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L’Enseignement Mathématique (2) 54 (2008), 287-301

A NOTE ON THE CONNECTIVITY OF CERTAIN COMPLEXES
ASSOCIATED TO SURFACES

by Andrew PUTMAN

ABSTRACT. This note is devoted to a trick which yields almost trivial proofs
that certain complexes associated to topological surfaces are connected or simply
connected. Applications include new proofs that the complexes of curves, separating
curves, nonseparating curves, pants, and cut systems are all connected for genus
g > 0. We also prove that two new complexes are connected: one involves curves
which split a genus 2¢ surface into two genus g pieces, and the other involves curves
which are homologous to a fixed curve. The connectivity of the latter complex can be
interpreted as saying the “homology™ relation on the surface is (for g > 3) generated
by “embedded/disjoint homologies”. We finally prove that the complex of separating
curves is simply connected for g > 4.

1. INTRODUCTION

Let 2, be a genus g surface and Mod(Z,) be the mapping class group
of X,, that 1s, the group of i1sotopy classes of orientation-preserving homeo-
morphisms of X, (see [11] for a survey of Mod(Z,)). An important theme
in the study of Mod(Z,) and its subgroups is the close relationship between
algebraic properties of Mod(Z,) (e.g. cohomology, finiteness properties, auto-
morphisms, etc.) and the structure of 1-submanifolds of Z,. The combinatorics
of these 1-submanifolds have been encoded in the structure of a number of
simplicial complexes, such as the curve complex and the pants complex.
A key property of these complexes is that they are often highly connected.
In this paper, we discuss a general trick which yields simple proofs that com-
plexes of this sort are connected or simply connected; in many cases this is
sufficient for the applications.
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In the past, these sorts of theorems have been proven using a variety of
tools, such as curve surgery (see, e.g., [3, 6, 14, 15, 19, 21]), parametrized
Morse theory (see, e.g., [7, 10]), and Teichmiiller theory (see, e.g., [2, 4, 17]).
We instead exploit the basic combinatorial group-theoretic properties of
Mod(Z,) and its subgroups, deducing that complexes are connected from the
structure of generating sets and deducing that they are simply connected from
relations. Of course, we may be accused of circular reasoning, as the standard
construction of generators and relations for Mod(Z,) involves investigating
connected and simply connected complexes upon which it acts! The point
of this paper is that this only needs to be done once: as soon as generators
and relations for Mod(XZ,;) are found, one can prove that essentially any
complex upon which Mod(X,) acts i a reasonable way is comnected or
simply connected by a formal, finitely checkable (and in practice quite easy)
process.

The first complex we will examine 1s the complex of curves (introduced
by Harvey in [5]), together with two of its subcomplexes.

DEFINITION 1.1. The complex of curves C(Z,) is the simplicial complex
whose simplices are sets {¢y,..., ¢} of non-trivial isotopy classes of simple
closed curves on X, which can be realized disjointly. The complex of
separating curves Cyp(Z4) and the complex of nonseparating curves Cposep(Zg)
are the full subcomplexes of C(Z;) spanned by separating and nonseparating
curves, respectively.

We will give a simple, unified proof of the following theorem, which for
C(Z,) and Chosep(Zy) is due to Lickorish [13] (though he did not use this
language) and for Cyep(Z,) is due to Farb and Ivanov [3]. Other proofs of the
connectedness of Cyp(Z,) can be found in [14] and [15].

THEOREM 12. C(2,) and Chosep(Zy) are connected for g > 2, while
Coep(Zy) is connected for g > 3.

In fact, our trick allows us to achieve rather precise control over the
topology of the curves which appear in our complexes. For instance, consider
the following complex.

DEFINITION 1.3, Let Cpar(Z24) be the simplicial complex whose simplices
are sets {c1,...,cc} of isotopy classes of simple closed curves on X, which
satisfy the following two conditions.
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* Bach ¢; separates Xy, into two genus g subsurfaces.

