Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 54 (2008)

Heft: 3-4

Artikel: Competing prime asymptotic densities in Fq [X] : a discussion
Autor: Ballot, Christian

DOl: https://doi.org/10.5169/seals-109941

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-109941
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 54 (2008), 303-327

COMPETING PRIME ASYMPTOTIC DENSITIES IN F,[X] :
A DISCUSSION

by Christian BALLOT

ABSTRACT. We present a discussion on various prime asymptotic densities in
polynomial rings F,[X] in order to decide which one best emulates the usual concept
of prime natural density in Z.

0. INTRODUCTION

Let II denote the set of rational primes 2,3,5,7,11,... and let § be a
subset of I1. The Dirichlet density ¢ of § is defined as

D pesh”’

6 =40(5)= lim -, provided the limit exists.

51+ ZPEH P
For n an integer > 1, denote by Il(n) the number of primes < n and by
S(n) the number of primes < n that are in S. The (prime) natural density d
of § is defined as

(0.1) d = dz(S) = lim S(n)/TI(n),  provided the limit exists.

Let us focus on various facets of the relationship that exists between these
two kinds of densities.

In general it is known that if d(S) exists then §(S) exists, with §(S) = d(S)
(see for instance [Des], Chap. 8). The converse may be false. But sets of
primes in arithmetic progressions, or sets of primes that split completely in
some normal number field, not only have a Dirichlet density, but also a natural
density ([Des], Chap. 8 and [Pra], Chap. 5). More generally, any set of primes
defined by an Artin symbol prescription, as specified in the Chebotarev density
theorem, has a Dirichlet and a natural density ([Nar], Theorem 7.10%).
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So let § be a set of primes in the ring Z of rational integers. Suppose
we make a theoretical calculation, say using the Chebotarev density theorem
or some of its corollaries, that shows that S possesses a Dirichlet density 9.
It is often reassuring to compute successive ratios S(n)/I1(n) and see that they
do seem to approach 4. And in our experience, if the theoretical calculation
of & is correct, relatively small sets of primes often suffice to yield a close
agreement to 9, thereby providing a practical check on the theory. In other
words, the (prime) natural density ¢ of § often turns out to be a better
computational tool than the Dirichlet density.

From what was said above, sets of primes having a Dirichlet density and
no natural density are somewhat unusual. There is an interesting example due
to Bombieri. Indeed, Serre ([Ser], p.76) reports that Bombieri showed him
a proof that the set of rational primes whose first decimal digit is 1 has
Dirichlet density log;,2, but no natural density.

In 1958, Sierpifiski [Sie] raised the question of the proportion of primes
p for which 2 has even order (mod p). Several authors tackled the question
before Hasse [Ha] fully settled the Sierpinski question: this set of primes has
Dirichlet density 17/24. And it is not hard to show that this set also has a
natural density (necessarily the same). The integer 2 may be replaced by a
general a € Z, |a| > 2 and various densities be obtained, so the Sierpirski
question yields sets having both Dirichlet and natural densities.

A similar situation holds for Artin’s conjecture, but modulo some Riemann
hypotheses. 1t is then known that sets of primes having a prescribed integer
as a primitive root have both a Dirichlet and a natural density.

This paper is concerned with finding a notion of (prime) natural density
in the ring F,[X], where F, is the finite field with g elements, with
properties that best match those described above for the ring Z. By “best”,
we mean that the selected notion must be as consistent as possible : properties
of prime natural density in Z, both in its computational aspects and in
its relationship to Dirichlet density, have to be preserved. Also, should a
set of primes in Z possess, or not, a natural density, then we expect
its most obvious analogue in F,[X] to have, respectively not to have, a
natural density. In particular, the Sierpifiski question, an K, [X]-analogue
of which we treated in [Bal], the Bombieri example mentioned above,
sets of primes related to Artin’s conjecture and the Chebotarev sets, i.c.
sets of primes to which the Chebotarev density theorem directly applies,
are used as special guides. In fact, four types of asymptotic densities
defined in relation to sets of primes in F,[X] are considered. Two of
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these notions are shown to be equivalent, so that essentially three distinct
notions are being studied and compared. Of course, each of these three
notions is conceptually sound, i.e. applying the principle by which it is
defined to the ring Z yields the common prime natural density (0.1)
in Z.

The paper contains three sections and a conclusion. The main discussion
is in Section 1. We have decided to retain in part the order of ideas as they
occurred to us rather than to give a more concise and less naive re-written
account. The technical lemmas that sustain the discussion have most likely
appeared in other contexts. They are often elementary results of classical
analysis, but since their proofs are short and to the point, we included them in
our text. We also hope that this will appeal to a broad readership. Occasionally
we will point to a reference that could have been used to supersede our original
result. One of the asymptotic natural densities studied turns out to be equivalent
to the Dirichlet density. Section 2 is dedicated to proofs of this theorem.
Therefore we are left with essentially two notions of asymptotic density that
differ from the Dirichlet density. Section 3 examines the relationships that
sets of primes related to Artin’s conjecture and Chebotarev sets have to these
remaining two asymptotic densities. The results concerned with the comparison
of our various densities appear at several places in the paper, but are gathered
in Theorem A in the conclusion.

It is possible to grasp the main ideas of the paper and avoid the technical
lemmas. Read Definition 1.3 where the four asymptotic densities are defined,
skim through Discussions 1.5, 1.9, 1.15 and Section 3, and read Theorem A
and the conclusion.

