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THE SPINE THAT WAS NO SPINE

by Alexandra PETTET and Juan SOUTO*)

ABSTRACT. Let 7, be the Teichmuller space of flat metrics on the n-dimensional
torus T" and identify SL,Z with the corresponding mapping class group. We prove
that the subset ) consisting of those points whose systoles generate m(T") 1s, for
n > 5, not contractible. In particular, ) is not an SL,Z-equivariant deformation
retract of 7.

1. INTRODUCTION

For n > 2 let 7, be the Teichmuller space of flat metrics with unit volume
on the n-dimensional torus T” = R"/Z”. To be more precise, 7, is the set
of equivalence classes of unit volume flat metrics on T", where two metrics
p and p’ are equivalent if there is an orientation preserving diffeomorphism
¢ € Diff  (T") homotopic to the identity with p’ = ¢*p. We consider on the
Teichmuller space 7, the topology in which two classes of flat metrics p and
p' are close if there is a diffeomorphism ¢ € Diff, (T") homotopic to the
identity such that p’ and ¢*p are close as tensors.

Every element A € SL, Z induces an orientation preserving diffeomorphism
A € Diff . (T") which is said to be [inear. We obtain thus a right action of
SL,Z on 7,:

ToxSL,Z —T,, (p,A)—A"p

which is properly discontinuous. There exists a finite index subgroup I' of
SL, Z which acts freely; in particular, the contractibility of 7, implies that
for any such subgroup I', the quotient 7,/T" is an Eilenberg-MacL.ane space
of type K(I', 1).

*) Partially supported by the NSF.
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The systole syst(p) of a point p € 7, is the length of the shortest
homotopically essential geodesic in the flat torus (T”, p). Let S(p) be the set
of homotopy classes of geodesics in (T”, p) with length syst(p); the elements
in S(p) are known as the systoles of (T”, p). Ash [1] proved that the systole
function

T — (0,00),  p+> sysi(p)

18 an SL, Z-equivariant topological Morse function, and so it is not surprising
that it can be used to construct a particularly nice Sl., Z-equivariant spine, i.e.,
deformation retract, of 7,. More precisely, the following result was proved,
in a different language and much greater generality, by Ash [2]:

THEOREM 1.1 (Ash). The subset X of T, consisting of those points p
with the property that S(p) generates a finite index subgroup of m(T") is an
SL, Z-equivariant spine of T,.

A flat torus whose systoles generate a finite index subgroup of the
fundamental group is said to be well-rounded; hence Ash’s spine A is
known as the well-rounded retract. Observe that the well-rounded retract
X 1s homeomorphic to a CW-complex with the same dimension as the virtual
cohomological dimension vedim(SL, Z) = "= of SL, Z.

From a geometric point of view, that the systoles generate a finite index
subgroup of m(T") seems an unnecessarily relaxed condition. We say that
a flat torus is extremely well-rounded if its systoles generate the full group

m1(T"); the set of all such tori we denote by Y. Notice that ) is also a CW-
nn—1)

. The authors were led to wonder whether Y
could be an SIL., Z-equivariant deformation retract of 7" as well. For n =2,
3 and 4, this is known; for these cases the sets X' and Y coincide [8, 10].
The goal of this note is to show that this fails to be true for n > 5.

complex of dimension

THEOREM 1.2, For n > 5, the subset Y of T, consisting of extremely
well-rounded points, i.e., those points p with the property that S(p) generates
m(T"), is not coniractible and hence is not an Sl Z-equivariani spine.

In order to prove Theorem 1.2, we make use of the well-known
identification between the Teichmiller space 7, and the symmetric space
Sa = SO, \ SL,R. We discuss this identification in Section 2. For the con-
venience of the reader, we also sketch briefly the proof of Theorem 1.1 in
Section 3. Now let T" be a torsion free finite index subgroup of SL,Z.
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The action of I on S, is free and hence the quotient Mr = S,/I" is a

manifold. Borel and Serre [5] constructed a compact manifold Mr with

boundary OMr whose interior is homeomorphic to M. In Section 4 we

briefly describe how to construct non-trivial homology classes in H n—1) (Mr)
7

and H,_(Mr,OMy). These classes are then used in Section 5 to show that
whenever T' is as above and is contained in the kernel of the standard homo-
morphism SL,Z — SL,Z/2Z, the inclusion Y /T — Mr is not surjective on
the ”(”T_l)-homology; Theorem 1.2 follows.

Recently, after completion of this paper, the authors [9] extended Theo-
rem 1.2, proving that in fact the well-rounded A" retract does not contain any
proper, closed, SL,Z-invariant, contractible subset.

