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GROUPS OF INTERMEDIATE GROWTH: AN INTRODUCTION

by Rostislav GRIGORCHUK and Igor PAK *)

ABSTRACT. We present an accessible introduction to basic results on groups of
intermediate growth.

INTRODUCTION

The study of the growth of groups has a long and remarkable history
spanning much of the twentieth century, and goes back to Hilbert, Poincaré,
Ahlfors and others. In 1968 it became apparent that all known classes of groups
have either polynomial or exponential growth, and John Milnor formally asked
whether groups of intermediate growth exist. The first examples of such groups
were introduced by the first author two decades ago [4] (see also [3, 5]), and
since then there has been an explosion in the number of works on the subject.
While new techniques and applications have been developed, much of the
literature remains rather specialized, accessible only to specialists in the area.
This paper is an attempt to present the material in an introductory manner, to
a reader familiar with only basic algebraic concepts.

We concentrate on the study of the first construction, a finitely generated
group G introduced by the first author to answer Milnor’s question, and which
became a prototype for further developments. Our Main Theorem shows that
G has intermediate growth, i.e. superpolynomial and subexponential.

Our proof is neither the shortest nor the one which gives the best possible
bounds. Instead, we attempt to simplify the presentation as much as possible
by separating the proof into a number of propositions of independent interest,
supporting lemmas, and exercises. Along the way we prove two ‘bonus’

*) Both authors were partially supported by the NSF. The first author was supported by
DMS-0456185 and DMS-0600975; the second author was supported by DMS-0402028.



252 R. GRIGORCHUK AND L. PAK

theorems: we show that G is periodic (every element has finite order) and
give a nearly linear-time algorithm for the word problem in G. We hope that
novice readers will thus have an casy time entering the field and absorbing
what is usually viewed as unfriendly material.

Let us warn the reader that this paper neither gives a survey nor presents a
new proof of the Main Theorem. We refer to extensive survey articles [1, 2, 6]
and to a recent book [8] for further results and references. The ideas of the
proof in the paper follow [5], the paper has the same structure as [9], but the
presentation and details are mostly new.

The paper is structured as follows. We start with some background
information on the growth of groups (Section 1) and technical results for
bounding the growth function (Sections 2 and 3). In Section 4 we study
the group Aut(T) of automorphisms of an infinite binary (rooted) tree.
The ‘first construction” group G is introduced in Section 5, while the remaining
Sections 6-11 prove the intermediate growth of G and one ‘bonus’ theorem.
We conclude with a few final remarks (Section 12).

NOTATION. Throughout the paper we use only lefif group multiplication.
For example, a product 71 - » of automorphisms 7,7 € Aut(T) is given
by [71 - ml(v) = m(mi(v)). We use the notation ¢" = h~'gh for conjugate
elements, and I for the identity element. Finally, we set N = {0,1,2,...}.

1. THE GROWTH OF GROUPS

Let S = {s1,...,5} be a finite generating set of a group G = (S).
For every group element g € G, denote by £(g) = fs(g) the length of
the shortest decomposition g = st 5! Let ~5(n) be the number of
elements g € G such that f(g) < n. The function v = 7% is called the
growth function of the group G with respect to the generating set §. Clearly,
ym) < Y1 (2kY < @K+ 1)

EXERCISE 1.1. Let G be an infinite group. Prove that the growth function ~
is monotone increasing: ~(n—+1) > ~vn), for all n > 0.

EXERCISE 1.2. Check that the growth function ~ is submultiplicative:
ym+n) < ym)y(n), for all mon > 1.
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Consider two functions ~,~v: N = N. Set v <+ if v(n) < C~'(an),
for all # >0 and some C,o > 0. We say that v and ~' are equivalent, and
write v ~~", if yx4' and v < ~.

EXERCISE 1.3. Let S and S’ be two finite generating sets of G. Prove
that the corresponding growth functions fyf; and fyg are equivalent.

A function f: N — R is said to be peolynomial if f(n) ~ n®, for
some a > 0. A function f is said to be superpolvnomial if

lim e&fm
n—oo  logn

2

where here and in the sequel log denotes the natural logarithm. For example,
n™ is polynomial, while n" and n'°®'°8" are superpolynomial.
Similarly, a function f is said to be exponential it f(n) ~ ¢". A function f
is said to be subexponential if
1
lim legfm

a—roC n

0.

For example, n°¢" and exp(% — \/ﬁlog2 n) are exponential, ¢"/1°¢% and n™
are subexponential, while #” is neither.

Let us also note that there are functions which cannot be categorized. For
example, exp(n"”) fluctuates between 1 and ", so it is neither polynomial
nor superpolynomial, neither exponential nor subexponential.

Finally, a function is said to have intermediate growth if it is both
superpolynomial and subexponential. For example, n'°81°e7 eV and e/ loen
all have intermediate growth, while eViosn gnd a1~ (g)n ~ "8 do not.

