle are
identified by translations parallel to its sides and triangle £ is dual to vertex i in Figure 16.
The shown elementary curves are the standard meridian (solid) and longitude (dashed).

The induced triangulation of the vertex linking surface is shown in
Figure 17 and used to determine the linear functionals associated to the
standard peripheral curves:

v(\) =2p+2p —4p”,
v = —p' +p" —q+4".

The normal ) -coordinates of closed normal surfaces satisfy v(A) = v(pu) =0,
whence any closed (embedded) normal surface is vertex linking. It follows that
PF(T) is zero-dimensional. A direct calculation reveals that there are four
projective classes of admissible solutions; all have minimal representative a
once-punctured Klein bottle. Their normal ()-coordinates and boundary slopes
are listed in Table 1. This calculation in particular shows that no spun-normal
surface is a Seifert surface for the knot.

4.3 THE GIESEKING MANIFOLD

The Gieseking manifold, M’, is double covered by the figure eight knot
complement, M, and the covering transformation is encoded by the involution
(05)(14)(26)(37) on the vertices in Figure 16. The resulting ideal triangulation
7' of M’ has one ideal 3-singlex and one ideal 1-singlex. Denote the three
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TABLE 1
Normal surface in the figure eight knot complement

solution v(p) | v(A) | slope
(2,0,0,0,0,1) 1 4 —4
0,2,0,0,0,1) | —1 4 4
(0,0,1,2,0,0) | —1 —4 —4
(0,0,1,0,2,0) 1 —4 4

quadrilateral types in M’ by r,#, 7", where r® lifts to p. The Q-maiching
equation is r 4+ ' — 2r” = 0. It can be worked out from the triangulation
or by observing that the induced involution on quadrilateral types in M is
p P " ¢"). Thus, dimPQO(T') =1 and PF(T") = @.

The boundary curve map is defined via the induced triangulation of the
double cover of the Klein bottle; using the generators from the above section,
one has: v(A) = —2r —2r' + 47" = 0 and v(u) = —2r + 2r”. Generators
X', 1/ can be chosen for Hy(B,) > Z$Z, such that the map H,(B,) — H;(B,)
is given by A — X and u — (/)*> = 0. The composition

QT — Z* — H (By; R) — H\(By; R)
is then
N = (—n(N), vw() = (0, n (1)) = un(OX — un(N .

Since v(p) = —=2¢" 4+ 27", it follows that the map J0: O(7T") — H1(By;R) is
surjective. Its restriction to integral points in Q(7’) has image of index two
in Hi(By;Z), which gives a subgroup of index four in Hi(B,).
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