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THE SPINE THAT WAS NO SPINE

by Alexandra Pi : 1111 and Juan SotJTQ *

Abstract. Let % be the Teichmiiller space of flat metrics on the n -dimensional
torus T" and identify SL„ Z with the corresponding mapping class group. We prove
that the subset y consisting of those points whose systoles generate 7Ti(T") is, for
n > 5, not contractible. In particular, y is not an SL„ Z-equivariant deformation
refract of % •

1. Introduction

For n> 2 let 77 be the Teichmiiller space of flat metrics with unit volume

on the «-dimensional torus T" R"/Z". To be more precise, % is Üie set

of equivalence classes of unit volume flat metrics on T". where two metrics

p and p' are equivalent if there is an orientation preserving diffeomorphism
<jt G Diff+(T") homotopic to the identity with p' — $*p. We consider on the

Teichmüller space % the topology in which two classes of flat metrics p and

/>* are close: if there is a diffeomorphism <j> Diff+(T") homotopic to the

identity such that p' and cj>*p are close as tensors.

Every element A G SL„ Z induces an orientation preserving diffeomorphism
A G Diff+(T") which is said to be linear. We obtain thus a right action of
SL„ Z on 77, :

77 x SL„ Z > 7„ (p,A) I-5- A p

which is properly discontinuous. There exists a finite index subgroup F of
SL„ Z which acts freely ; in particular, the contractibility of 77 implies that

for any such subgroup T, the quotient 77fV is an Eilenberg-MacLane space
of type 7f(r, 1).

* Partially supported by the NSF.



274 A. I'i rn.l AND J. SOI TO

The systole syst(p) of a point p e 77 is the length of the shortest

homotopically essential geodesic in the flat torus (T",p). Let Sip) be the set

of homotopy classes of geodesies in (T",p) with length syst(p) ; the elements

in S(p) are known as the systoles of (T",p). Ash [1] proved that the systole
function

77 —¥ (0, oo), p H- syst(p)

is an SL„ Z -equivariant topological Morse function, and so it is not surprising
that it can be used to construct a particularly nice SL„ Z-equivariant spine, i.e.,

deformation retract, of 77- More precisely, the following result was proved,
in a different language and much greater generality, by Ash [2] :

Theorem 1.1 (Ash). The subset of '77, consisting of those points p
with the property that Sip) generates a finite index subgroup of 7ti(T") is an

SL„Z-equivariant spine of T„.

A flat torus whose systoles generate a finite index subgroup of the

fundamental group is said to be well-rounded; hence Ash's spine X is

known as the well-rounded retract. Observe that the well-rounded retract

X is homeomorphic to a CW-complex with the same dimension as the virtual

cohomological dimension vcdim( SL„ Z)
^

^ of SL„ Z.
From a geometric point of view, that the systoles generate a finite index

subgroup of 7Ti(T") seems an unnecessarily relaxed condition. We say that

a flat torus is extremely well-rounded if its systoles generate the full group
7ti(T") ; the set of all such tori we denote by y. Notice that y is also a CW-

yi(YI — \
complex of dimension - The authors were led to wonder whether y
could be an SL„ Z-equivariant deformation retract of T" as well. For n — 2,
3 and 4, this is known; for these cases the sets X and y coincide [8, 10].
The goal of this note is to show that this fails to be true for n > 5.

Theorem 1.2. For n > 5, the subset y of 77 consisting of extremely
well-rounded points, i.e., those points p with the property that Sip) generates
7ti(T")„ is not contractible and hence is not an SL„ Z -equivariant spine.

In order to prove Theorem 1.2, we make use of the well-known
identification between the Teichmüller space 77 and the symmetric space

S„ — SO„\SL„R. We discuss this identification in Section 2» For the
convenience of the reader, we also sketch briefly the proof of Theorem 1.1 in

Section 3. Now let f be a torsion free finite index subgroup of SL„Z.
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The action of r on S„ is free and hence the quotient Mr S„/T is a

manifold. Borel and Serre [5] constructed a compact manifold Mr with
boundary OMr whose interior is homeomorphic to Mr. In Section 4 we

briefly describe how to construct non-trivial homology classes in M9(|hft:
2

and Hn_i(Mr,dMT). These classes are then used in Section 5 to show that

whenever F is as above and is contained in the kernel of the standard homo-

morphism SL„Z —s- SL„Z/2Z, the inclusion y/T -4 Mr is not surjective on
the -homology; Theorem 1.2 follows.