In the analogy between F [X] and Z, we consider the set of monic
polynomials as the analogue of the set N of natural numbers, and the set [ of
monic irreducible polynomials as the analogue of the set I1 of rational primes.
The degree of a polynomial P is written deg P and the size of the quotient
ring F,[X]/P, i.e. the norm of P, is denoted by |P|. If § is a set of primes
of F,[X], then we define S, as the number of primes in S of degree 7.
Thus I, denotes the number of monic irreducible polynomials of degree n
in F,[X]. The classical prime number theorem says that m(x), the number of
rational primes p < x, is asymptotic to x/logx as x — oo. Here we will
often use the fact that I, ~ ¢”/n. This result is seen as an analogue of the
classical prime number theorem and is called the prime number theorem for
polynomials. Note that ¢" is the number of monic polynomials of degree n
in F,[X] and that putting x = ¢* we have I, ~ x/ log, x. See [Rol, p. 14 for
further details.
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We recall here that a non-zero integer ¢ is said to be a primitive root of a
prime p if the class of a (mod p) generates the multiplicative group (Z/pZ)*.
Artin’s primitive root conjecture 18 that any non-square integer a different from
—1 is a primitive root for infinitely many primes p. The conjecture is still
unproved for any given such @. However, conditionally to Riemann hypotheses,
more was proved by Hooley since for such a’s the set of primes p having a as
a primitive root is not only infinite but has a positive natural density. Similarly
a polynomial A in F,[X] is said to be a primitive root of a prime P € F [X]
if the powers of A (mod P) cover all of the cyclic group (F,[X]/P)*. For
instance X is a primitive root of the prime X> + X + 1 € F»[X].

In the famous paper [Bi] in which Bilharz proves an equivalent of Artin’s
conjecture for function fields, modulo the function-field Riemann hypothesis
(not yet proved at that time), Bilharz shows (pp.490-492) that if the set of
primes having a given polynomial as a primitive root has a Dirichlet density,
it may not have a natural density, where natural density is defined as
(0.2) lim @, where S(n) = iSk and I(n) = ilk.

i A k=1 k=1
Bilharz attributes this interesting observation to Davenport. In [Len], p.203,
Lenstra recalls this same observation and adds that his results when applied to
the number field case remain valid if Dirichlet density is replaced by natural
density, but that this is not true in the function field case.

In this paper we challenge the idea that prime natural density should
be defined as above. Were other equally sound definitions of prime natural
density considered 7 Our own doubts about this came from studying the
Sierpinski question for F,[X] in [Bal], where we found that the successive
ratios S(n)/I(n) in (0.2) do not converge to the Dirichlet density given by the
theory. For instance, the set {p € Z; p | 2"+ 1 for some n} has Dirichlet and
natural densities equal to 17/24 [Ha], whereas the set {P € F3[X]; P | X"+ 1
for some n} also has Dirichlet density 17/24, but no natural density as defined
in (0.2). However it has ds-natural density 17/24 (see Definition 1.3).

Identifying a notion of asymptotic density in F,[X] such that sets of
primes, defined in analogy to sets of primes in the classical setting, possess
a density 18 not just a mind game: it has consequences. In fact, the present
paper led us to discover an elementary method for computing some densities
that, unlike the classical case, avoids any use of either algebraic means or the
Chebotarev density theorem (see [Ball, Section 4, and [Ba2]). This was done
with explicit error terms and we foresee more consequences, in particular if
the results of [Ba2] can be proved in more generality.
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However, from the simple point of view that we adopt in this paper, sets of
primes have, or don’t have, a given form of density, regardless of error terms.
But it is worth mentioning that the strongest form of density we consider here
(the d -density; see Definition 1.3) can be split into further relevant categories
depending essentially on the asymptotic size of the error term. Such types of
prime densities in F,[X] have been compared to each other in [Ca], Prop. IV.2.

ACKNOWLEDGMENT. I thank Jean-Paul Bézivin, Mireille Car and Patrick
Morton for reading early versions of this paper and for their interest and
comments, in particular for Jean-Paul’s help with formula (2.1). I am also
grateful to Carl Pomerance for sending me an outline of a proof he had shown
someone some fifteen years earlier, that analytic density implies logarithmic
density. I'd like to mention Bodo Volkmann’s help in translating [Shp] from
the Russian in July 2006 in Saint-Etienne. I also thank the anonymous referee
for a very careful reading and for pointing out the reference [Frlal.

1. MAIN DISCUSSION
First we recall

DEFINITION 1.1. A set § of primes in F,[X] is said to have Dirichlet
density 6 if the limit below exists and

P —S
i SeslPl”
so1 S per | P

To sort out various plausible competing notions of natural density, we will
make use of the set 7 of all primes of even degree in F,[X].

1
PROPOSITION 1.2. The set T has Dirichlet density o(T) = 5

Proof. Note that for s > 1,
Zl L :—1og(1—q1‘5)~10g—1 as 5 — 1T

1 =1 _
ol ng s—1
(P’Hopital’s rule will do). Replacing ¢ by q2 above yields logﬁ ~
1 1 ; 1 1 ; ;
anl D Putting wv,(s) = 7 oD the previous equivalence says that

Y s V2a(8) ~ %log ﬁ Put u,(s) = I,/q™. Since I, ~ ¢" /n, the sequences
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of functions u,(s) and v,(s) are uniformly asymptotic to each other, i.e. there
exists a sequence, say &,, independent of s, such that ¢, — 0 and for all s,
Un(8) = (1 +2,)u,(s). Since both > ., v,(s) and > ., vy,(s) tend to oo as
s — 11 and the functions v,(s) are all continuous at 1 and positive, we have

Zun(s) ~ Zvn(s) and Zugn(s) ~ ngn(s) as s — 17 .

n>1 n>1 n>1 n>1
Therefore
Doper P17 Xast () X, van(s)
ZPGI‘Prs B EnZlMﬂ(S) - anlvn(S)
thus 6(7) =1/2. O

1
~= as §s— 1T
2

A priori at least three or four kinds of prime natural density can reasonably
come to mind. We define four of them.