 Lor i # j, the geometric intersection number i(c;, ¢;) is minimal among such
curves. This minimality means the following: if g = 1 then i(¢c;,¢;) =4,
while if g > 2 then i(c;,¢)) = 2.

We will prove the following theorem, answering a question posed to the
author by Schleimer (who proved the theorem for g =1 in [19]).

THEOREM 1.4.  Cpae(Zz,) is connected for g > 1.

We next investigate the cut system and pants graphs, which were introduced
by Hatcher and Thurston in [7].

DEFINITION 1.5. A cut system on X, is a set {c1,...,c,} of isotopy
classes of simple closed curves on X, which can be realized disjointly with
2 \ (e U+~ Ucy) connected (see Figure 1.d). Two cut systems {cy,...,c4}
and {c},...,c;} differ by an elementary move if there is some 1 < i <k
such that i(c;, ¢) = 1 and ¢; = ¢} for j # i. The cut system graph CT(Z,) is
the graph whose vertices are cut systems on X, and whose edges correspond
to elementary moves between cut systems.

DEFINITION 1.6. For g > 2, a pants decomposition of X, is a maximal
simplex {ci,...,cc} of C(Z;) (see Figure 1.e). Observe that £k = 3¢ — 3
and that cutting £, along the ¢; results in a collection of 3-holed spheres
(the “pairs of pants”). Two pants decompositions {cy,...,ci} and {c{,..., ¢/}
differ by an elementary move if there is some 1 < i < k such that for
j # i we have ¢; = ¢; and such that i(c;,¢]) is minimal among such
curves. This minmimality means the following (see Figure 1.g): il § 1is the
component of X, cut along ¢; U+ Uc¢i_y Uciypg U-+-Ug containing ¢;,
then i(c;,c¢}) = 2 if § is a 4-holed sphere and i(c;,c)) = 1 if § is a
I-holed torus. The pants graph P(Z;) is the graph whose vertices are pants
decompositions of X, and whose edges correspond to elementary moves

between pants decompositions.

REMARK 1.7. Hatcher and Thurston in fact considered C7(Z,) and P(Z,)
with a number of 2-cells attached to render them simply connected. We will
make no use of these 2-cells.
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We will give a new proof of the following theorem of Hatcher and Thurston,
which for CT(Z,) is Theorem 1.1 of [7] and for P(Z,) is contained in the
appendix of [7].

THEOREM 1.8. CT(Z,) is connected for g > 1, while P(Z,) is connected
for g > 2.

Next, we will use the action of the Torelli subgroup of the mapping class
group (defined below) to prove the following theorem, which elucidates the
nature of the homology relation on a surface. It says that this relation is
generated by “embedded homologies” (in the statement of this theorem and
throughout this paper, when we say that two simple closed unoriented curves
are homologous, we mean that they can be oriented in such a way that they
are rendered homologous).

THEOREM 1.9. Fix g >3, and let v and ~' be homologous non-trivial
simple closed curves on Z,. Then there exists a sequence

7:717727"'3’7/(:7/

of non-trivial simple closed curves on X, such that for 1 < i <k the curves
i and 7y are disjoint and there exists an embedded subsurface §; — Z,
with 0S; = v;U~ip1 (in particular, ~; and iy are homologous).

REMARK 1.10. This theorem 1s false for ¢ = 2, as there exist no
subsurfaces S of X, such that @S consists of two simple closed curves
which are nonseparating and nonisotopic on X,.

Finally, we will show that our methods can be extended to prove that
various complexes are simply connected. As an example, we prove the
following.

THEOREM 1.11. For g > 4, the complex Cyp(Z,) is simply connected.