Exercise 1.3 implies that we can speak of groups with polvrnomial,
exponential and intermediate growth. By a slight abuse of notation, we denote
by ~¢ the growth function with respect to any particular set of generators.
Using the equivalence of functions, we can speak of groups G and H as
having equivalent growth: ~g ~ ~vu.

EXERCISE 1.4. Let G be an infinite group with polynomial growth. Prove
that the direct product G™ = G x ... X G also has polynomial growih, but
that ~g ~ ven for all m > 2. Similarly, if G has exponential growth then so
does G™, and ~vg ~ von.

EXERCISE 1.5. Let H be a subgroup of G of finite index. Prove that their
growth functions are equivalent: ~yg ~ vg.
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EXERCISE 1.6. Let S be a finite generating set of a group G, and let
v =2 be its growth function. Show that the limit

1
T (1)

H— 00 l

always exists. This limit is called the growth rate of G. Deduce from this that
every group G has either exponential or subexponential growth.

2. THE LOWER BOUND LEMMA

In the next two sections we present two technical results that are keys in
our analysis of the growth of finitely generated groups. Their proofs are based
on elementary albeit delicate analytic arguments and have no group-theoretic
content.

LEMMA 2.1 (Lower Bound Lemma). Let f: N — Ry be a monotone
increasing function, such that f(n) — oo as n — oo. Suppose that [ = f™
Jor some m > 1. Then f(n) = exp(n®™) for some o > 0.

Proof. To simplify the notation, let us extend the definition of f to the
whole line f: Ry — R4, by setting f(x) := f(|x]). Without loss of generality
we may assume that f(1) > 3, since otherwise we can multiply all values of
J by a large enough constant. Similarly, we may assume that m > 2 since
Fefm =™ =" % ..., which gives f = f°.

Let w(n) = logf(n). Clearly, m(n) is monotone increasing, =(1) > 1, and
m(n) — oo as n — oo. We need to show that =(n) > An” for some A, > 0.

By definition, the condition f = f™ gives f(n) > Cf™(an) for some
C,a > 0. Write this as

(%) w(n) > mmlan) + ¢,

where ¢ = log C. Let us first show that o < 1. Indeed, if we had « > 1, we
would have:

(%) mman) —mn) >mmn)—nn)=m—1)m(n) — oo as n— oo,

since m > 1. On the other hand, (%) implies that the Lh.s. of (%) is < —c¢,
a contradiction,
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Iterating (%) repeatedly gives us:

w(n) > mrlan)+c > mmr(an) +c¢) + ¢ = mzﬂ(om) + c(1+m)

(=)
> o> el m+ .+,

Suppose that ¢ > 0. Take k = |logL n]. Then o* > 1 omafn) > (1) > 1,
and from the inequality (=) we have w(n) > m*. On the other hand,
mt = (L% > An¥, where v = logim > 0 and A = m~0+ees) > 0,
That proves the result in this special case.

Suppose now that ¢ < 0. Since m > 2 by assumption, we have
A+m+m*+...+m Y < w*, and the above inequality can be written
as w(n) > m*(m(c®n) + ¢). Take the smallest integer s > 1 such that

1

m(s) > 1 —c. Clearly, s is a constant independent of n. Take k = [logL 2],

so that ofn > 5 and w(a*n) + ¢ > =(s)+ ¢ > 1. From the above, we get
m(n) > mk(w(a®n) + ¢) > m*. On the other hand, m* = (L)% > (A/s")n”,
where v and A are as above. This completes the proof. [

3. THE UPPER BOUND [LEMMA

For the upper bound we need to introduce some notation. Let f: N — R
be a monotone increasing function, and let

SR =) fa) - fow),

(1,...518)
where the sum is over all k-tuples (ny,...,m) € N¥ such that ny+. . .+m < .

LEMMA 3.1 (Upper Bound Lemma). Let f be a nonnegative monotone

increasing function, such that f(n) — oo as n — oo. Suppose that
f(n) < Cf*"(om) Jor some k > 2, C > 0, and 0 < o < 1. Then
f(n) < exp(n”) for some B < 1.

Note that the functions f* and f** are closely related:
(7)) <o < wtton.
However, to analyze the growth we need the lemma in this particular form.

