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THE EXTENDED QUOTIENT

by Paul BAUM

Let I be a finite group acting on a (topological space X or) an affine
variety X. The quotient variety (or quotient topological space) X/I" is obtained
by collapsing each orbit to a point. For x € X, I'y denotes the stabilizer group
of x, that is

Li={vel|w=4i},
and «(I'y) denotes the set of conjugacy classes of I.

The extended quotient is obtained by replacing the orbit of x by e(Iy).
This is done as follows:

Set X = {(v,x) € I'x X | »x = x}, this is an affine variety and is a
sub-variety of T x X. Moreover, I acts on X as follows

I'xX — X
(9, (7, X)) = g(v,x) = (g7, 90)  where g €T, (v, x) €X.

The extended quotient, denoted by X//T, is given by X/T', the ordinary
quotient of X by the above action of T'.

The extended quotient is an affine variety (or a topological space). The
evident projection X — X, (7v,X) — X passes to quotient spaces to give a
map p: X//T — X/T". The map p is the projection of the extended quotient
onto the ordinary quotient.

Let G be a reductive p-adic group (examples are GL.(n, F) and SL(n, F),
where F is any finite extension of the p-adic numbers Q,). Let V be a
vector space over the complex numbers C.

DEFINITION 8.1. A representation ¢: G — Autc(V) of G is smooth if
for every v € V,

G-u = {g €cG | gb(g)v — T)}
is an open subgroup of G.
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We will denote by G the set of equivalence classes of smooth irreducible
representations of G. One of the main problems in the representation theory
of p-adic groups (which is closely related to the local Langlands conjecture)
is to describe G.

The Hecke algebra of G, denoted by HG, is the convolution algebra of
all complex-valued locally-constant compactly-supported functions f: G — C.
Then G is in bijection with Prim HG, the set of primitive ideals in ‘HG.
On PrimHG there is the JTacobson topology. Hence we may consider each
connected component of the primitive ideal space. Typically there will be
countably many of these connected components.

Let C* denote the (complex) affine variety C — {0}.

DEFINITION 8.2, A complex torus is a (complex) affine variety T such
that there exists an isomorphism of affine varieties

TC*xC*x - xC*.

J. Bernstein assigns to each o € my(Prim H(G) a complex torus 7, and a
finite group I', acting on 7.

He then forms the quotient variety 7,/I', and proves that there is a
surjective map (the infinitesimal character)

T Xo = T /Ty .

The set X, is the connected component of Prim HG corresponding to «. In
Bernstein’s work X, is a set (i.e. is only a set) so 7, is a map of sets, which
is surjective, finite-to-one and generically one-to-one.

CONIJECTURE 8.3. There is a certain resemblance between

Ta//FO/ on
pal and lm
To/Ta To/Ta

Here p,, is (as above) the projection of the extended quotient onto the ordinary
quotient.

For the precise conjecture, see papers of A.-M. Aubert, P. Baum and
R. Plymen [1] and [2], but we now explain what is meant by resem-
blance.



P. BAUM 25
For each o € my(Prim HG) there exists (conjecturally) a bijection
Vo To//To — X,

such that:

e In the possibly non-commutative diagram

Vo

Ta//ra on
N
T /T ———— Ta/Ts

the bijection vy: To//T'w — X, is continuous, where T, //T, has the
Zariski topology, X, the Jacobson topology, and the composition

Ta Vo' To//Ta — T /T,

is a morphism of algebraic varieties.

¢ For each a € m(Prim HG), there is an algebraic family
O To//Ta — To/Tq

of morphisms of algebraic varieties, with € C*, such that #; = p,, and
0.7 = Ta © Vo, Where ¢ is the order of the residue field of the p-adic
field F over which G is defined, and m, is the infinitesimal character of
Bernstein.

This conjecture is true for Gl.(n, F'), where n is any positive integer and F
is any finite extension of the p-adic numbers Q,, see [3].
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