REMARK 1.12. Hatcher and Vogimann [8] have proven a much stronger
theorem which says that Cy,(Z,) is |_92ij -connected. Their result, however,
does not mmply Theorem 1.11 for g = 4.
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NoraTioN 1.13. Let Py, P ..., P, be a sequence of paths in a simplicial
complex X each of which begins and ends in the O-skeleton X9 (we allow
degenerate paths P; consisting of single vertices). For all 1 < i < k, let ¢g; be
the terminal point of P; and p,; be the imitial point of Py, and assume that
{qi,pis1}t € XV Thus either ¢; = piy1 or {qi,piy1} is a 1-simplex. We then
denote the path which first traverses Py, then P,, etc. by Py — Py — ... — P.

2. CONNECTIVITY

Our trick for proving that complexes are connected is contained in the
following easy lemma.

LEMMA 2.1. Consider a group G acting upon a simplicial complex X.
Fix a basepoint v € X© and a set S of generators for G. Assume the
following hold.

1. For all v € X©, the orbit G -v intersects the connected component
of X containing v'.
2. For all s € ST, there is some path Py in X from v to s-v.

Then X is connected.

Proof. Consider v € X© By Condition 1, there is some g € G together
with a path P from g-v to v/. Write g as a word s;---s; in S='. Then

Psl—51PS2—...—8182"'Sk_1PSk—P

is a path from v to v'. [

Proof of Theorems 1.2, 14 and 1.8. Let

S= {TalaTlea"’7TOL92T597T[312"'7Tﬁg_1}

be the Dehn twists about the curves in Figure l.a; Lickorish proved that §
generates Mod(Z;) (see [11, §4] for the definition of a Dehn twist and a
discussion of Lickorish’s theorem). For each complex in question, we will pick
a basepomt v and verify that the two conditions of LLemma 2.1 are satisfied
for the action of the mapping class group upon the complex. We emphasize
that in each proof the basepoint v and all other ancillary curves are chosen
to intersect the (already fixed) generators in simple ways. In particular, they
depend on the choice of generators.
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CZy), ChoseplZy) and Coep(Zy): The proofs for these three complexes
are similar; we will discuss Cyp(Z,) and leave the other two to the reader.
Our basepoint v € ngg(zg) will be the curve indicated in Figure 1.b.
The orbit Mod(Z,) - v consists of all separating curves which cut off 1-holed
tori. Indeed, let w be another separating curve which cuts off a 1-holed
torus. The classification of surfaces implies that we get homeomorphic non-
connected surfaces when we cut X, along either v or w. Gluing together
homeomorphisms between the cut surfaces yields the desired homeomorphism
of X, taking v to w (this trick will be used repeatedly; we will call it
the classification of surfaces trick). Since every separating curve is adjacent
(in Cyp(Z,)) to a curve which cuts off a 1-holed torus, Condition 1 follows.
To check Condition 2, we will need the curve o' indicated in Figure 1.b.
Consider s € ST If s = Tézl_l , then v — v — s - v is the desired path.
Otherwise, we have s € ST! but s oo Tﬁiql_l, so 5-1v = v. Condition 2
follows.

Chait(Z24): Here S 1s the corresponding generating set for Mod(Z,,). Our
basepoint v € C}(lgff(Zzg) will be the curve indicated in Figure lc. If g > 2,
we will also need the ancillary curve v’ from the same figure. Now, by
the classification of surfaces trick, Mod(Z,,) acts transitively on cfl‘j}f(zzg),
so Condition 1 is trivial. To check Condition 2, consider s € ST, If s = Tétgl ,
then for g = 1 the vertices v and s:v are adjacent, while for g > 2, the
desired path is v — v’ — s - v. If instead s # Tffgl , then s-v = v. Condition 2
follows.

CT(Z,4): Our basepoint v € CTP(Z,) will be the cut system indicated
in Figure 1.d. By the classification of surfaces trick, Mod(Z,) acts transitively
on CTO(Z,), so Condition 1 holds. Also, for s € SEL either s-v = v or
s -v 1s adjacent to v, so Condition 2 holds.