Proof. We proceed by induction on n. Suppose w(n) := logf(n) < An”.
Note that we can always choose A large enough to satisty the base of induction.
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We have:
(%) foy < Cffany = € Y fm) - f)

where the sum is over all 1 + ... +n < an. Clearly, the number of terms
of the sum is at most (an)*. Using the inductive assumption for each product
in the sum and the Cauchy-Schwarz inequality, we obtain:

log[f(n1) - fm)] = w(m)+ ...+ 7(m) < A(Y +...+n})
(04

< Ak(an/ky” = an” - [k (E)U} — A (1 —e),

where ¢ = 1 — [k (2)"] > 0, for v < 1 large enough. From this and (%)
we have:

()

(o) w(n) = logf(n) < 10gC+10g(an)k+An” (1 —¢)
<
< (logC+kloga + klogn)+An" - (1 —e) < An”

for A large enough. In summary, recall that C, o« and k are universal constants.
Take v < 1 large enough to satisty (<) with ¢ > 0. Now that ¢ is fixed,
take A large enough to satisfy (¢). This completes the induction step and
finishes the proof. [

4. THE GROUP OF AUTOMORPHISMS OF A TREE
Consider an infinite binary tree T as shown in Figure 1. Denote by V

the set of vertices » in T, which are in a natural bijection with finite 0-1
words v = (xp,X1,...) € {0,1}*.

00 01 10 11

FIGURE 1
The infinite binary tree T

Note that the root of T, denoted by r, corresponds to the empty word &.
Orient all edges in the tree T away from the root. We denote by E the set
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of all (oriented) edges in T. By definition, (v,w) € E if w = v0 or w = vl.
Denote by |v| the distance from the root r to the vertex v; we call it the
level of v. Finally, denote by T, the subtree of T rooted in v € V. Clearly,
T, is isomorphic to T.

The main subject of this section is the group Aut(T) of automorphisms
of T, i.e. the group of bijections 7: V — V which map edges into edges.
Note that the root r is always a fixed point of 7. In other words, 7(r) =r
for all 7 € Aut(T). More generally, all automorphisms 7 € Aut(T) preserve
the level of vertices: |T(v)| = |v|, for all v € V. Denote by T € Aut(T) the
trivial (identity) automorphism of T.

An example of a nontrivial automorphism a € Aut(T) is given in Figure 2.
This is the most basic automorphism, which will be used throughout the paper
and can be formally defined as follows. Let ¢ be the automorphism which
maps Ty into T; and preserves the natural order on vertices:

a: (0,x1,%,...) = (1,x1,%,...).

Clearly, the automorphism a is an involution: &> = I.

FIGURE 2
The automorphism a € Aut(T)

Similarly, one can define an automorphism a, which exchanges the
two branches T,, and T,; of the subtree T, rooted in » € V. These
automorphisms will be used in the next section to define finitely generated
subgroups of Aut(T).

More generally, denote by Aut(T,) the subgroup of automorphisms
in Aut(T) which preserve the subtree T, and are trivial on the outside of T, .
There is a natural graph isomorphism ¢,,: T — T, and a corresponding group
isomorphism ¢, : Aut(T) — Aut(T,).

By definition, every automorphism 7 € Aut(T) maps two edges leaving
the vertex v into two edges leaving the vertex 7(w). Thus we can define the
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sign e,(r) € {0,1} as follows:

e (7) = 0 if 7(00) =70, (1) = 7(v)1,
T i T = 7)1, T(l) = T(v)0.

In other words, €,(7) is equal to O if the automorphism maps the left edge
leaving the vertex v into the left edge leaving 7(v), and is equal to 1 if the
automorphism maps the left edge leaving v into the right edge leaving 7(v).

Observe that the signs {e,(7),v € T} can take all possible 0—1 values,
and uniquely determine the automorphism 7 € Aut(T). As a corollary, the
group Aut(T) is uncountable and cannot be finitely generated.

To further understand the structure of Aut(T), consider the map
w: Au(T) x Aul(T) — AuyT),

defined as follows. If 79,71 € Aui(T), let 7 = p(7p, 1) be the automor-
phism defined by 7 := to(70) - t1(m1) € Aut(T). Here to(mg) € Aut(Ty) and
t1{m) € Aut(Ty) are the automorphisms of the subtrees Ty and T, respec-
tively, defined as above. Pictorially, the automorphism 7 is shown in Figure 3.

FIGURE 3
The automorphism 7 = @(m, 1) € Aut(T)

For any group G, the wreath product G117, is defined as the semidirect
product (G x G) x Z, with Z, acting by exchanging two copies of G.

PROPOSITION 4.1,  Aut(T) ~ Aut(T) 1 Z,.

Proof. let us extend the map ¢ to an isomorphism

P (Aut(T) X Aut(T)) x £y — Aut(T)
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as follows. When o = I, let o(rg, 71;0) := @(79, 71), as before. When o £ I,
let (o, 1;0) := @(10,71) - &, where a € Aut(T) is defined as above. Now
check that the multiplication of automorphisms ¢(-) coincides with that of
the semidirect product, and defines a group isomorphism. We leave this easy
verification to the reader. O]

We denote by ¥ = go_l the isomorphism ¢/: Aut(T) — Aut(TNZ, defined
in the proof above. This notation will be used throughout the paper.

EXERCISE 4.2. Let A, C Aut(T) be the subgroup of all automorphisms
7 € Au(T) such that e,(7) =0 for all |v| > m. For example, A; = {I.a}.
Use the above idea to show that

Ay =7y 14y -V Ly  (m times) .