DEFINITION 1.3 (Of four kinds of prime natural density). Let S be any
set of primes in F,[X]. We say that

1) S has a d;-density if there 18 a real number d;(S) such that

L. . . NS,
(1.2) liml— = d1(85) or, equivalently, such that lim L a4, (5);

i) § has a dy-density if there is a real number @»(S) such that

n

(1.3) lim (Z )/ (Do k) = axs)

k=1
or, equivalently, such that lim (37_, §)/(30_, L) = dy(S);

iil) S has a ds-density if there is a real number d3(S) such that

N
o1 Sn
(1.4) I%nﬁ El E = ds(S)

n:lq_”_

or, equivalently, such that lij{Tn%ZN B = dx(S); and

iv) S has a ds-density if there is a real number ds(S) such that

(1.5) lim (i Si/q") / (i I/q") = di(S)
n=1 n=1

: : 1 N 5
or, equivalently, such that hj{Tn @ anl Sn/q" = da(S).
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Each d;, 1 <1 <4, is defined as the limit of some sequence of ratios ry
as N — oc. We will call such a ratio ry an approximant 1o d; (ry being the
approximant of order N).

REMARKS. 1) These asymptotic prime densities dy, d», ds and ds can
be referred to respectively as local, global (or cumulative), average and
Dirichlet average.

ii) The second equality in (1.2) comes from the fact that I, ~ g"/n.

iii) The second expression for ¢» in (1.3) holds because ZZ:1 Iy ~
S i1 ¢*/k. Apply Lemma 1.6 with ux = I and v = ¢*/k 1o see this.

iv) The validity of the second equality in (1.4) can be deduced from
Lemma 1.4 below.

v) Since I,/q" ~ 1/n, Lemma 1.6 applied to u, = I,/q" and v, = 1/n
yields Zgil L/q" ~ Zgil 1/n ~ log N, whence the second equality for d4(S)
in (1.5).

LEMMA 14. Let x, and y, be bounded sequences of non-negative real
numbers. Define for all N > 1, the arithmetic means Xy = N~! ZL X, and
yy = N1 ij:l Yn. Suppose there is a sequence e, converging to 0 such
that x, = (1 +¢c,)v, for all n > 1. Then the arithmetic means Xy and Vy are
either both convergent or both divergent, in case of convergence they share
the same limit.

Proof. By hypothesis, there is a sequence £, — 0 such that x, = (14¢,)v,.
Therefore Xy = ¥y + N~ Zivzl £.Vn, and hence
N
Xv —In| <B-NT'D |ea| =0 as N = oo,
n=1

where B is an upper bound for y,. ]

DiscussioN 1.5:  Evidence in favour of 4, and 4.

Several analogues to classical density results are true with respect to
the d;-density. This is for instance the case of Dirichlet’s theorem on primes
in arithmetic progressions. Indeed, if A,M are two relatively prime elements
in F [X], with degM > 1, then the set § of all primes of the form A 4 Mx,
X € F,[X], satisfies

S, 1
1, b P
() oo I, @)
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where (M) is the number of non-zero elements in F,[X] of degree less
than degM and prime to M. The Dirichlet density theorem for primes in
F,[X] states that § possesses a Dirichlet density equal to ((ID(M))_I. Rosen
([Ro], p.40) writes that (1.6) constitutes a natural density analogue of the
Dirichlet density theorem. That is, one may consider d;-density as a rightful
polynomial analogue to rational prime natural density as defined in (0.1).
The prime natural density defined in (0.1) is akin to the notion of infeger

natural density, which for a set M of natural numbers is defined, provided
the limit exists, as

. M)

lim ——

noon
where M(n) counts natural numbers in M that are < n. Many classic integer
natural density results, such as the prime number theorem which states that
the ratio I(n)/n is asymptotic to 1/logn, or the fact that as n — oo, the
ratio of the number of square-free integers < n to n has limit 6/72 = 1/{(2),
have beautiful corresponding statements in F,[X] stated in terms of the ratios
S./q" having appropriate asymptotics or limits (see [Rol, p. 14). Here S is a
set of monic polynomials in F [X] (S =1 or § = set of square-free monic
polynomials in the two former examples). The ratio S,/q¢" is the number of
monic polynomials of degree # in § divided by the total number of monic
polynomials of degree n in F,[X]. And taking lim,S,/q" is akin to the
d; -prime natural density notion. Thus, the fact that lim, S,/g" makes a good
F,[X]-analogue of the Z-notion of integer natural density suggests that the
d; -density might be a fruitful F,[X]-analogue of the dz-prime natural density.

However, a priori, the d,-density seems more faithful than the d; -density to

the original definition of natural density, since it is the cumulative asymptotic
proportion of primes in § among all primes up to a certain size. The following
two lemmas will help to show that S has a d; -density if and only if it has a
d, -density, with d;(S) = d»(S) if § has such densities. Thus it makes sense
to choose the d; rather than the d>-definition since it is simpler.

LEMMA 1.6. Let (Un)n>1 and (vy)a>1 be sequences of real numbers
satisfying
i) v, >0 Vn>1,
i) V, =3t — 00 as n— .
Then unjv, — £ € R as n - 0o = a, — £ as n — oo, where

n = 3 g e/ 2y Vi
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Proof. Let € > 0. By hypothesis, Ing > 1, Vn > ng, |ty — lu,| < cv,.
Put C = ZZ":_ll |ux — fvr|. Then for n > ny, we have

an = <Vt ue— v <V [CHe Y ] <C/Vate.
k=1 k=ng

Since V, — oo, we get limsup |g, — €| < ¢, Ve > 0. Therefore lima, = ¢. [

REMARK. For v, = 1, Vk, Lemma 1.6 is the Cesaro (or arithmetic) mean
theorem.

The next lemma is a converse of Lemma 1.6 which is valid provided
the rate of growth of the v,-sequence is fast enough so that v, is at least
comparable in size to V,_;.

LEMMA 1.7. Using the notation of Lemma 1.6 we assume that
1) a, converges to some a € R,

eoo Va1 .
iy —— is a bounded sequence.
Un

Then the sequence u,/v, converges o a.
Proof. Note that for n > 2 we have
Vn—l(an - an—l) = (Vn - Un)an el
- (Vnan - Vn—lan—l) — Unly

= Uy — Unlly .

i V,._ . .