P(Z,): Our basepoint v € POE,) will be the pants decomposition
indicated in Figure 1.e. We start by verifying Condition 2. Consider s € S=!.
If s = T;{El ,then s-v=wv.If s=Tg, then Figure 1.h contains the desired
path (we only draw the portion of the pants decomposition which changes). A
similar path works if s =15 LIf s = T(jtll or s = Tojfgl , then s-v 1s adjacent
tow.If s=7, but i # 1 and i # g, then Figure 1.1 contains the desired
path. A similar path works if s = T ! with i # 1 and i # ¢g. Condition 2
follows.
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We now verify Condition 1. It is enough to show that P(Z,)/ Mod(Z,)
is connected. For each pants decomposition p = {cy,...,c} of Z,, define a
graph ¢(p) as follows (see Figure 1.f). The vertices of ¢(p) are the connected
components of X, cut along the ¢; (the “pairs of pants”). The edges are
in bijection with the curves c;; the edge corresponding to ¢; connects the
vertices corresponding to the components on either side of ¢;. Thus @(p) is
a trivalent graph with 2¢g — 2 vertices (a loop at a vertex counts as two edges
abutting that vertex). It 1s clear that each such graph comes from a pants
decomposition. Moreover, it is not hard to see that for pants decompositions
p and p’ we have ¢(p) isomorphic to @(p') if and only if there is some
f € Mod(Z,) such that p =f-p'.

Now consider an elementary move from p = {cy,...,} to p' =
{c],...,ci}. Let ¢; be the curve which changes in this move. If i(c;,¢l) =1
(so ¢; corresponds to a loop in &(p); see the left hand part of Figure 1.g),
then ¢(p) = ¢(p'). If i(c;, ) = 2 (see the central part of Figure 1.g), then
¢d(p) is transformed into @(p’) in the following way (see the right part of
Figure 1.g): we first collapse the edge in ¢(p) corresponding to ¢;, yielding a
vertex of valence 4, which we then “expand” to two vertices of valence 3, each
of which abuts two of the edges which once abutted the vertex of valence 4.
We will call this an elementary shift of the graph. It is not hard to see that
any elementary shift of ¢(p) 1s induced by an elementary move of p.

It is enough, therefore, to prove that if G and G’ are trivalent graphs
with the same (necessarily even) number of vertices, then G may be
transformed into G’ by a sequence of eclementary shifts. The proof will
be by induction on the number k of vertices. The base case k = 2 being
trivial, we assume that k& > 2. Since neither G nor G’ can be a tree, each
must contain a simple closed edge-path. Transform G and G’ by elementary
shifts so that these closed edge paths are as short as possible. Observe that
these minimal-length closed edge paths must be loops: if they were not
loops, then we could shorten them by performing elementary shifts which
collapse edges in them. Let G and G be the result of removing these
loops, deleting the resulting valence 1 vertices, and then finally deleting
the resulting valence 2 vertices while combining the two edges abutting
them into a single edge (see Figure 1j). By induction we can convert G
into G by a sequence of elementary shifts. It 1s easy to see that we
can then “hft” this sequence of elementary shifts to G, thus proving the
theorem.  []

Next, we prove Theorem 1.9.
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Proof of Theorem 1.9. This theorem i1s clearly equivalent to the connected-
ness of the following complex for g > 3.

DEFINITION 2.2, Let C7(Z,) denote the full subcomplex of C(Z,) spanned
by curves homologous to .

If ~ is separating, then C7(Z;) = Cyp(Z,), which is connected by Theo-
rem 1.2. Assume, therefore, that + is nonseparating, and let Z(Z,) C Mod(Z,)
(the Torelli group) be the kernel of the action of Mod(Z;) on H;(Z,;;Z).
We will apply Lemma 2.1 to the action of Z(Z;) on C7(Z,).