Conclude from this that the order of A, is |A,| = 2%"~1.

EXERCISE 4.3. Consider the unique tree automorphism 7 € Aut(T) with
signs given by.: €, (r) =1 if v = *=1...1 (k times), for k > 0, and
€,(1) = 0 otherwise. Check that T has infinite order in Aut(T).

(Hint: Consider elements 1, € A,, with signs prescribed as for T above,
but only for k < m. Show that the order ord(t,) — oo as m — oo, and
deduce the result from this.)

5. THE FIRST CONSTRUCTION

In this section we define a finitely generated group G C Aut(T) which we
call the first construction. Historically, this was the first example of a group
with intermediate growth [4].

Let us first define the group G by defining a set of generators recursively.
More precisely, set G = (a,b,c,d) C Au(T), where a is the automorphism
defined in Section 4, and the automorphisms b, ¢ and d are defined recursively
by the following equations :

(o) b=gla,c), c=ygla,d), d=edb).

Observe that the automorphisms b, ¢, and d are defined in a circular fashion
via each other. Since the generator d acts as the identity automorphism on
the left subtree Ty, and as » on the right subtree T;, one can recursively
compute the action of all three automorphisms b, c,d € Aut(T).
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Here is a direct way of defining the automorphisms b, ¢, d :

b = (ap - apy - aysp- .- )10 - dyg - Ay ---),
() ¢ = (@o - apy - Arsg )y Gysp - dpsp - -2)5
d = (al() ’ al40 : a170 AN )(Gllzo ] a150 . a180 .. .)’

where 1" is an abbreviation for 1...1 (m times). Note that the auto-
morphisms ay»y used in () commute with each other, and thus the ele-
ments b, c,d € Aut(T) are well defined.

The elements b, c,d € Aut(T) are shown graphically in Figure 4. Here the
black triangles drawn at vertices correspond to places where the two subtrees
rooted at each of these vertices are interchanged.

FIGURE 4
The elements b, ¢ and d € Aut(T)

THEOREM 5.1 (Main Theorem). The group G = {a,b,c,d) has internte-
diate growth.

The proof of Theorem 5.1 is quite involved and occupies much of the rest
of the paper.

EXERCISE 5.2. Check that the elements b,c,d € Aul(T) defined by (x)
satisfy the conditions (o).

EXERCISE 5.3. Check that the elements b, ¢ and d are involutions (have
order 2), commute with each other, and satisfy b-c-d = I. Conclude from
this that (b,c,d) ~ Z3 and that the group G = {a,b,c,d) is 3-generated.

EXERCISE 5.4. Check the following relations in G: (ad)* = (ac)® =
(ab)'® = 1. Deduce from this that the 2-generator subgroups (a,b), (a,c)
and {a,d) of G are finite.
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While these exercises have straightforward ‘verification style’” proofs, they
will prove useful in the sequel. Thus we suggest that the reader should study
them before proceeding to read (hopefully) the rest of the paper.

6. THE GROUP G IS INFINITE

We have yet to establish that G is infinite. Although one can prove this
directly, the proof below introduces definitions and notation which will be
helpful in the sequel.

Let Stg(n) denote the subgroup of G which stabilizes all vertices of
level n. In other words, Stg(n) consists of all automorphisms 7 € G such
that 7(v) = v for all vertices v € T with |v| =#n:

Ste(n) = (] Sta(v).

|v|=n

The subgroup H := Ste(1) is called the fundamental subgroup of G.

LEMMA 6.1. The fundamental subgroup H C G satisfies:
H={,c,d b c"d), HaG and [G:H]=2.

Proof. From Exercise 5.3 we conclude that every reduced decomposition w
is a product w = (@)xaxa=...xax=(a), where each = is ¢ither b, ¢, or d,
while the first and last ¢ may appear or not. Denote by |w| the length of
the word w, and by |w|, the number of occurrences of a in w. Note that
w € H if and only if |w|, is even. This immediately implies the third part
of the lemma. Since every subgroup of index 2 is normal, this also implies
the second part.

For the first part, suppose that |w|, is even. Join subsequent occurrences
of a to obtain w as a product of * and (a * a). Since 4> = I, we
have (a * a) = *“, which implies the result. [

The following exercise generalizes the second part of Lemma 6.1 and will
be used in Section 10 to prove the upper bound on the growth function of G.

EXERCISE 6.2. Check that the stabilizer subgroup H, := Stg(n) has finite
index in G: [G:H,] <|A,| =2 (see Exercise 4.2).
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Let ¢ = ¢! Au(T) = (Aui(T) x Aut(T)} x Z; be the isomorphism
defined in Section 4. By definition, H C G C Aut(T).

LEMMA 6.3. The image (H) is a subgroup of G x G such that the
projection of Yw(H) onto each component is surjective.