Recently, after completion of this paper, the authors [9] extended Theorem

1.2, proving that in fact the well-rounded X retract does not contain any

proper, closed, SL„ Z -invariant, contractible subset.

Acknowledgements. We thank Martin Henk for showing us an example
of a point in X \ y. We also thank Mladen Bestvina for convincing us that

there was no way that y could be a retract, and for suggesting the strategy
for proving Theorem 1.2. The second author is grateful to the Department
of Mathematics of Stanford University for its hospitality while this note was

being written. We also thank the referee for useful remarks.

While this paper was written, the second author was a member of the

Department of Mathematics of the University of Chicago.

2. Generalities

We begin by fixing some notation that will be used in the sequel. We

denote by {e\,.... ,e„j and •) the standard basis and scalar product on R".
If v and A are a vector and a matrix, we let rv and 'A denote their transposes.

Using this notation, \v\ — #ïf is the standard euclidean norm on R". If S
is a subset of a group, we denote by (S} the subgroup generated by S ; for
example, Z" ({4i, If S is a subset of a euclidean vector space,

we denote by (<S)r the R-linear subspace generated by S and by (S}r its

orthogonal complement. We will sometimes use the same symbol to denote

both an equivalence class and a representative of the equivalence class. For

example, we may use the same notation for an element in SL„R, and for the

corresponding element in the symmetric space S„ — SO„\SL„R, or in the

even smaller quotient S„/ SL„Z. We will consistently denote the homology
class corresponding to a cycle ß by [ß]. All the homology groups considered

below will have coefficients in the field Z/2Z of two elements.
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These platitudes out of the way, we recall briefly the identification between

the Teichmüller space 77, and the symmetric space S„ — SO,, \ SL„ R. If p is

a flat metric on T" R"/Z" wiüi unit volume vol(T",/9) 1, the universal

cover R" is a complete flat manifold wiüi respect to the induced metric JL
In particular, there is an orientation preserving isometry

<:<: H«".-'-.-.).

The action by deck transformations of the fundamental group 7ti(T") on

(R",P) is isometric. Conjugating this action by <j> we obtain an action of
7Ti(T") — Z" on (R", {•,•)), also by isometries. It follows from a classical
result of Bieberbach [11] that the group </>7ri(T")</>_1 is a group of translations

of R". In other words, the isometry tj> induces a homomorphism

Z" -> R" j {x i-A {(j) o 7 o </r\)(x)}

with discrete and cocompact image. Any such homomorphism is the restriction
tö Z" of an element in SL„R. Different choices for the isometry <f>

yield homomorphisms which differ by post-composition with an orüiogonal
transformation of (R", {•,•}), and hence elements in SL„R which differ by
left-multiplication wiüi an element in SO,,. Thus, to every flat metric on T" we

can associate a well-defined point in the symmetric space S„ — SO,, \ SL„ R.
Moreover, equivalent flat metrics on T" induce the same point in S„. We

have thus a well-defined map

(2.1) 77, —S„ »• SO,, \ SL„ R.

The map (2.1) is a homeomorphism. Observe that under the identification
(2.1), the action of SL„Z on 77 given in the introduction corresponds to the

action on S„ by right multiplication.
As defined in the introduction, the systole syst(p) of a point p G 77, is

Üie length of the shortest non-trivial geodesic in (T",p) and S(p) is the set

of homotopy classes of geodesies of length syst(p). Under the identification
(2.1), for A G SL„R we have

syst(A) min |A»|
v£Zn,v^0

and

S(A) fa e Z", |Au| syst(A)}

In particular, Ash's spine X of well-rounded tori and the complex y of
extremely well-rounded tori, considered in Theorem 1.2, are given by:
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X — {p T„ \ (S(p)) has finite index in 7Ti(T")}

[A e Sg I (S(A)} has finite index in Z"}

y {peT„ \ («St/») - ttKT")}

{a G & I <«S(A)) z"}.
As was also mentioned in the introduction, Ash [1] proved that the systole
function

T„ -i- (0, oo), p syst(p)

is an SL„ Z-equivariant topological Morse function. Here we will only use that

the systole function is proper when considered as a function on S„/ SL„Z.

Mahler's compactness theorem. For every i > 0, the set of those

A e S„/ SL„ Z with syst(A) > e à compact.

Computations are simpler with matrices than with flat metrics, So in the

sequel we will mainly work in the symmetric space S„.

3. The well-rounded retract

In this section we discuss briefly the proof of Theorem 1.1. See [2] for a

complete proof of a more general version of this theorem.

Theorem LI (Ash). The subset X of T„ consisting of those points p
with the property that S(p) generates a finite index subgroup of sfi(T") is an

SL„Z-equivariant spine of %.