To apply Lemma 2.1, we need a basepoint and a generating set. Since -y
is nonseparating, the classification of surfaces trick implies that there is a
homeomorphism taking ~ to the curve v depicted in Figure 2.a. We can
therefore assume without loss of generality that ~ in fact equals the curve v ;
this will be our basepoint. Tt is well known (see, e.g., [18, Lemma 6.2])
that Z(X,) acts transitively on the O-skeleton of C7(X,), so Condition 1 is
trivial.

FIGURE 2
a. Our base vertex in CY¥(Zy) b. T T.?Zl(v) is disjoint from v

For the generating set, recall that Johnson [12] proved that Z(Z,) is
fimtely generated (for g > 3 ; and this 1s false for ¢ = 2 as demonstrated by
McCullough-Miller [16]). Our generating set S will be the generating set for
Z(Zy) constructed m [12]. We will need two facts about §. First, S consists
of bounding pair maps, that is, mapping classes 7., T ! where the ~; are
disjoint nonseparating curves such that ~; U v, separates X,. Second, for
T, T, €8, either vy Nv =" Nv =@ or 7 Uy, Uv is homeomorphic
to the curves pictured on the left hand side of Figure 2.b. These facts imply
that for s € §=!, either s-v = v or (as demonstrated by Figure 2.b) s v is

disjoint from v. Condition 2 follows.  []
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3. SIMPLE CONNECTIVITY

We conclude this paper by proving Theorem 1.11.
Proof of Theorem 1.11. Let
S = {TagsToise s vsTags To,5 L8150 53 Loy s BY

be the collection of twists about the curves in Figure 1.a together with the
hyperelliptic involution h (see [11, p.52] for the definition of 7 ; the need for
h will become clear shortly). Also, let v and ©' be the curves in Figure 1.b.
There is a natural map Mod(Z,) — Cip(Z,) taking g to g(v). Closely
examining the proofs of LLemma 2.1 and Theorem 1.2, we see that they say
that this map extends to a Mod(Z,)-equivariant map

¢: Cay(Mod(Z,),S) — Cyep(Zy) .

Here Cay(Mod(Z,),S) is the Cayley graph of Mod(Z,), that is, the graph
whose vertices are elements of Mod(Z,) and where g, is connected by
an edge to ¢ f g5 = g5 for some s € §. We will prove that the
induced map ¢.: m(Cay(Mod(Z,), S), 1) — m1(Csep(Zy),v) is the zero map
by examining the images of the loops associated to a set of relations for
Mod(Z,). We will then show that ¢, is surjective; this will allow us to
conclude that 71(Cep(Z,),v) = 0, as desired.

CLAIM 1. ¢, : m(Cay(Mod(Z,),8), 1) = mi(Csep(Zy), v) is the zero map.

Proof of claim. Tt is well known that we can construct a simply connected
complex X from Cay(Mod(Z,),S) by attaching discs to the Mod(Z,)-orbits
of the loops associated to any complete set of relations for Mod(Z,). We will
show that the images in Cp(Z,) of the loops associated to these relations are
contractible. This will imply that we can extend ¢ to X. Since X is simply
connected, we will be able to conclude that ¢, 1s the zero map, as desired.

Now, the loop in Cay(Mod(Z,),S) associated to a relation s;---5, = 1
with 5, € ST is 1 —§; — 8183 — ... — 5152 - - - ;. Since the only elements of
S*1 which act non-trivially on v are Tg?gl_l , the function ¢ maps the edge
§1°8i—1—38 8 toa fixed vertex unless s; = T[fgl_l , in which case it maps
it to the path sq---s;_1(¥) —51 -5, 1(0') — 51 - - - 5;(v). Observe that the only

clements of $T' which act non-trivially on v are Tgtll. If none of the s;

equal Till, then for all i we would have s;---5_1(¥') = v/, so ¢ would
take the loop associated to the relation s1---5s; = 1 to a loop of the form
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vy — vy —...— vy With vy =’ for 1 < i <. This loop can be contracted
to v'.