Proof. By definition, H stabilizes 0 and 1, so w(H) C Aut(T) x AuiT).
From Exercise 5.2 we have

b —(a,c), b* — (c,a),
(U ¢ —(a,d), e —% )
d— (1,b), a* — (b, 1).

Now Lemma 6.1 implies that »(H) C G xG. On the other hand, the projection
of ¥»(H) onto each component contains all four generators a,b,c,d € G, and
is therefore surjective. [

PROPOSITION 6.4. The group G is infinite.

Proof. From Lemmas 6.1 and 6.3, we have that H is a proper subgroup
of G which is mapped surjectively onto G. If |G| < co then |G| > |H| > |G|,
a contradiction. [

Here is a different application of Lemma 6.3. Let &G C Aut(T) be a
subgroup of the group automorphisms of the binary tree T. Denote by
G, = Stg(v)|r, C Au(T,) the subgroup of G of elements which fix the
vertex v € T with the action restricted only to the subtree T, . We say that G
has the (strong) self-similarity property it G, ~ G for all v € T.

PROPOSITION 6.5. The group G has the self-similarity property.

Proof. Use induction on the level |v|. By definition, G, = G, and
by Lemma 6.3 we have Gy, G; =~ G. For any v € T, we similarly have
G0, Gy1 = G, . This implies the result. [

EXERCISE 6.6. Consider the following rewriting rules :

n.a—+aba, b—-d, c—b, d—c.

Define a sequence of elements in G by setting x1 = a and xiy1 = n(x;) for
all i > 1. Prove directly that all these elements are distinct. Conclude from
this that G is infinite.
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7. SUPERPOLYNOMIAL GROWTH OF G

In this section we prove the first half of Theorem 5.1, by showing that
the growth function ~ of the group G satisfies the conditions of the Lower
Bound Lemma.

Two groups Gi and G, are called commensurable (which we denote by
G =~ Gy) if they contain isomorphic subgroups of finite index:

H1CG1,H2CG2, H, ~H; and [G1:H1], G, H] < .

For example, the group Z is commensurable with the infinite dihedral
group Dy =~ Z X Zp. Of course, all finite groups are commensurable
to each other. Another example is H ~ G, since H is a subgroup
of finite index in G. Note also that commensurability is an equivalence
relation.

PROPOSITION 7.1. The groups G and G x G are commensurable:
G~GxG.

Proposition 7.1 describes an important phenomenon which can be formal-
ized as follows. A group G is called multilateral if G is infinite and G =~ G
for some m > 2. As we show below, all such groups have superpolynomial
growth.

Proof. To prove the proposition, consider the subgroups H C G and
H .= Y(H) C G x G. By Lemma 6.1 we have [G: H] < oc. Since ¢ is a
group isomorphism, we also have H ~ H. If we show that [G x G : H] < oo,
then G =~ G x G, as claimed in Proposition 7.1.

Denote by B = (b)¢ the normal closure of b € G, defined as
B:= (g 'bg| g € G). Then the following lemma holds:

LEMMA 7.2. The subgroup B has finite index in G. More precisely,
[G:B] <8.

Proof. By Exercise 5.4, we have a° = d°> = (ad)* = 1. It is now easy
to see that the 2-generated subgroup (a,d) C G is a dihedral group Dy of
order 8. By Exercise 5.3, we have G = (a, b, d). Therefore, G/B is a quotient
of (a,d), and [G:B] < |Dy4|=8. [O
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LEMMA 7.3. The subgroup H-= P(H) C G X G contains B x B.

Proof. By Lemma 6.1, we know that H> {(d), P(d™)) = {(1,b), (b, T)).
Let x e H and ¥(x) = (x0,x1). We have:

P(d*) = pxldy) = YY) Yx)
= (x5 L7 (I, b) (0, x1) = (1,x7'bxy) = (I,h7).

By Lemma 6.3, we can take here any element x; € G. Therefore the
image ¥(H) contains all elements of the form (I,59), g € G. By definition,
these elements generate a subgroup 1 xB. In other words, H-= w(H) D 1xB.
Similarly, using the element d* in place of d, we obtain H O B x 1. Therefore
H O B x B, as announced. [

Proposition 7.1 now follows immediately from Lemma 7.2
[GxG:H <[GxG:BxB] = [G:B]? < 8§ = 64.

Since G is infinite (Proposition 6.4) this implies that the group G is
multilateral. [

LEMMA T74. Every multilateral group G has superpolynomial growth.
Moreover, the growth function ~vg(n) = exp(n®) for some o >0,

Proof. By definition,  1is infinite, and G =~ G™ for some m > 1.
In other words, there exist H C G, H c G"™ such that H ~ H and
[G: H], [G": H] < oo. From Exercise 1.5 we obtain NG N VH ™~ VG ™ VG
Thus ~g = ~gn, and the Lower Bound Lemma (Lemma 2.1) implies the
result. [

Proposition 7.1 and Lemma 7.4 now immediately imply the first part of
Theorem 5.1:

COROLLARY 7.5. The group G has superpolynomial growth. Moreover,
the growth function ~vyg(n) = exp(n®) for some o > 0.