Hence = —a, = (g, — d,_1) — 0 as n — oo, which yields the
Un Uﬂ

conclusion. [

PROPOSITION 1.8. Let § be a set of primes of ¥,[X]. Then di(S) exists
if and only if da(S) exists. And di(S) = do(S) in case either density exists.

Proof. Take u, = S, and v, = ¢"/n. Assume d;(S) exists and apply
Lemma 1.6 to deduce that d»>(S) exists and is equal to d;(S). For the converse,
by Lemma 1.7, all that is needed is to show that V,_;/v, is bounded. Since,
for any prime power ¢, both functions x — ¢*/x and x — ¢*/x° are strictly
increasing on the interval [3,4o00) C (2/logq, +0o0) we can write, for any
integer n > 4,

n—1 qz nolo ekt q "
Vi = —<q+—+Zf —dt<q2+f—dt,
- k 2 — Jr f 3 1
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and integrating by parts

noog kG noo g ) i
1 1 1 -3 2
/idr_ i} + /%dt< £, 808, g 2 8
3 I logg 1 |, logg /5 1 logg n logg n logg n

Hence Va1 o 7 + 2 <1+ 2 <4. O

Un g% logg — logg

DiscussioN 1.9:  Why consider ds and dy ?

The set T of Proposition 1.2 has a Dirichlet density and clearly no
d; -density, since the approximants to d,(T"), S,/I,, are alternatively 0 and 1.
The complement of 7" in [ is S,(0), in the notation of [Bal], and it was
shown there (see the proof of Theorem 3.1) that primes in S,(0) can be
described by splitting conditions in a normal finite extension of the field
of fractions F, (X) of F,[X]. As mentioned in the introduction, sets of
rational primes determined in this manner have not only a Dirichlet, but
also a natural density. Hence we would expect 7 to have a natural density in
F,[X]. Again T has no d;-density, but clearly 7 has a ds-density and
diy(T) = 1/2. In fact T is not exceptional in this respect. For integers
k > 0, the sets Sy(k) = {P € F [X]; P prime and degP = 2% (mod 281}
and their subsets Oy k) = {P & S,(k); order of X (mod P) is odd} have
Dirichlet and d5-densities, but no d; -density. These sets arose in [Bal] while
counting primes P in F,[X] for which the order of X (mod P) is even
(or odd). This counting problem is an analogue of the Sierpifiski question
mentioned in the introduction, Mimicking the method of Hasse [Ha], we
found that S,(k) and Ou(k) are in a precise way (see Remark 3.4 of
[Bal]) F,[X]-analogues of the Hasse sets S(k) and O,(k), where for each
integer k > 1, S(k) = {p € N; p prime and p = 1 + 2¥ (mod 2**1)} and
O,(k) = {p € S(k); order of a (mod p) is odd}, with ¢ € Z\ {0, £1}. These
sets of rational primes have a Dirichlet density, but it is not hard to prove
that they also have a natural density.

Moreover, ds-density is compatible with the notions of d; or d;-density,
since by the Cesaro mean theorem, any set having a d;-density has a
ds -density. And as we shall prove, any set with a d3-density has a Dirichlet
density. So there is a better match between Dirichlet § and ds-densities than
between dp and é-densities. In fact there is an even better match between
ds and 0-densities since, as we shall prove, sets with a d;-density d have a
ds-density equal to ¢, and sets with a ds-density ¢ have a Dirichlet density
equal to 4.
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As generalizations of the dgz-notion of natural density in use for sets
of primes in the ring Z (see (0.1)), we are about to show that the ¢3 and
dy-definitions are as consistent as the d,-notion. Rather than giving each prime
the same weight, regardless of its norm, as is done in d,-approximants, in
dz and dy-approximants each norm is given a weight between 0 and 1
proportional to the number of primes having that norm. For sets in Z,
both points of view coincide, because there is only one (monic) inte-
ger for each norm, and therefore either O or 1 prime having a given
norm,

For sets § of rational primes, one way to interpret the approximant of
order N to dz(S), rv = S(N)/TI(N), is that S(N) is the sum of weights s,
associated to each norm n up to N, where

number of primes of norm »n in §

(L.7) Sp = — . "
number of (monic) integers of norm »n in Z

Of course s, is either 1/1 if n is a prime in S, or 0/1 if not. The denominator
II(N) of ry is interpreted identically but with § = II, the set of all rational
primes.

Carrying over this interpretation to F,[X] yields s, = S,/¢" and

N N
N = Z(Sn/q”)/ Z(In/f), the approximant of order N to da4!
n=1 n=1

In practice, to estimate dz(S) we often consider only approximants of
prime order. That is, given N > 1, we gather the list p; =2, po =3,..., px
of the N smallest primes, test cach pp for membership in S, count how
many lie in § and divide that count by N, since N measures how many
lie in II. Non-prime natural integers are ignored, and this suggests another
interpretation in which only norms containing at least one prime are assigned
a weight

(1.8) number of primes in § of norm p,
: Wy = - - .
number of primes in II of norm p,

Note that we do have S(pn) = Z‘;V:l wy . In F,[X], every norm contains primes.

Therefore, S being a set of primes in F,[X] and following (1.8), we have

Wn = Sp/ly, which vields ry = YN (Su/L)/ S0 (/1) = ]lvzﬁf:l Wn,

the approximant of order N to ds.

Some of the claims made in the foregoing discussion will now be proved.
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LEMMA 1.10. Let u, be a sequence of real numbers such that Uy/N
converges to some d € R as N — oo, where Uy = 25:1 U,. Then

1 iy
Ny = —  converges to d as N — 0.
A logNZ n 8

n=1

Proof. For a function f of class C' in [1,N], we have the integration
by parts formula

N N N N
S tnfn =Y wl s - [ fwary = v - [ rovea,
=1 =1 n 1

where Uy = > ., ., in (see [Ap], Theorem 4.2). So

u, U
(1.9) > =t

n=1

N
U
—dt.