Recall that given p e T„, we denote by (S{p)) the subgroup 7Ti(T")

generated by the shortest non-trivial geodesies in (T",/». Identifying
with Z" we: see that the subgroup (S{p)) is a free abelian group with rank in

{L- • «}• Moreover, rank(«S(p)) n if and only if (S(p)) has finite index
in 7ri(T"). For k I,• • • ,n consider the set Xk of those points p e 77, for
which we have rank(«S(/>)) > k. We have thus the following chain of nested

SL„ Z -invariant subspaces :

X X„ c X„_t(- Xi - T„

In order to prove Theorem 1.1 it suffices to show that for k — 1,1the space Xk+i is an SL„ Z-equivariant spine of Xk. In order to see that this



278 A. I'i rn.l AND J. SOI TO

is the case, we use freely the identification (2.1) discussed above between tire

Teichmiiller space T„ and the symmetric space S„ ~ SO„ \ SL„ R.
Under this identification, a point A G S„ belongs to Mt \ Af-1 ff and

only if the set 5(A) generates a rank k subgroup of Z". Equivalently, 5(A)
generates a k-dimensional R-linear subspace (5(A)) r of R". Given AG Xk
and À G R, consider the one-parameter family of linear maps

(3.1, TaeSL„R.
e V for v G (A (5(A)) r)

where (A(5(A))r)± is the orthogonal complement in (R", (-,-)) of the image
under A of (5(A))R.

Now T^A — A, and if A e A). \ Xk+\, there is some A positive with
T^A G Xk+i. For A G Xk let r(A) > 0 be maximal such that

T*A G Ai. \ Xk+i for all A G (0, r(A))

By definition r(A) 0 for A e Xk+\. The function A r(A) is continuous

on Xk, which implies that

(3.2) [0,1] x Xk ~t Xk, (I, A) t£{A)A

is continuous as well. By definition, this homotopy is SL,, Z-equivariant, starts

with the identity, and ends with a projection of Xk to Xk+\. This proves that

Afc+i is an SL„ Z-equivariant spine of Xk for k — I,... ,n - I, concluding
the sketch of the proof of Theorem 1.1.

Remark 3.1. Something must be done to verify the continuity of (3.2),
as the map

R x Xk -r SL„ R, (A, A) i-> TjA

itself is not continuous. The key point is that this map is continuous on

R x (Xk \ Xk+\), and by definition r(A) 0 for A G Xk+\.

We conclude this section with a couple of additional remarks about the

structure of the well-rounded retract X and a computation of the virtual
cohomological dimension of SL„Z.

It is not difficult to prove that Xk is a co-dimension k — 1 semi-algebraic
set given by a locally finite collection of inequalities and quadratic algebraic

equations. Hence X is homeomorphic to a CW-complex of dimension

n(n — 1)
dinii.V! ä= dimS„ - in I s —-—-.
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It is also easy to see that the well-rounded retract X is cocompact, although
Xk is not cocompact for k < n.

The symmetric space Jj is contractible, hence so is X. In particular, if F
is a subgroup of SL„ Z which acts freely on S„, then X/F is an Eilenberg-
MacLane space of type K{ r, 1), giving us the following upper bound on its

Cohomological dimension :

n(n — 1)
cdim(D < dim(J) ^—-

The group SL„ Z contains subgroups T of finite index which are torsion free

and thus act freely on S„. This yields the upper bound

vcdim(SL„ Z) <
^

^

for the virtual cohomological dimension of SL„Z. One can see that the

upper bound is sharp as follows : Let N be the "("~1) -dimensional subgroup
of SL„R consisting of upper triangular matrices with units in the diagonal.
The intersection N H SL„ Z is a cocompact subgroup of N ; hence for F as

above N/iNnT) is a closed manifold of dimension —-
1 '. rIhe group N

is contractible, hence N/(N FtP} is an Eilenberg-MacLane space of type
K{N nr, 1) Thus we have

cdimtD > cdim(iV Fl T) dim(iV/(iV Fl F)) ^— —

This implies that vcdim(SL„ Z) - —.