8. LENGTH OF ELEMENTS AND REWRITING RULES

To prove the second half of Theorem 5.1 we derive sharp upper bounds

on the growth function v = fy(S; of the group G with generating set

S = {a,b,c,d}. In this section we obtain some recursive bounds on the
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length £(g) = ¢%(g) of elements g € G in terms of §. Note that, although G
is 3-generated, having the fourth generator is convenient for technical reasons.

We begin with a simple classification of reduced decompositions of
elements of G following the approach in the proof of LLemma 6.1. We define
four fypes of reduced decompositions :

(1) if g=axaxa---xax*a,
(i1) if g=axaxa---xa*,
(1il) if g=x*xaxax---axa,
(iv) if g=*xaxax---axax*.

Of course, an element ¢ can have many different reduced decompositions.
On the other hand, the type of a decomposition is almost completely determined

by g.

LEMMA 8.1. Every group element g € G has all of its reduced
decompositions of the same type (1), or of type (iv), or of fypes (i) and (iii).

Proof. Recall that the number of @’s in a reduced decomposition of g € G
is even if g € H, and odd otherwise. Thus ¢ cannot have decompositions of
type (i) and (iv) at the same time. Noting that decompositions of type (1)
and (iv) have odd length while those of type (ii) and (iii) have even length
implies the result. [

It is easy to see that one cannot strengthen LLemma 8.1, since some elements
can have decompositions of both type (ii) and (iil). For example, adad = dada
by Exercise 5.4, and both are reduced decompositions. From now on we refer

their reduced decompositions.
In the next lemma we use the isomorphism v = <p‘1 Aut(T) — Aut(Tis,,
where §; = {I,a} ~ 7.

LEMMA 8.2. Let ((g) be the length of g € G in the generalors
S = {a.b.c,d}. Suppose that ¥(g) = (go,q1;0), where go,¢1 € G
and o € 8,. Then:

Ugo), g0 < (@) — 1) if g has type (),
£go), £g) < 1 (g) if g has type (ii/iii),
Ugo) lg) < 3@+ 1) if g has type (iv).
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Proof. Fix an element g € G, and let go,g1,0 be as in Lemma 8.2
We have ¢ =1 if ¢ € H, and o = a otherwise (see the proof of Lemma 6.1).
For every reduced!) decomposition w = (@)xaxa- - -xax(a) of g we shall con-
struct decompositions of the elements go, g1 with lengths as in the lemma. As
before, we use * to denote any one of the generators b, ¢, d. Also, for every *
in a reduced decomposition we denote by «(x) the number of a’s preceding .

Consider the following rewriting rules:

a—1,
oD : b—a, ¢c—a, d—1I if w(*) is odd,
b—c¢, ¢c—d, d—b if k(x) is evern,
and
a—1,
D : b—a, ¢c—=a, d—1I if w(*) is even,
b—c¢, ¢c—d, d—b if k(x) is odd.

These rules act on words w in the generators §, and substitute each occurrence
of a letter with the corresponding letter or I.

Let @p(w), ®1(w) be the words obtained from the word w = (a)*xa - - - a*(a@)
by the rewriting rules as above, and let g¢),¢; € G be the group ele-
ments defined by these products. Check by induction on the length #(g)
that ¥/(g) = (g}, g1; o). Indeed, note that the rules give the first and second
components in the formula for 2 in the proof of Lemma 6.3. Now, as in the
proof of Lemma 6.1, subdivide the product w into elements (a) and (x a*) and
obtain the induction step. From here we have gy = g, g1 = ¢}, and by con-
struction of the rewriting rules the lengths of gy, g1 are as in Lemma 8.2. [

As we show below, the rewriting rules are very useful in the study of the
group G, but also in a more general setting.

COROLLARY 8.3. Under the conditions of Lemma 8.2 we have:

go)+ g < Ug)+1.

The above bound is not sharp and can be improved in certain cases.
The following exercise gives bounds in the other direction, limiting potential
extensions of Corollary 8.3.

1) Here by (a) we mean that this generator may or may not be present in the decomposition.
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EXERCISE 8.4. Under the conditions of Lemma 8.2 we have:
U(g) < 2(go) + 2¢(g1) + 50.

This result can be used to show that ~vg 5= exp(+1/#). The proof is more in-
volved than those of the other exercises; the result will not be used in this paper.

EXERCISE 8.5. Prove that every element g € G has order 2%, for some
integer k. (Hint: Use induction to reduce the problem fto the elements go, g1 ;
cf. Lemma 8.2.)