Lt

Since U, ~ td and le t~'dt =logN — oo as N — oo, we may write

N N
f %dt_df wcﬁ_d(wo(l)) log N,
1 1

and by (1.9) we get (logN)™' 30 (u,/n) = O{(log N)™1) +d(14+0(1)) — d
as N — oo. Note that for d = 0, one should replace d by o(1) in the above
calculation. [

PROPOSITION 1.11. Let § be a set of primes in ¥, [X] with a ds-density.
Then di(S) exists and di(S) = dz(S5).

Proof. By hypothesis there exists d € [0, 1] such that
N
i —1 AN
lim N Zl(nSn/q y=d.

By Lemma 1.10, we have d = lgn (log N)™! ZZXZI(S,,/Q”), which says that
ds(S) exists and is equal to d. [

To show that a set with ds-density has Dirichlet density, we first state
a lemma on power series that closely resembles LLemma 1.6; the hypotheses
are stronger. We intentionally choose a proof that closely mimics the proof
of Lemma 1.6,
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LEMMA 1.12. Let (in)n>1 and (vy),>1 be sequences of real numbers
satisfving
i) v, >0 Vn>1,
i) Vi=D> w1 tX' 200 as x— 17,
iii) the series_zn>1 up X" and Y, vy X' converge on [0, 1),
Then uy/v, — L € Ras n— oo = a — € as x — 1=, where

Ax = D opo1 Un X[ D ysy Un X"

Proof. Let £ > 0 and x € (0,1). By assumption, Ing > 1, Vn > ny,
|ty X" — v, X' < v, X" Put Cr = 327" i, — fv,| X Then we have

n=1

|ax = €] <V G4 ) 0, X < CyfVite.

1>

By ii), Vi, — 400 as x — 17 so that, £ being arbitrary, lima, = £ as
x—1-. 0O

PROPOSITION 1.13. Let § be a set of primes in ¥ [X]. If S has
dy-density d, then S has Dirichlet density 6 =d.

Proof. Using the notation s, = S,/q". tn = L/§", iy = > 41— 5
vy = > and x = 1/¢°~', our hypothesis becomes: u,/v, — d as
n — oo. And we wish to show that

anx”/Ztnx”%d as x — 17 .

n>1 n>1

We first check that u, and v, satisty the hypotheses of Lemma 1.12. For
xe0, D, Vi >> o X" Since t, ~ 1/n, there is some 7y > 1 such that
S o X > 27U a7 n. But X5, X'/n = +oo as x — 17 since
Zn;lx"/n = —log(1 — x) — +o00 as x — 1~. Hence Lemma 1.12 ii) holds.
Since 0 < sy <t < 1/n and >, ., X"/n converges on (0,1), the series
S o s X and 3, x" converge on (0,1). But for any x € (0,1), we
have

(1.10) 3 up ™= 23 “spx and Ve= 3 o, x> w0 g,
n>1 n>1 n>1 n>1 a1 n>1

so that Lemma 1.12 iii) also holds. Therefore, by (1.10) and Lemma 1.12,
we have for all x € (0,1) that >° -, 5, X"/ >, -, X" is equal to the ratio
2 st Un X"/ 32,51 va X", which converges to d as x—17. [
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REMARK. Since d5(T) = 1/2, we now have a second proof of Proposi-
tion 1.2.

As we mentioned in the introduction, Bombieri showed Serre a proof that
the set of rational primes whose first decimal digit is 1 has Dirichlet density
log,, 2, but no natural density. Inspired by this example, the next proposition
shows that the converse of Proposition 1.11 does not necessarily hold. Note that
the set ¥ defined below is essentially the set of primes whose degree expressed
in base 4 has first digit equal to 1.

PROPOSITION 1.14, The set
Y = {P prime in F,IX1; 3n >0, 2 < degP < 2*"+!}
has dy-density equal to 1/2, but no ds-density.

Proof. Let w, be the weight function w, = Y,/I, defined in (1.8).
If ¥ has a dy-density then di(Y) = limyrq(N), where, by (1.5), r4(N)
is (logN)™! fol Y,/q". We claim that dy(Y) exists if and only if
lim (log N)~! Zn \Wa/n exists and that in case of existence the previous
limit is d4(¥). Indeed I, ~ ¢"/n means there is an &, — O such that
Yu/q" = (1 + en) wy/n. Therefore

(L1 | ra(N) — 1ogNE logNZ\enm/m logNZ\en\/n

since wy, € [0,1]. Now |e,] = 0 = N'YY  |e,| — 0, which by
Lemma 1.10, implies that (log N)~! Zle lex|/n — 0 and the claim then
follows by (1.11).

Thus we have shown that diy(Y) = limy X4(N)/log N, where Xu(N) =

k1 d
SV wa/n. Smceﬁ<f+ 7t<— for k> 1, we get for m > 0

22m+1 22m+ -1 p2m+1 d[ 22m+1_1 1 1
= =log2< S < = 4T,
> Z f S =log2< ) 2 <o+
22m+1 22m
whence

n—1 n—1 n—1

4
(1.12) ZF <nlog2 and ZF > nlog2 — Z—>nlog2—§.

m=0 m=0
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By the definition of ¥, we have X,(2%") = an_:lo [, for n > 1. Hence,
by (1.12), X4(2%") ~ nlog?2 and X427 7%) ~ (n+ 1)log2 ~ nlog?2. But for
any N > 4, there is a unique n > 1 with 2% < N < 222 and since X, is
an increasing sequence we have X4(N) ~ nlog2. Moreover log N ~ 2nlog?2,
therefore limy X4(N)/logN = 1/2 = dy(Y).

Let X3(N) = Z’;V:l wy and assume that ds(¥) exists. Then ds(¥Y) = 1/2
and therefore X3(N) ~ N/2 as N — oo. In particular, 2% ~ X3(2%+1) =
X5(2%+2y ~ 2HHL a9 k — oo whence 2 = 1. Therefore, ds(Y) does not
exist. [

REMARK. Both Bombieri’s result and Proposition 1.14 can be obtained
as special cases of respectively Théoréeme 2.1 and Corollaire 1.7 of [Ful.e].

DiscussioN 1.15:  ds is more adequate than dy.