ACKNOWLEDGEMENTS. We thank Martin Henk for showing us an example
of a point in X'\ Y. We also thank Mladen Bestvina for convincing us that
there was no way that ) could be a retract, and for suggesting the strategy
for proving Theorem 1.2. The second author is grateful to the Department
of Mathematics of Stanford University for its hospitality while this note was
being written. We also thank the referee for useful remarks.

While this paper was written, the second author was a member of the
Department of Mathematics of the University of Chicago.

2. (GENERALITIES

We begin by fixing some notation that will be used in the sequel. We
denote by {ey,...,e,} and (-,-) the standard basis and scalar product on R”,
If v and A are a vector and a matrix, we let ‘v and ‘A denote their transposes.
Using this notation, |v| = v/vv is the standard euclidean norm on R”. If S
is a subset of a group, we denote by (S) the subgroup generated by & ; for
example, Z" = ({e1,...,e,}). If S is a subset of a euclidean vector space,
we denote by (S)g the R-linear subspace generated by S and by (S)g its
orthogonal complement. We will sometimes use the same symbol to denote
both an equivalence class and a representative of the equivalence class. For
example, we may use the same notation for an element in SL, R, and for the
corresponding element in the symmetric space S, = SO, \ SL, R, or in the
even smaller quotient S,/ SL,Z. We will consistently denote the homology
class corresponding to a cycle 4 by [3]. All the homology groups considered
below will have coefficients in the field Z/2Z of two clements.
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These platitudes out of the way, we recall briefly the identification between
the Teichmiiller space 7, and the symmetric space S, = SO, \ SL, R. If p is
a flat metric on T” = R”/Z" with unit volume vol(T”, p) = 1, the universal
cover R” is a complete flat manifold with respect to the induced metric g.
In particular, there is an orientation preserving isometry

¢: (an ﬁ) — (Ri’l7 <': )) -

The action by deck transformations of the fundamental group mi(T") on
(R”, p) is isometric. Conjugating this action by ¢ we obtain an action of
7 (T") = Z" on (R",{-,-)), also by isometries. It follows from a classical
result of Bieberbach [11] that the group ¢m(T")¢! is a group of translations
of R”. In other words, the isometry ¢ induces a homomorphism

Z' R, v {xe (doyos Hin}

with discrete and cocompact image. Any such homomorphism is the restriction
to Z” of an element in SL,R. Different choices for the isometry ¢
yield homomorphisms which differ by post-composition with an orthogonal
transformation of (R”,{-,-)), and hence elements in SI.,, R which differ by
left-multiplication with an element in SO,,. Thus, to every flat metric on T” we
can associate a well-defined point in the symmetric space S, = SO, \ SL, R.
Moreover, equivalent flat metrics on T” induce the same point in §,. We
have thus a well-defined map

(2.1) Tn — Sn = SO, \SL, R.

The map (2.1) is a homeomorphism. Observe that under the identification
(2.1), the action of SL,Z on 7, given in the introduction corresponds to the
action on S, by right multiplication.

As defined in the introduction, the systole syst(p) of a point p € 7, is
the length of the shortest non-trivial geodesic in (T”, p) and S(p) is the set
of homotopy classes of geodesics of length syst(p). Under the identification
(2.1), for A € SL, R we have

t((A) = i A
SyS( ) 'UEIZQI,{JI#O’ U|

and
SA) = {v € 2", |Av| = syst(A)} .

In particular, Ash’s spine X of well-rounded tori and the complex ) of
extremely well-rounded tori, considered in Theorem 1.2, are given by:
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X ={peT,|(Sp) has finite index in = (T")}
= {A € S, | (5(A)) has finite index in Z"}
Y={peTil{Sp) =m(T}
— (A €S, | (SA) =7"}.

As was also mentioned in the introduction, Ash [1] proved that the systole
function
Tn =+ (0,00), p > syst(p)

is an SL, Z-equivariant topological Morse function. Here we will only use that
the systole function is proper when considered as a function on S,/ SL,Z.

MAHLER’S COMPACTNESS THEOREM. [For every € > 0, the set of those
A € 8,/SL,Z with syst(A) > € is compact.

Computations are simpler with matrices than with flat metrics, so in the
sequel we will mainly work in the symmetric space S, .

3. THE WELL-ROUNDED RETRACT

In this section we discuss briefly the proof of Theorem 1.1. See [2] for a
complete proof of a more general version of this theorem.

THEOREM 1.1 (Ash). The subset X of 7T, consisting of those points p
with the property that S(p) generates a finite index subgroup of w1 (T") is an
SL, Z.-equivariant spine of T,.