9, THE WORD PROBLEM

The classical word problem can be formulated as follows: given a word
w =g ---5, in the generators s; € S, decide whether this product is equal
to I in G = (S). To set up the problem carefully, one would have to
describe the presentation of the group and allowed operations [8]. We skip
these technicalities in the hope that the reader has an intuitive understanding
of the problem,

Now, from an algorithmic point of view the problem is undecidable, i.e.
there is no Turing machine which can solve it in finite time for every group.
On the other hand, for certain groups the problem can be solved very efficiently,
in time polynomial in the length n of the product. For example, in the free

group Fp = (xlil, a3 ,x,i‘l) the problem can be solved in linear time: take

a product w and repeatedly cancel every occurrence of xx;! and xilx;,
I <i <k, the product w 1is equal to I if and only if the resulting word
18 empty. Since every letter 1s cancelled at most once and no new letters are

created, the algorithm takes O(n) cancellations.

EXERCISE 9.1. By the construction, at every iteration there is a search for
the next cancellation, increasing the complexity of the algorithm to as much
as O(n®). Modify the algorithm to show that the word problem in Fy can in
fact be solved in linear time.

The class of groups where the word problem can be solved in a linear
number of cancellations is called word hyperbolic. This class has a simple
description and many group-theoretic applications [7]. The following result
shows that the word problem can be solved in G in nearly linear time?).

2) In the computer science literature, ‘nearly linear time’ usually stands for O(nlog* n), for
some fixed k.
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THEOREM 9.2. The word problem in G can be solved in O(nlogn) time.

Proof. Consider the following algorithm. First, cancel products of b, ¢, d
to write the word as w = (@) *a*---*%a = (g). If the number w(w) of a’s
is odd, then the product w #¢ I. If w(w) is even, use the rewriting rules
(proof of Lemma 8.2) to obtain words wy = @p(w) and w; = P1(w) (which
may no longer be reduced). Recall that the product w =¢ I if and only
if wo, w1 =¢ I. Now repeat the procedure for the words wp,w; to obtain
words wog, Wo1, Wio, w11, etc. It is easy to check that w =¢ I if and only if
all the obtained words are trivial.

Observe that the length of each word w; is at most (n + 1)/2. Tterating
this bound, we conclude that the number of ‘rounds’ in the algorithm of
constructing smaller and smaller words is O(logn). Therefore each letter is
replaced at most O(logn) times and thus the algorithm finishes in O(nlogn)
time. O

REMARK 9.3. For every reduced decomposition as above one can construct
a binary tree of words w; ;,. ;. The distribution of height and shape (profile)
of these trees is closely connected to the growth function ~g. Exploring this
connection is of great interest, but lies outside the scope of this paper.

10. SUBEXPONENTIAL. GROWTH OF G

In this section we prove the second half of Theorem 5.1 by establishing
the upper bound on the growth function ~ of the group G with generators
S ={a,b,c,d}. The proof relies on the technical Cancellation LLemma which
will be stated here and proved in the next section.

Let H; := Stg(3) be the stabilizer of vertices on the third level, and
recall that the index [G : Hi] < 27 = 128 (Exercise 6.2). There is a natural
embedding

Y3t Hy — Gogo X Goo1 X ... X Gy

(see Section 6). By self-similarity, the eight groups in the product are
isomorphic: Gy ~ G, where i,j,k € {0,1}. These isomorphisms are
obtained by restrictions of natural maps: vt Au(T,) — Aut(T), where

(2
v € T. Now combine 5 with the map (tygn, Lgops - - -5 £1yy) O Obtain a group

homomorphism x: H; — G?, which we write as X)) = (gooo, Goots - - -5 G111)»
where 1 € Hy and g € G.
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It follows easily from Corollary 8.3 that £(gooo) + €(goo1) + - .- + €(g111) <
£(h) + 7. The following result is an improvement on this bound.

LEMMA 10.1 (Cancellation Lemma). Let h € Hs. With the above notation
we have 5
gooo) + €goor) + - .. + €gi11) < g fhy+8.

We postpone the proof of the Cancellation T.emma until the next section.
We are now ready to complete the proof of the Main Theorem.

PROPOSITION 10.2. The group G has subexponential growth. Moreover,
~ya(n) < exp(n”) for some v < 1.

Proof. All elements g € G can be written as g = u - h, where h € Hj
and u# is a coset representative of G/Hs. Since [G : Hz] < 128, there
are at most 128 such elements u. Note that we can choose elements u
which have length at most 127 in S = {a,b,c,d}, since all prefixes of a
reduced decomposition can be made to lie in distinct cosets. The decomposition
h=u"lg then gives £(h) < é(g) + 127.