In Discussion 1.9 we presented reasons why the ds and d,-densities
might be more analogous to the usual prime natural density in Z than the
d; or dy-notions. Now we will argue that the ds-notion provides the best
analogy, despite the fact that ds-density is one step closer to §-density than
s dz-density.

First from a practical point of view, it is likely that ds-approximants,
N1 2521(&1 /L), will settle around &(S) faster than d4-approximants
(logN)_lzivzl(Sn/q") do. Indeed, both numerators and denominators in
ds-approximants grow on average as the logarithm of corresponding numer-
ators and denominators in ds-approximants. Hence, if primes in § of small
norm do not obey the asymptotic pattern that yields 4&(S), it will take
dy-approximants of much higher order than corresponding ¢ -approximants
to re-adjust to the asymptotic value. And that means more computing
to do.

Also from a conceptual point of view, the d3-notion is more satisfactory :
it seems more natural to make each norm equipollent, i.e. to assign to each
norm, or to each degree, a weight potentially equal to that of any other norm.
In dy-approximants the weight of primes in S of degree »n is s, = S,/¢"
and s, < L,/q" < 1/n if n > 2, since for n > 2 not every element of
the finite field F, is of algebraic degree n over F, so that I, < ¢"/n.
Thus larger degrees n are given potential weights that are bounded above by
1/n and therefore contribute less than smaller degrees. On the other hand, in
dz-approximants the weight assigned to degree n is w, = S,/I,, which may
reach the value 1 no matter what the size of # is.
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Thirdly, as indicated before stating Proposition 1.14, the set Y is an
analogue of Bombieri’s example. So we would expect ¥ nof to have a natural
density and to hagve a Dirichlet density (perhaps even equal to log,2). And Y
has no ds-density, but has a ds-density. Therefore it has a Dirichlet density
and its value is indeed 1/2 = log,2.

The Bombieri example points to a simple scaling property associated to
the dgz-density:

Let m be an integer > 1 and S be a set of rational primes having a
natural density d > 0. Then because II(N)/TI(mN) ~ % as N — oo one has

S(mN)

T]\])%m as N —- oo.

The corresponding ratio for a set of primes S in F,[X] having positive
ds -density d 1is

XxmN) Y™ w,  mNd . here Sn
- ~ - W Whp = —
X3(N) Zivzl w, Nd 7 L

this ratio also converges to m as N — oo. Using this simple property, one
sees immediately that the set of rational primes with first decimal digit 1
does not have positive natural density (take N = 2 x 10" and m = 5 for
instance), and Proposition 1.14 uses this property to show that ¥ does not
have a ds-density. None of the approximants to dj, d» or dy shares that
property. For d; and the set ¥, we saw in Proposition 1.14 that if N = 2",
then X4(4N)/X4s(N) converges to 1 rather than to 4.

Moreover, there 1s yet another reason to prefer dsz to ds since as we are
about to see, Dirichlet density and d4-density are equivalent notions in F,[X].

2. DIRICHLET DENSITY IMPLIES ASYMPTOTIC DIRICHLET AVERAGE DENSITY

THEOREM 2.1. Let § be a set of primes of ¥,[X] with Dirichlet density
0 € [0,1]. Then S has ds-density 9.

We have two radically different proofs of Theorem 2.1. The second proof
will be given in detail, while our first proof will only be sketched. It uses a
result of Tauber [Tau] as improved further by Littlewood [Li], namely
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PROPOSITION 2.2. If a real power series Y a, X" converges to some real
number € as x — 1~ and na, = O(1), then the series Y a, converges to {.

Brief outline of a first proof of Theorem 2.1. Using the notation of
Proposition 1.13 and the equivalence of #, with 1/a, our hypothesis says that
d = lim,_,;- g(x), where g(x) is the analytic function on (—1,1) defined by
S S XTY Y T my = Y L g.x". To show that Proposition 2.2
applies to the series ¢g(x), we studied the coefficients ¢, of the series
S soCn Xt = 1/3 . (x"71/n). An integration in the complex plane led
to the formula, valid for all n > 2,

—+o¢
(2l By = — f = a .
o (log”t+ a1+
Formula (2.1) was used to obtain that all ¢,’s for n > 1 are negative. Then,

from the relation
j{:sn+1xn'jzzcn1ﬁ:::jzthX#v

n>0 n>0 n>0

1 1 ..
we got ey < s < W and ng, = O(1). Hence, by Proposition 2.2,

S .odn = 0. Then it is easy to show that S\ s, is asymptotic to

63 us(1/m), yielding  lim (37, 51)/ (3, ta) = 6, which says that S
— 00

has a ds-density. [

The complete proof of Theorem 2.1 we present is based on observing that
d4-density can also be viewed as an analogue of the notion of logarithmic
density for sets of rational primes. If S is a set of primes in Z then its
logarithmic density is defined as

—d
<P . o
(2.2) lim ZPES’% . provided the limit exists.
X—r 00 }:ngp
Now for any x > ¢, there is a unique natural number N = N, with
(2.3) g SR g,

And one readily checks that if a set S of primes in F,[X] has a d4-density
then

3 -1
#
d4(S) = lim Pes, |P|<x| \

=]
= 3 pax | P

an obvious analogue to (2.2). This proof is an adaptation of an outline of a
proof Carl Pomerance showed us, to the effect that prime Dirichlet density

1
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implies logarithmic density for sets of rational primes, a fact which does not
appear to be very well known.

Letting § be a set of primes in F,[X] and using the notation in (2.3),
we begin by stating and proving three short lemmas.

LEMMA 2.3. We have the estimates

S OIPIT ~ log(s — D], as s — 17,

2
Z IP|”" ~ loglog x, as x — oo,
P|<x
log |P
and Z 8P| |~logx, as x = oo
|P|<x 7]
Proof:  'We saw in Proposition 1.2 that >_ -, %ﬁ ~ |log (s — 1),

;— = &xﬁﬁ- Applying
Lemma 1.12 with x = ¢'=%, u, = I,/¢" and v, = 1/n yields the first
estimate since u, ~ v,. The second estimate is easily seen to hold since, by
Lemma 1.6,

as s — 1T, But }p[P|70 = 3,5

N N
loglogx~loglogqulogN~Z%NZ;—’;, as X — 0o.