Recall that given p € 7,, we denote by (S(p)) the subgroup m(T")
generated by the shortest non-trivial geodesics in (T, p). Identifying 1 (T")
with Z” we see that the subgroup (S(p)) is a free abelian group with rank in
{1,...,n}. Moreover, rank(S(p)) = n if and only if {(S(p)) has finite index
in w1 (T"). For k = 1,...,n consider the set A of those points p € 7, for
which we have rank(S(p)} > k. We have thus the following chain of nested
SL.,, Z -invariant subspaces :

X¥X=xcx,,Cc---CcXi="17,.

In order to prove Theorem 1.1 it suffices to show that for k = 1,..., 71— 1
the space Ay is an SL, Z-equivariant spine of Xy. In order to see that this
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is the case, we use freely the identification (2.1) discussed above between the
Teichmuller space 7, and the symmetric space S, = SO, \ SL, R.

Under this identification, a point A € S, belongs to A \ Ar+; if and
only if the set S(A) generates a rank k& subgroup of Z”. Equivalently, S(A)
generates a k-dimensional R-linear subspace (S(A))r of R”. Given A € X
and X\ € R, consider the one-parameter family of linear maps

(n—k)x
. o e v for v e A(S(A)r
(3.1)  IfeSL.R, Tiw)= { e for v e (A(SA)R)T

where (A(S(A))r)" is the orthogonal complement in (R”, {-,-)) of the image
under A of (S(A)r.

Now TQA = A, and if A € X\ X1, there is some A positive with
TX‘A € App1. For A € A let 7(A) > 0 be maximal such that

TaA € X\ X for all X € (0, 7(4)) .

By definition 7(A) =0 for A € Ay1. The function A — 7(4) is continuous
on Ay, which implies that

(3.2) 0,11 x X — X, (1A — T4

is continuous as well. By definition, this homotopy 1s SL, Z -¢cquivariant, starts
with the identity, and ends with a projection of Ay to Axr;. This proves that
Ary1 18 an SL, Z-equivariant spine of Ay for k= 1,...,n— 1, concluding
the sketch of the proof of Theorem 1.1.

REMARK 3.1. Something must be done to verify the continuity of (3.2),
as the map
R x X — SL,R, (M\A)—T3A

itself is not continuous. The key point is that this map is continuous on
R x (A \ Xky1), and by definition 7(A) =0 for A € Xjsq.

We conclude this section with a couple of additional remarks about the
structure of the well-rounded retract X and a computation of the virtual
cohomological dimension of SL,Z.

It is not difficult to prove that Az 1s a co-dimension & — 1 semi-algebraic
set given by a locally finite collection of inequalities and quadratic algebraic
equations. Hence X is homeomorphic to a CW-complex of dimension

nn—1)

dim(A) =dimS, —(n—1) = 3 .
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It is also easy to see that the well-rounded retract X is cocompact, although
Ay 1s not cocompact for k£ < n.

The symmetric space S, is contractible, hence so is A", In particular, if T'
is a subgroup of SL,Z which acts freely on S,, then X/I' is an Eilenberg-
MacLane space of type K(I',1), giving us the following upper bound on its
cohomological dimension:

nn—1)
—

The group SL, Z contains subgroups I' of finite index which are torsion free
and thus act freely on S,. This yields the upper bound

nn—1)

cdim(I) < dim(X) =

vedim(SL, Z) <

for the virtual cohomological dimension of SL,Z. One can see that the
upper bound is sharp as follows: Let N be the @-dimensional subgroup
of SL, R consisting of upper triangular matrices with units in the diagonal.
The intersection N N SL, Z 1s a cocompact subgroup of N ; hence for T' as
above N/(NNT) is a closed manifold of dimension ”("2_ D The group N
is contractible, hence N/(N NT) is an FEilenberg-MacLane space of type
K(NNT,1). Thus we have

. . . nin — 1)
cdim(I) > cdim(N N T) = dim(N/(N N 1)) = —
This implies that vedim(SL, Z) = B =)

In the next section we will give an elementary argument to prove that the

homology class [N/(N NI € Hyp—1y(Mr) is non-trivial.
7

4., SOME TOPOLOGY

As mentioned some lines above, SL.,Z contains a torsion free subgroup
of finite index, and any such subgroup acts not only discretely, but also freely
on §,; hence the quotient Mr = S,/T" is a manifold. Borel and Serre [5]
proved that Mr is homeomorphic to the interior of a compact manifold Mr
with boundary dMry. Identifying M with the complement of an open regular
neighborhood of OMr, we consider the former as a submanifold of Mp in
the sequel.



