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GROUPS OF INTERMEDIATE GROWTH: AN INTRODUCTION

by Rostislav Grigorchuk and Igor Pak*)

ABSTRACT. We present an accessible introduction to basic results On groups of
intermediate growth.

Introduction

The study of the growth of groups has a long and remarkable history
spanning much of the twentieth century, and goes back to Hilbert, Poincaré,
Ahlfors and others. In 1968 it became apparent that all known classes of groups
have either polynomial or exponential growth, and John Milnor formally asked

whether groups of intermediate growth exist. The first examples of such groups
were introduced by the first author two decades ago [4] (see also [3, 5]), and

since fiten there has been an explosion in the number of works on the subject.
While new techniques and applications have been developed, much of the

literature remains rather specialized, accessible only to specialists in the area.

This paper is an attempt to present the material in an introductory manner, to
a reader familiar with only basic algebraic concepts.

We concentrate on the study of the first construction, a finitely generated

group G introduced by the first author to answer Milnor's question, and which
became a prototype for further developments. Our Main Theorem shows that

G has intemediate growth, i.e. superpolynomial and subexponential.
Our proof is neither the shortest nor the one which gives the best possible

bounds. Instead, we attempt to simplify the presentation as much as possible

by separating the proof into a number of propositions of independent interest,

supporting lemmas, and exercises. Along the way we prove two 'bonus'

* Both authors were partially supported by the NSF. The first author was supported by
DMS-0456185 and DMS-0600975; the second author was supported by DMS-0402028.
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theorems: we show that G is periodic (every element has finite order) and

give a nearly linear-time algorithm for the word problem in G. We hope that

novice readers will thus have an easy time entering the field and absorbing
what is usually viewed as unfriendly material.

Let us warn the reader that this paper neither gives a survey nor presents a

new proof of the Main Theorem. We refer to extensive: survey articles [1,2, 6]
and to a recent book [8] for further results and references. The ideas of the

proof in the paper follow [5], the paper has the same structure as [9], but the

presentation and details are mostly new.

The paper is structured as follows. We start with some background
information on the growth of groups (Section 1) and technical results for

bounding the growth function (Sections 2 and 3), In Section 4 we study
the group Aut(T) of automorphisms of an infinite binary (rooted) tree.

The: 'first construction' group G is introduced in Section 5, while the remaining
Sections 6-11 prove the intermediate growth of G and one 'bonus' theorem.

We conclude with a few final remarks (Section 12).

Notation. Throughout the paper we use only left group multiplication.
For example, a product T\ n of automorphisms Turn £ Aut(T) is given

by In • T2](v) î2(ti(i')). We use the notation gh — h~lgh for conjugate
elements, and I for the identity element. Finally, we set N <= {0,1,2,.,.}.

1. The growth of groups

Let S — {n, • •, 7t} be a finite generating set of a group G — (S).
For every group element g £ G, denote by i(g) is(g) the length of
the shortest decomposition g - sj}1 • • • .sj1. Let 7g(n) be the number of
elements g e G such that ((g) < n. The function f t§ is called the

growth function of the group G with respect to the generating set S. Clearly,

7(«) < ELt(2«' < (2k+lf.

Exercise 1.1. Let G be an infinite group. Prove that the growth function 7
is monotone increasing: 7(n + 1) > j(n), for all n > 0.

Exercise 1.2. Check that the growth function 7 is submultiplicative :

7{tn + n) < ~iui)~in), for all tn,n > 1.
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Consider two functions 7,7': N —> N. Set 7 4 7' if 7(n) < Cy'(an),
for all n > Ö and some C. a > Q We say that 7 and 7' are equivalent, and

write 7 r* 7', if 7 7? *f and 7' =77.

Exercise 1.3. Let S and S' be two finite generating sets of G. Prove

that the corresponding growth functions 7*3 and 7% are equivalent.

A function /: N —s- R is said to be polynomial if f(n) ~ nQ, for
some a > 0. A function / is said to be superpolynomial if

logfin)lim — 00
logw

where here and in the sequel log denotes the natural logarithm. For example,
nn is polynomial, while n" and nloelog" are superpolynomial.

Similarly, a function / is said to be exponential if f(n) e". A function /
is said to be subexponential if

lim _ 0.
n—>00 n

For example, n e" and exp(§ - v^log2«) are exponential, e"floi" and

are subexponential, while n" is neither.

Fet us also note that there are functions which cannot be categorized. For

example, exp(nsm") fluctuates between 1 and e", so it is neither polynomial
nor superpolynomial, neither exponential nor subexponential.

Finally, a function is said to have intermediate growth if it is both

superpolynomial and subexponential. For example, «Ioslos'7 an(j e«/i°gn

all have intermediate growth, while and ni ~ ~ e"lo&" do not.