I’l:l I’l:l

But 3 L/q" = 2Pl < |P|™". The last estimate holds since from I, ~ ¢ /n
and Lemma 1.6, we have

N N N
log |P| log ¢" q" log q"
25111 == i - A logg~logx. O
Z |P| Z” q" ;n q" Z 54 :

|P|<x n=1 n=1

LEMMA 24, The sum Si00) = ¥yp [P [1 _|p|M e ] — o).

Proof. Let P be a prime. Using the mean value theorem with the function
fe(w) = |P|™", one gets for u > 0,

1—|P7" <log |P|-u.
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Therefore we have

sSiw =3 \P\_l[l — f»((log x)_l)}

|P|<x
1 log |[P|
Yoy % o = 0,
|P|<x

by the third estimate in Lemma 2.3. [

LEMMA 2.5. The sum $y(x) = 3 ps, [P/ = 0(1).

. I
Proof. Since I, < ¢"/n for any degree n, and 1 — gl ~ %, we
have as x — o0
—n/log x
_ —n—n/log x q
$:00 =Y Lg <) =
n>N n>N
1 1
& = —nflogx _ 1 —(WN41)/log x _ a—1/log xy—1
<<>a ~4 (1-q )
n>N
1 (N+1)/log x 1 1 N/ Dleg g (N +1)log g
w o < = YT ) ed
~4 (log g/log x)™ < %q Tog 7
N—+1

<5 g e 1 /e,

Hence S>(x) = 0(1). O

Our second proof of Theorem 2.1. Since Z\P|<x |P\_1 ~ loglog x, we
need to show that -

(2.4) Sooe

|P|<x, PES

is asymptotic to dloglog x as x — oo, if § # 0, and is o(loglog x),
if § = 0. By hypothesis, the sum of |P|™° for P € § is asymptotic to
¢|log (s — 1)| as s approaches 1 from the right (or is o(|log(s — 1)|) if § = 0).
Let s =1+ 1/log x, so that, by hypothesis, the sum of |P|_1_1/1°gx for P
in § is either asymptotic to dloglog x as x goes to infinity if § # 0, or is
o(loglog x) if 6 =0, Now this sum differs from the sum in (2.4) by O(1).
Indeed, the contribution of the gap between |P|™ and |P|™'""/ 8" for |P|
up to x is O(1) by Lemma 2.4 and the contribution from |P| > x is also
O(1) by Lemma 2.5. The result follows. [
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3. ARTIN'S CONJECTURE AND NATURAL DENSITY

Let a be a non-square integer different from —1, Hooley [Ho] showed,
provided the Riemann hypothesis holds for certain number fields, that the set
of primes p having ¢ as a primitive root possesses a density. His work 1is
valid for natural and Dirichlet density.

However, as mentioned in the introduction, the argument Bilharz uses at
the end of his paper ([Bil, pp.490—491) shows that, given a prime p and
the polynomial A — X of F,[X], the set § of primes P € F,[X] having X
as a primitive root does not have a natural density, where this density was
“naturally” taken to be the dp-notion, despite the fact that this set has a
Dirichlet density.

Let us rewrite the Bilharz-Davenport argument in the next proposition using
the equivalent d;-notion of density and replacing p by any power g of p.
The letter ¢ will denote a prime and S the set of primes of F,[X] having X
as a primitive root.

PROPOSITION 3.1.  The set S of primes in F |X] having X as a primitive
root does not have a d, -density.

Proof. Note that a prime P of degree n is in S if and only if X4 ! =1
(mod P) in F [X], but b Z 1 (mod P) for any proper natural divisor k& of
g"—1. That 1s, if and only if each of the n roots « of P satisfies F (o) = Fg,
or each such root is one of the ¢(g" — 1) generators of the group FJ.. Hence
we have shown that S, is equal to ¢(¢" — 1)/n. Therefore

Se ("= Dya/n
w Y am
where v, is the product HWT_I(I — 1/6). To show that § does not have
a dp-density we exhibit two sequences of integers (n,) and (#,) such that
Vn, — 0 and y,, A 0.
For an integer ¢ > 1, define #, as the product [ [order of ¢ (mod £)].

£<e, ££p
Then

< T (=1/0).

0<t, tp
Since the product Py =[], (1 —1/{) satisfies

[x]+1
- :H(l—l/(?)_ HZE‘ >Zl/n>[ i u™tdu > logx,

£<x ¢<x k>0 n<x

we have P, < (logx)™! and therefore v, = O((ogH)™') — 0 as 1 — oc.
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On the other hand for n; = p,, the s-th prime distinct from p, primes ¢
dividing g" — 1 are not overabundant, so that v, /% 0 as s — oo. Indeed,
£ | gPs — 1 implies, for one thing, that either £ | g—1 or £ =1 (mod p;), but
also that £ < g% . So

logyn = 3 log(1—1/0>— > (1/6)+01),
BlgPs—1 £lgPs—1
whence

—logy, < Y (A/H+0M = Y (1/H+00)

£lgps—1 #=1 (mod py)
gSqu

< C(loglog g™)/¢(ps) + O(1),

for some absolute constant C. We used the fact that the estimate

loglogx
3.1 1 fi
(3.1) Y (/n< T
f=c¢ (mod b)
£<x

holds uniformly in, say, the range x > 80 and 1 < ¢ < b < /x with ¢ and
b coprime. Here x = ¢* and b = p; = logx/logg < 2logx < y/x. Note that
(3.1) is easily deduced from the Brun-Titchmarsh inequality [MoVa]

2 X
(b) log(x/b)
valid for x > 2, b < x and gcd(b,c) = 1, where w(x; b, ¢) counts primes
congruent to ¢ (mod /) that are < x.