Now write g = uh = ugocogoor * -+ 9111 . The Cancellation L.emma vields :

5 5 5
> lg) < S +8 < = (Ug)+127) +8 < Zlg)+114.
ijk
Putting all this together we conclude (using Exercise 10.3 below):
yn) < 128 ) ) v(ng),
(nlr"‘vng)
where the summation is over all integer 8-tuples with n;+...+ng < %n—|—114.
Set m = n+ 137, so that %n + 114 < %m. Now by Exercise 1.2 note that

Y(m) = (n+ 137) < 5(n)-y(137) < v(n) - |S]77 = 4% ym).
Therefore we have:

Ay < 4 i) < 457128 (Tn 4 114) < 28y E (T

From this and the Upper Bound L.emma (L.emma 3.1) we obtain the result. []

EXERCISE 10.3. Let G be a group with length function £ and growth ~
(relative to some finite generating set). Show that the size of the set
A= {(g,....,q1) € G | llg) + -+ Ug) < A} consisting of all
k-tuples of ‘total’ length less than some constant X\ satisfies: |A] <
ENE y(ny) - -y(ng), where the sum is over all k-tuples such that

ﬂ1+"'+7’£k5)\.
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Recall that the superpolynomial growth of G has been shown in Corol-
lary 7.5. This completes the proof of Theorem 5.1. [

11. PROOF OF THE CANCELLATION [LEMMA

Fix a reduced decomposition (a)*axa---* (a) of h € H;, and denote
it by w. By applying the rewriting rules ®; and ®; to w, we obtain
words wg and w;. Now remove all identities I. Then apply these rules again
to obtain woo, wor, wio and wyp, and remove the identities I. Finally, repeat
this once again to obtain words wooo, Woot, - - -, Wiy . Following the proof of
Theorem 9.2, all these words give decompositions of the elements gg, g1, then
of goo,...,g11,and of gy € Gij, respectively. Note that these decompositions
are not necessarily reduced, so for the record:

CF)  lg) < |wil, gy < |wyl, gip) < Jwy|, for all ij,k e {0,1},
where |u| denotes the length of the word u. Also, by Corollary 8.3 we have:

Ego) + €(g1) < E(h)+ 1,
() goo) + ...+ Lg11) < Lgo) + £g1) + 2,
£(goon) + £(goo1) + . .. 4+ £(g111) < Ugoo) + ... + Lgi1) + 4.

To simplify the notation, consider the following concatenations of these words :
I 7 "
w o =wp-wp, W =wg--wn, and w’t = woo - Woor * Wi -

By construction of the rewriting rules, since the only possible cancellation
happens when d — I we have: |w'| < |w| 4+ 1 — |w|,;, where |w|, is the
number of letters d in w. Indeed, simply note that each letter d in w is
cancelled by either @y or ®;. Unfortunately we cannot iterate this inequality,
as the words w; are not reduced. Note on the other hand that each letter ¢
in w produces one letter d in w' and that each of these is cancelled again
by either @, or @®;. Finally, each letter » in w produces one letter ¢ in w’,
which in turn produces one letter d in w”, and each of these is cancelled
again by either @y or @;. Taking into account the types of decompositions
we obtain:

|w'] < fwl+1—|wla,
(@) "] < |w| +3 = fwl,
™| < | +7 = Jwls -
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Since |w|p + |w|. + |wls > (Jw| — 1)/2, at least one of the numbers
|w|. > |w|/6 — 1. Combining this with (¥), (¢) and (%), we conclude that

£gooo) + goo) + - .. + Lgi) < max{|w'| +2+4, |[0"|+4, |w"|}

5
< 7- . < T—(w|/6 -1 = 2t +8,
< fwl+7- max wle < |w]+7 - (wl/6-1) = 26k +

as desired. L]

12.  FURTHER DEVELOPMENTS, CONJECTURES, AND OPEN PROBLEMS

There is a number of open problems on groups of intermediate growth.
Below we include only the most interesting results and conjectures which
are closely connected to the material presented in this paper. We refer to
surveys [1, 2, 6] and the monograph [8] for details and further references.

Let us start by saying that the Upper Bound and Lower Bound lemmas
can be used to obtain effective bounds on the growth function of G. Although
considerably sharper bounds are known, the exact asymptotic behavior of ¢
remains an open problem. Unfortunately, we do not even know whether it
makes sense to say that ~¢ has growth exp(n®) for some fixed o > O

CONIECTURE 12.1. Let v = g be the growth function of the group G.
Then the limit o = lim,_, log, log y(n) exists.

In fact, the limit in the conjecture is not known to exist and satisfy
0 < a <1 for any finitely generated group. Also, the extent to which results
for G generalize to other groups of intermediate growth remains unclear as
well. Although there are now constructions of groups with subexponential
growth function ~(n) ~ e”(l_o(l)), there is no known example of a group
with superpolynomial growth function ~(n) ~ exp(n®"). The following
conjecture has been established for a large class of groups, but not in
general

CONIECTURE 12.2. Let G be a group of intermediate growth, and let g
be its growth function. Then ~g(n) = exp(n®) for some o > 0.

In conclusion, let us mention that the group G is not finitely presented.
The existence of finitely presented groups of intermediate growth is a major
open problem in the field, and the answer is believed to be negative.
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