280 A. PETTET AND J. SOUTO

REMARK 4.1. Grayson [7] gave a construction of Mrp directly as a
submanifold of M, giving a new proof of some of Borel’s and Serre’s
results, If we are only interested in constructing a compactification Mt as
above, we can do the following: For A € SL,R the series > .y e~ 14|
converges, and its value depends only on the class of A in §,. In particular,
the function

F:S, =R, FA)=>» e Wl
veLl

is well-defined, smooth, and descends to a function f: Mr — R. The function f
is proper, and there is some constant L which bounds above the critical
values of f. This implies that f~'[L,00) is a product, hence we can set
Mr = f710,L].

Borel and Serre constructed the compactification Mt to study homological
properties of I'. We will only need some basic facts, well-known probably to
experts and non-experts alike, which we deduce in an elementary way.

Recall that we always consider homology with coefficients in Z/2Z. By
Lefschetz duality there is a non-degenerate pairing

L. Hn(n—l) (MF) X Hn—1(ﬁryaﬁr) — Z/2Z
2

which can be computed as follows. Given homology classes [a] € H y—1) (MT)
2
and [A] € H,_1(Mr,dMr), represent them by cycles o and 3 in general

position. Then «([a], [F]) is just the parity of the cardinality of the set anj.

REMARK 4.2. This is the simplest version of the Alexander-Whitney
product in homology, which dualizes the cup product.

In particular, in order to prove that the @ cycle a = N/(NNT) repre-
sents a non-trivial homology class it suffices to find a cycle 3 € C,_1(Mr, OMr)
which intersects « transversally at a single point. In order to find such a cycle
& we consider the subgroup A of SL., R consisting of diagonal matrices with
positive entries and the map A — Mr which maps every H € A (o its class in
Mr = SO, \ SL, R/T". By Mahler’s compactness theorem, the systole function
is proper on S,/SL,Z; since I' has finite index in SL,Z it is also proper
on Mr. Then the following lemma implies that the map A — Mr is proper
as well.
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LEMMA 1. Let H € A be a diagonal matrix with positive entries. Then
syst(H) is the minimum of the entries in the diagonal of H. In particular
syst(H) < 1, with equality if and only if H = 1d.

Proof. Let ay,...,a, be the diagonal entries of H, and for the sake of
concreteness assume that @ is minimal. Then for v = ‘(vq,...,v,) € Z7
with, say, v; # 0, we have

|Av| = \/G%U% + ot apuy > awi] > a4 > a

with equality if, for example, v; = 1 and v» = --- = v, = 0. This proves
the first claim of the lemma. The second claim follows from the fact that
ai ...d, = 1, so that either some a; 1s less than 1 or all of the @;’s are equal
to 1.

The proper map A — Mp can be considered as a cycle 5 in
C,_1(Mr,OMr). We denote by [A] = [3] the homology class of 3.

LEMMA 2. Let A € N be an upper triangular matrix with 1 at the
diagonal. Then syst(A) = 1.

Proof. Given v ="(v1,...,v,) € Z”, let i be minimal such that v; =0
for all j > i. Then we have that v; is the i-th coordinate of Av and
hence |Av| > |v| > 1, with equality when, for example, v; = 1 and
vy — - =1, = 0.

The intersection points of the cycles o = N/(NNT) and £ in Mr
correspond bijectively to the set of those H € A for which there is A € T
with HA € N. For any such H we have by Lemma 2

1 = syst(HA) = syst(H)

and hence H = Id by Lemma 1; thus « and S intersect at a single point.
Moreover, their intersection is locally modeled by the intersection of the images
of A and N in §,, and hence it is transversal; therefore ¢([«], [3]) = 1. This
implies that [a] = [N/(NNI)] and [3] = [A] are not homologically trivial.

LEMMA 3. If I' is a torsion free subgroup of SL,Z then the classes
[IN/NNT1 € Huu—1)(Mr) and [A] € H,_(Mr,OMr) have intersection
a2

WIN/N AT [A]) = 1

and hence are not trivial. L]
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5. PROOF OF THEOREM 1.2

Taking into account the title of this section, it can hardly be surprising
that we now prove:

THEOREM 1.2. For n > 5, the subset Y of T, consisting of extremely
well-rounded points, i.e., those points p with the property that S(p) generates
m(T"), is not contractible and hence is not an SL, Z-equivariant spine.

Let all the notation be as in the previous section. As mentioned in the
introduction, in order to prove Theorem 1.2 we will show that there is a finite
index torsion free subgroup I' C SI., Z for which the map

is not surjective. More precisely, we will show that this is the case for
those torsion-free finite-index subgroups I' contained in the kernel of the
homomorphism

(5.2) SL,Z — SL, Z/2Z..