In the next section we will give an elementary argument to prove that the

homology class [TV/CIVHT)] e is non-trivial.
I

4. Some topology

As mentioned some lines above, SL„Z contains a torsion free subgroup
of finite index, and any such subgroup acts not only discretely, but also freely
on S„ ; hence the quotient Mr S„/T is a manifold. Borel and Serre [5]

proved that Mr is homeomorphic to the interior of a compact manifold Mr
with boundary dMr Identifying Mr with the complement of an open regular
neighborhood of dMr, we consider the former as a submanifold of Mr in
the sequel.
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Remark 4.1. Grayson [7] gave a construction of Mr directly as a

submanifold of Mr, giving a new proof of Some of Borel's and Serre'S

results. If we are only interested in constructing a compactification Mr as

above, we can do the following: For A e SL„R the series 5Z„ez»ë_'A"'
converges, and its value depends only on the class Of A in S„. In particular,
the function

F:S„^ R, F(A) ^ e^M
vez"

is well-defined, smooth, and descends to a function / : Mr -» R. The function /
is proper, and there is some constant L which bounds above the critical
values of /. This implies that oo) is a product, hence we can set

Mr =/_1[0,L],

Borel and Serre constructed the compactification Mr to study homological
properties of T. We will only need some basic facts, well-known probably to

experts and non-experts alike, which we deduce in an elementary way.

Recall that we always consider homology with coefficients in Z/2Z. By
Lefschetz duality there is a non-degenerate pairing

l: II,,,, :,(.!/ / //„ OÏ7 <7.Ï7 -A Z/2Z
2

which can be computed as follows. Given homology classes [a] PW
_ _ 2

and \J3] e //,,_i(Mr, dMr), represent them by cycles a and ß in general

position. Then i([o:], [/fl) is just the parity of the cardinality of the set aHß.

Remark 4.2. This is the simplest version of the Alexander-Whitney
product in homology, which dualizes the cup product.

In particular, in order to prove that the "'"F1*-cycle a — N/iNCiT) represents

a non-trivial homology class it suffices to find a cycle ß g C„_i(Mr, dMy)
which intersects a transversally at a single point. In order to find such a cycle
ß we consider the subgroup A of SL„ R consisting of diagonal matrices with
positive entries and the map A Mr which maps every He A to its class in

Mr — SO,, \SL„R/r. By Mahler's compactness theorem, the systole function
is proper on S„/SL„Z ; since F has finite index in SL„Z it is also proper
on Mp. Then the following lemma implies that the map A —> Mr is proper
as well.
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Lemma 1. Let H & A he a diagonal matrix with positive entries. Then

syst{H) is the minimum of the entries in the diagonal of //. In particular
syst(H) < I, with equality if and only if H — Id.

Proof. Let a\,...,a„ be the diagonal entries of H, and for the sake of
concreteness assume that a\ is minimal. Then for v — • ^1%) G Z"
with, say, m ^ 0, we have

with equality if, for example, t>i - 1 and ft«»!! - v„ — 0. This proves
the first claim of the lemma. The second claim follows from the fact that

a\ ...a„ — 1, so that either some tf; is less than 1 or all of the <7; 's are equal
to 1.

The proper map A —> Mr can be considered as a cycle ß in

C„_i(Mr, dMr). We denote by [A] HI the homology class of ß.

Lemma 2. Let A £ N be an upper triangular matrix with 1 at the

diagonal. Then syst(A) 1.

Proof. Given v — v„) £ Z", let i be minimal such that vj — 0

for all j > i. Then we have that m is the /-th coordinate of Av and

hence |A®| > |v,j > 1, with equality when, for example, fi 1 and

» •••= v„ 0.

The intersection points of the cycles a N/(N H T| and ß in Mr
correspond bijectively to the set of those H e A for which there is A £ F
with HA £ N. For any such H we have by Lemma 2

and hence H — Id by Lemma 1 ; thus a and ß intersect at a single point.
Moreover, their intersection is locally modeled by the intersection of the images

of A and N in S„, and hence it is transversal; therefore t([a], QUI) 1 This

implies that [a] ITV/Wnr)] and |,/| — [A] are not homologically trivial.

Lemma 3. If Y is a torsion free subgroup of SI.,, Z then the classes

[N/N n F] £ //„(„_i) (Mr) and [A] G dMy) have intersection

1 syst(HA) syst(ZZ)

2

t([iV/Nnn,[A])= 1

and hence are not trivial.
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5. Proof of Theorem 1.2

Taking into account the title of this section, it can hardly be surprising
that we now prove :

Theorem 1.2. For n > 5, the subset y of T„ consisting of extremely
well-rounded points, i.e., those points p with the property that S(p) generates

7ti(T"), is not contractible and hence is not an SL„Z -equivariant spine.