Now

miXs By £ &

loglogg?”  log ps
©(ps) Ps
so —logy,, = O(1) and therefore v,, A 0 as s > o0. [

— 0, as s— oo,

However we show that the same set S has a ds-density.

PROPOSITION 3.2. The set S of primes in ¥ [X] having X as a primitive
root has a ds-density.

Proof. Theorem 3 from the Russian paper [Shp] states that

N
—1N "~ elag” + b))

for some positive constant d, where a,b,g € Z, g > 2 and gcd(ag,b) = 1.
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Taking a=1, g=¢g and b=—1, we get that NH_{ECN—I Zivzl ol -1 /(g"—1)

exists. And since
pd =1 Pl =D/n  elg"=D/n S

gt — 1 q*/n I A
Lemma 1.4 yields that N1 Zle(Sn /L) converges as N — oo. Thus d5(S)

exists. [

REMARK. The result of Shparlinski (3.2) is a special case of fairly
general asymptotic estimates of averages of arithmetic functions evaluated
at consecutive terms of recurrence sequences. See [LL.uSh].

We end this section with a final remark.

REMARK 3.3 (Chebotarev sets of primes in F,[X]). Recall that any
Chebotarev set of primes in Z has a natural density. So we ask whether
it might be true that any Chebotarev set of primes in F,[X] has a d3-density.
By a Chebotarev set we mean the set of primes whose Artin symbol
is a given conjugacy class C of the Galois group of some finite Galois
extension F over F,(X). There is a large class of such extensions, the so-
called geometric extensions, for which corresponding Chebotarev sets have a
dy -density (see [Ro], Theorem 9.13B, p.125). But as we will show, the set
T is a Chebotarev set and has no d;-density. So not every Chebotarev set
in F,[X] has a d;-density. However even for non-geometric extensions such
sets have a d3-density.

Indeed, if L is the algebraic closure of F, in F then all elements of C
restrict to the same element ¢ of the cyclic Galois group of L/F,, where ¢
is the automorphism of L/F, that sends x to x?7. Now call S the set of
primes P of F,[X] whose associated Frobenius automorphisms lie in C. Then
Proposition 5.16 of [FrJa] shows that S, = 0 if n Z a (mod u), where u is
the degree extension [L : F,], while if n = g (mod u), then S,/I, ~ |C|/v
as n — oo, where v is the degree extension [F : LF,(X)]. Therefore ds(S)
exists and is equal to |C|/uv.

For § =T, consider a field F >~ F(X), so that L =Fp, u=2, v=1.
Let C = {id} be the conjugacy class of the identity automorphism of F/F,(X)
so that @ = 0. Then P € T if and only if 7p = id, where 7p 18 the Frobenius
automorphism of P. Indeed, for a prime P of degree n and « a primitive
clement of Fp/F,, we have 7p(a) = id(e) if and only if olfl = o = q,
which holds exactly when 7 is even. So T is a Chebotarev set. Of course we
again find that ds(T) = 1/2 since |C|/uv = 1/2.
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4. (CONCLUSION

We summarize our results in a theorem accompanied by the synoptic
diagram

(dy = dy) = &y = (dy <= 0).

THEOREM A. Let S be a set of primes in ¥, [X]. Then the statements
below hold true.

1) Should S possess any two of the five kinds of densities defined above
(di, dr, dsy, dy or Dirichlet é-density), then their values necessarily coincide.

i) S has a dy-density if and only if S has a d»-density.
iii) If S has a dy-density, then S has a ds-density. The converse is false;

for instance, the set T of Proposition 1.2 has a ds-density equal 1o 1/2,
but no di -density.

i) If § has a ds-density, then S has a dy-density. The converse is false;
for instance, the set Y of Proposition 1.14 has a dy-density equal to 1/2,
but no ds-density.

V) S has a dy-density if and only if S has a Dirichlet density 0.

Therefore of the five types of F,[X]-prime densities considered, three are
essentially distinct.

Taking into account the three discussions of Section 1 and the results
of Section 3 it is our belief, based on conceptual, computational and
qualitative properties that the ds-notion represents, within the few candidates
we examined, the most viable analogue of prime natural density in Z.
By qualitative properties we mean again that: sets of primes linked to the
F,[X]-analogue of the Sierpifiski question, sets related to Artin’s conjecture and
Chebotarev sets of primes in F,[X], have a ds-density, but do not necessarily
have a di-density, while our F,[X]-analogue of the Bombieri example has a
Dirichlet density but no ds-density. So it is tempting to adopt the following
terminology : a set of primes in F,[X] will be said to have a (prime) naiural
density if it has a ds-density. A set of primes having a d;-density should be
viewed as having a strong form of natural density, which could be referred to
as uniform prime natural density. The d4-density appears to act as a faithful
analogue of the logarithmic density in use for sets of rational primes. It can
be used as a tool, as it was in Proposition 1.14, to determine whether some
set of primes with no natural density has a Dirichlet density, or not.



326 C. BALLOT

Other examples should be tested to confirm, or invalidate, @5 as a rightful
analogue of prime natural density in Z.

We conclude by a general question pertaining to the density theory in
number systems presented in the book [Bu]. Consider a class K of finite
structures and a property P. Define, for each n > 1, K, as the subset of
these structures of size n. Define p, as the proportion of structures in /C,
that have property P, and P, as the proportion of structures in UZ:1 Ky that
have property P. In [Bu], the function p, (resp. P,) is referred to as the local
(resp. global) counting function and is somewhat akin to the d; (resp. dz)
approximant of order n. General results [Bu] have been proved in which the
existence of a limit for p,, or P,, as n — oo has been established. Suppose

; - 1
we define an average counting function p, as - Zzzl pr. Are there classes of

structures such that neither p,, nor P, have a limit law, but p, does? Can we
build a general theory of limit laws based on the function p, ? This function
being similar to the ds-approximant of order n, Propositions 1.11 and 1.13
of our paper suggest that if p, converges there are general hypotheses under
which the associated Dirichlet density also exists.
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