We therefore only need to worry about relations which involve both Til1
and T;Egl_l. By Theorem A.1 from the appendix, we can find a presentation
for Mod(X,) whose generators are § and whose only relations involving both

T:'jl and T:tql_1 are
g1
3.1) Tﬁ1 Tﬁg_lTﬁlTﬁg_l =1
and
(3.2) TO‘Q Tﬁg—lT@::—l T TOMT(%l TonTp, - Tﬁg—1Ta9h_l = L.

We conclude that we must only check that the ¢-images of the loops associated
to these two relations are contractible. For the relation given in (3.1), it 1s
clear that we can find a separating curve disjoint from every vertex of the
associated Cyep(Z4)-loop (for instance, v” in Figure 1.b is such a curve), so
this loop is contractible. For the relation given in (3.2), the associated loop is
the following, where we suppress the (trivial) edges w(v) — ws(v) associated
to generators s € ! not equal to Tgfgl_l i

v = Ty () = T, T, , ()
- TO‘Q Tﬁg—lTao—l e TﬁITCVITc%l TalTﬁl e Tag—l(v,) —v

=v = =Ty, Ty, () -0V —v.

This is clearly contractible, so the claim follows. L]

CLAIM 2. ¢, mi(Cay(Mod(Z,),$), 1) — 7i(Cep(Zg),v) is surjective.

Proof of claim. We first find a sufficient condition for a loop to lie in the
image of ¢, . Consider any loop { = v —vp — ... — Vauq1 I Ceep(Zy) With
U1 = Uzp+1 = v. Assume that each v; 1s a separating curve which cuts off a
1-holed torus and that for 0 < i < n there exists a simple closed nonseparating
curve ¢ and some e; = £1 for which vy 3 = Tl(vaip1), i€, v2ip1) = 2,
and i(e;, vy 12) = 0 (for instance, we could have vy = v, vy, = v, and
€ = 33—1). We claim that ¢ 1s in the image of ¢, .

To begin with, it is enough to find some word w in St! (not necessarily
a relation) with the property that ¢ 1s the image under ¢, of the path in
Cay(Mod(Z,), S) associated to w. Indeed, we will then have w(v) = v. Since
S\{Tp,_,} generates the stabilizer in Mod(Z,) of v, we can find some word
w' in S\ {Tp,_, H*"' such that ww' = 1; this is the desired relation.
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We will prove the existence of w by induction on n (in this part of the
proof, we do not assume that ¢ is a loop). The case n = 0 being trivial,
we assume that 7 > 0. Using the induction hypothesis, we can find a word

wy—1 such that ¢, takes the path associated to w,_; t0 vy — ... — Uzu_1.
QObserve that

i(wn—_ll(UZn)a wn—_ll(fn)) = i(v2n, €,) = 0,
i(wn__ll(UZn)o U) = i(UZna wn—l('U)) = i(Uzn, ?Jzn_l) = O,
(W (€0), ) = Ken, Wamr(0)) = i(6n, vanmr) = 2.

This implies that there must exist some f € Mod(Z,) with the property that
f@y = wn__ll(vzﬂ), f(Bg—1) = wn__ll(en), and f(v) = v. Since the stabilizer
in Mod(Z,) of v is generated by S\ {7j,_,}, we can find some word w"”
in (S\ {Tp,_,D*! for which w"” = f. We claim that w = Wpw"Tg |

works. Indeed, since w,_;f(v") = vy,, the path associated to w consists of
v — ... — Wy, followed by the path

Wamt FO) = Wt TG (0) = V20 = wuma (F T F7 (W)
= U2y — wn—lee(n@g_l)(U)

= Vg — Wy T ™ v
2n n—1 w,,_ll(ﬁn)()

-1
= Vzq — Wy 1 Wy T, Wym1 (V)
= Vp — T:;"(?)zn_l) .