Let all the notation be as in the previous section. As mentioned in the

introduction, in order to prove Theorem 1.2 we will show that there is a finite
index torsion free subgroup F c SL„ Z for which the map

(5.1) H,A„-\y(y/T)
2

Hn(n-D PM
2

is not surjective. More precisely, we will show that this is the case for
those torsion-free finite-index subgroups F contained in the kernel of the

homomorphism

(5.2) SL„ Z -jr SL„ Z/2Z

Fix such a T and let A £ SL„ R be the upper triangular matrix which, up to

a factor, is the identity on the upper left (n — 1) x (n - 1) quadrant and with
entries equal to | in the last column :

/ 1 o

0 1

(5.3) A 2 ~n

0 I \
0 i

0 0

\ 0 0

1 I
0 I J

The assumption that F is contained in the kernel of (5.2) implies that every
element B £ T can be written as B — Id +B', where every entry öf B' is

even. In particular, we have for any such B that ABA~l has integer entries,

so that

\ FA
1

c SL„ Z

Observe that we have a diffeomorphism

Sn —y Sn B I—2 BA

which induces a diffeomorphism
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A Maya-1 —^ MY

The diffeomorphism A maps the non-trivial (by Lemma 3) homology classes

[7V/(7V n CAEA"1)! ç (Maya-0, M <QMaya-1)
2

to, a fortiori, non-trivial classes with

i(A[A], A([JV/(JVn (AEA"1»])) 1.

Observe that the class A* [A] g 8My) is represented by a cycle
supported in {HA \ H g A} n Mr. Below we will prove

Lemma 4. Assume that n > 5, that A is the matrix given in (5.3), and
that H g A is a diagonal matrix. Then we have:

• A g X \ y, and

• HA g X if and only if H — Id.

Lemma 4 implies that the homologically non-trivial class A„|A] is

supported by a cycle which does not intersect y/T. This implies that the

class (ALA n|t g is not represented by any cycle
2

in Cn(n-iy(y/T). In particular we deduce, as was claimed, that the map (5.1)
2

is not surjective. We can now conclude the proof of Theorem 1.2. If y were
contractible, then y/T would be an Eilenberg-MacLane space for T and the

inclusion y/T -—s- S„/T - My a homotopy equivalence, contradicting the lack
of subjectivity of (5.1).

It just remains to prove Lemma 4 :

Proof of Lemma 4. We start proving that A g X \ y. For every vector

v ~ *(vi,.. v„) g Z" we have that

r -, — — / Vu Vn ''n \

If v„ is odd, then |Av| > On the other hand, if v„ is even, then

_ l
every vector has at least length 2 8 with, for example, equality for e\. This

proves that syst(A) 2 >>, and one can easily see that S (A) consists of the

following 2n vectors in Z" :

±<?i,..., ±f 2e„ - Y& J.
^ i=i

*
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This implies that S(A) generates the subgroup of Z" consisting of vectors
whose last coordinate is even. This is a proper subgroup with index 2, hence

A i y, but A G At:,

Continuing with the proof of the lemma, let H G A be a diagonal matrix
with positive entries When we multiply H and A we obtain:

(5.4)
l

HA 2~»

i #i o

0 an

0 0

\ 0 0

@n— 1

0

a \2 *
Ü2
2

&n— 1

2

For any such HA and i — 1,- 1 we have \HMi\ <= 2 «ö;. We also

have H.\[2e„ - J2'î2i e2) | — 2~»a„. This shows that

(5.5) syst(Ä4) < 2 n minjfl; | i — 1

Assume from now on that HA belongs to the well-rounded retract X, and recall
that this means that the set S(HA) of those v G Z" with \HAv\ — syst(Ä4)
generates a finite index subgroup of Z". In particular, there is a shortest vector

v - r(ttJi,... w„) S(HA) with w„ > 0. For such a v one has

syst(HA) \HAv\ > 2"« y a„.

We deduce then from (5.5) that iu„ is either 1 or 2. We claim that w„ — 2.
Otherwise we have

\HAv\ > i flj + " • - + + a;, >2"« -y min{fl, j 1 1,..., «}

contradicting (5.5), as n > 5. Hence there is a shortest vector with last

coefficient w„ 2. Among all these vectors, HAv is minimal if and
1

only if v 2e„ ; thus syst(HA) 2 « a„. The assumption that Ä4 G if
implies that for i 1,...,« - 1, there is also some vector v' with

_f
1 HAv' I syst(Ä4) — 2 » a„ and whose i -th coefficient w[ does not vanish.

By the discussion above, the last coefficient of v' must vanish and hence

the Nth coefficient of HAv is 2 «w'ö;. This implies that a,- a„. We have

proved that if HA G X then H — Id.
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