Fix such a T' and let A € SI, R be the upper triangular matrix which, up to
a factor, is the identity on the upper left (n — 1) x (n — 1) quadrant and with

entries equal to % in the last column:

1 0 0 3
0 1 0 3
(5.3) e . bt
00 ... 1 3
0 0 0 %

The assumption that I' is contained in the kernel of (5.2) implies that every
clement B € T' can be written as B = Id+B’, where every entry of B’ is
even. In particular, we have for any such B that ABA~! has integer entries,
so that

ATA™  C SL, Z.

Observe that we have a diffeomorphism
Sv —+8,, B+— BA

which induces a diffeomorphism
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A: Myra-1 — Mr.
The diffeomorphism A maps the non-trivial (by L.emma 3) homology classes

[IN/INNATA™Y)] € Hu—1y (Mara-1), [A] € Hyey(Mara-1, OMyrp—1)
7

to, a fortiori, non-trivial classes with
L(ALJAL AN/ N (ATATH)D) = 1.

Observe that the class A,[A] € H,_i(Mr,OMr) is represented by a cycle
supported in {HA | H € A} N Mr. Below we will prove

LEMMA 4. Assume that n > 5, that A is the matrix given in (5.3), and
that H € A is a diagonal matrix. Then we have :
e« Ac X\, and
e HA € X if and only if H =1d.

LLemma 4 implies that the homologically non-trivial class A.[A] is
supported by a cycle which does not intersect )/I". This implies that the
class A (IN/(NN (ATA~))]) € H -1y (Mr) 18 not represented by any cycle

p)
in Cppu—1y(Y/T). In particular we deduce, as was claimed, that the map (5.1)
D)

is not surjective. We can now conclude the proof of Theorem 1.2, If Y were
contractible, then Y /T" would be an Eilenberg-Maclane space for I" and the
inclusion Y/T" — S, /T = Mr a homotopy equivalence, contradicting the lack
of surjectivity of (5.1).

It just remains to prove Lemma 4:

Proof of Lemma 4. We start proving that A € X'\ V. For every vector
v="v,...,v,) € Z" we have that

il
‘Av) =277 (o + 2 v
(Av) =2 (v1+2,...,vn_1+2,2).

1

If v, is odd, then |Av| > 32@2_5. On the other hand, if v, is even, then
1

every vector has at least length 27 » with, for example, equality for e;. This

1
proves that syst(A) =2~ », and one can casily see that S(A) consists of the
following 2n vectors in 27 :

n—1
:l:el,...jzlzen_l,:lz(%n - Zel).

i=1



284 A. PETTET AND J. SOUTO

This implies that S(A) generates the subgroup of Z* consisting of vectors
whose last coordinate is even. This is a proper subgroup with index 2, hence
A¢)Y,but Ac X,

Continuing with the proof of the lemma, let H € A be a diagonal matrix

with positive entries ay,...,d,. When we multiply H and A we obtain:
a 0 ... 0 512_1
0 [75) 0 %
(5.4) HA =277 5
0 0 dn—1 an2—1
0 0 0 &

1

For any such HA and i =1,...,n— 1 we have |HA¢;| = 27 na;. We also
1

have |HA(2e, — Ef;ll e;)| =277 a,. This shows that

1
(5.5) SYSt(HA) < 2™ nmin{a; | i=1,...,n}.

Assume from now on that HA belongs to the well-rounded retract X', and recall
that this means that the set S(HA) of those v € Z" with |HAv| = syst(f{A)
generates a finite index subgroup of Z”. In particular, there is a shortest vector
v="w,...,w,) € S(HA) with w, > 0. For such a v one has

1
Syst(HA) = |HAv| > 27n w? ay .

We deduce then from (5.5) that w, is either 1 or 2. We claim that w, = 2.
Otherwise we have

1
\HAU|2% a%+---+a%_1+a,2122_54min{ai\i:1,...,n}

contradicting (5.5), as n > 5. Hence there is a shortest vector with last

coefficient w, = 2. Among all these vectors, HAv is minimal if and
1

only if v = 2e,; thus syst(HA) = 2™ »a,. The assumption that HA € X

implies that for i/ = 1,...,n — 1, there is also some vector ¢’ with

1
\HAv'| = syst(HA) = 27 na, and whose i-th coefficient w] does not vanish.
By the discussion above, the last coefficient of +" must vanish and hence

1
the i-th coefficient of HAv is 27 nw!a;. This implies that a; = a,. We have
proved that if HA € X then H =1d.
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