Since T7*(V2p—1) = Vz2py1, this is the desired path.

Now consider an arbitrary ¢ € 71 (Csep(Z4), v). We claim that we can
homotope ¢’ so that it satisfies the above condition. In fact, we will prove
more generally that if ¢ is any (not necessarily closed) path starting at v
whose final endpoint corresponds to a curve cutting off a 1-holed torus, then
we can homotope it (fixing the endpoints) so that it satisfies all of the above
conditions except for the closedness of the path.

We can assume without loss of generality that ¢ is a simplicial path in
the 1-skeleton. It is an easy exercise to see that we can homotope ¢ so
that all of its vertices cut off 1-holed tori, and in addition we can arrange
for £/ to contain an odd number of vertices and for no two adjacent vertices

of ¢ to be identical. Enumerate the vertices of ¢ as vy — ... — vayyg-
By induction on m, we can assume that v; — ... — va,—; salisfies the
desired condition. Now, using standard properties of Mod(X,) we can find a
sequence of simple closed curves 1,...,1m and numbers f,....fy = *1

such that ng ---T%(Uzm_l) = vmg1 and such that for 1 < i < &k we
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have i(n;, vam—1) = 2 and i(1;, v2,) = 0. We can then homotope ¢ (adding
“whiskers™) so that the path vz,—1 — V2 — V2amy1 18 replaced by

Vam—1 — V2m — T’;I;i (UZm—l) — U — qu;ll qu;i (UZm—l) — Uz

- = T{;ll e T,J;’;c(vzm—ﬂ = Uzm+1 s

thus proving the claim. [

This completes the proof of Theorem 1.11. [

APPENDIX : A VARIANT ON THE WAINRYB PRESENTATION

THEOREM A.1. For g > 4, the group Mod(Z,;) has a presentation (S|R)
satisfying the following conditions :
* S is the set of Dehn twists {Tq,, Tsy- -3 Ta,,Ts5,,T5- -5 Tp,_, } depicted
in Figure I.a together with the hyperelliptic involution h.
» The only relations r € R which involve both Técll and Té;l_l are

P, _
Tﬂl Tﬁg_lTﬁlTﬁg—l = 1

and

To, T8, Ta,_,  To,Te; 15T, Tp - Tp,_ Ta b~ ' =1.

g=1

Proof. 'The presentation described in this theorem is a variant of the
standard Wajnryb presentation ([20]; see [1] for errata). The generating set
for the Wajnryb presentation is

S = {Tal,...,Tag,Tﬂl,...,Tﬂg_l,Tgl,ng},

There are four families of relations. In the notation of [20], the first three
are labeled A, B and C. The relaton T[)TllTﬁqu_lTﬁlTﬁg—l = 1 1s the only

relation from family A (the “braid relations™) involving both Tgfl and T[il_l .
Families B (the “two-holed torus relation”) and C (the “lantern relation”) do
not involve both T;jl and Tiyl_l. The final relation D (as corrected by [1])
says that the hyperelliptic involution & commutes with 7 ; both & and T;,
are expressed using rather complicated formulas involving the generators §’.

Our relation
2 —1
Ta, 18, \Ta, " T3 To,T5To, T +- ~ng_1Tagh =3

expands out Wajnryb’s formula for /. As was observed in [1, Remark 1.a],
the expression for 75, in terms of §’ used by Wajnryb is unimportant;
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any correct expression will work. Now, using an argument of Humphries [9],
for 1 <i < g—2 we can express Ts,, as a complicated product of elements in

{Tai: Tai+1 ¥ T

|
g Tg,, Tﬁi+1 Ts,, Ts } :

it1
This allows us eliminate 75, from S for i > 3 by adding relations which do
not involve both T;l and Til_l . Our final relaton 1s [A,T5,] = 1; since this
does not mvolve either Ty, or Ty, ,, we are done. [
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