Exercise 1.3 implies that we can speak of groups with polynomial,
exponential and intermediate growth. By a slight abuse of notation, we denote

by 7g the growth function with respect to any particular set of generators.
Using the equivalence of functions, we can speak of groups G and H as

having equivalent growth : yG ~

Exercise 1.4. Let G be an infinite group with polynomial growth. Prove

that the direct product Gm — G x x G also has polynomial growth, but
that 7s no 7s<» for all m > 2. Similarly, if G has exponential growth then so

does G":. and 7g~7g».

Exercise 1.5. Let H be a subgroup of G offinite index. Prove that their
growth functions are équivalent: 7# «a 70;



254 R. GRIGQRCHÜK AND I. PAK

Exercise 1.6. Let S be a finite generating set of a group G, and let

7 — 7g be its growth function. Show that the limit

m logTW
n-toc n

always exists. This limit is called the growth rate of G. Deduce from this that

every group G has either exponential or subexponential growth.

2. The Lower Bound Lemma

In the next two sections we present two technical results that are keys in

our analysis of the growth of finitely generated groups. Their proofs are based

on elementary albeit delicate analytic arguments and have no group-theoretic
content.

Lémmà 2.1 (Lower Bound Lemma). Let f: N —> R+ be a monotone

increasing function, such that f(n) —> oo as n —> oo. Suppose that f js. fm

for some m > 1. Then f(n) )p exp(«°) for some a > 0.

Proof. To simplify the notation, let us extend the definition of / to the

whole line / : R+ -ï R+, by setting f{x) :—f( [x\). Without loss of generality
we may assume that /(I) > 3, since otherwise we can multiply all values of

/ by a large enough constant. Similarly, we may assume that m > 2 since

/ >f"f >f'3 > which gives / >/2,
Let ir(n) — log/(«). Clearly, ir(n) is monotone increasing, 7r( l) > 1, and

7r(H) oo as n -4 oo. We need to show that t{n) > Anv for some A, v > 0.

By definition, the condition / > f" gives /(«) > Cf"(an) for some

C, a > 0. Write this as

(*) win) > m xfarij + c %

where c — log C, Let: us first show that a < 1. Indeed, if we had a > 1, we
would have :

(**) m TT(an) — w(n) > m sfil) — ir(n) — {m — 1) ir(n) —> oo as n —> oo

since m > 1. On the other hand, (*) implies that the l.h.s. of (**) is < — c,
a contradiction.
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Iterating (*) repeatedly gives us :

7r(w) > nm(an) -I- c > m(mir(an) + c) + c — nrnian) + c(l + m)

> > nr'zin'n) + c(l + in + + nf

Suppose that c > 0. Take k — Llo£U n\. Then of > i, ir(ofn) > 7r(l) > 1,

and from tire inequality we have 7r(n) > mk. On the other hand,

nf — > Anv, where v — logj. m > 0 and À - > 0é

That proves the result in this special case.

Suppose now that c < 0. Since m > 2 by assumption, we have

(1 + m + m2 + + nf~1 < mk, and the above inequality can be written
as 7r(w) > «/'• (ttu'.'•//! • c). Take the smallest integer s > 1 such that

7r(s') > 1 - c. Clearly, s is a constant independent of n. Take k — [logx |j,
so that cfn > J and zicfn) + c > tt(s) + c > 1. From the above, we get
7r[w) > mk(n(ofn) + c) > mk. On the other hand, nf — {^)vk > (A/sv)nv,
where v and A are as above. This completes the proof.

3. The Upper Bound Lemma

For the upper bound we need to introduce some notation. Let /: N->R+
be a monotone increasing function, and let

fk(n) := Y /o; >•••./<»,!.
im, .if}

where the sum is over all k-tuples (n\,..., nf) G NÄ: such that n\+...,+% < n.

Lemma 3.1 (Upper Bound Lemma). Let f be a nonnegative monotone

increasing function, such that f(n) —> oo as n —> oo. Suppose that

f(n) < Cf*k(an) for some k > 2, Ç > 0, and 0 < a < 1. Then

f(n) 4 exp {nf1) for some ß < 1.

Note that the functions fk and f*k are closely related;

f(H\) <rk\n)<nkf(n).

However, to analyze the growth we need the lemma in this particular form.

Proof. We proceed by induction on n. Suppose :r(n) logf(n) <Anv.
Note that we can always choose A large enough to satisfy the base of induction.
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We have :

fin) < Cf\an) - C Y. /(«il-•/»),
osik«o«y

where the sum is over all n\ + + jfe < a«. Clearly, the number of terms

of the sum is at most (anf. Using the inductive assumption for each product
in the sum and the Cauchy-Schwarz inequality, we obtain :

log [fini) •/(%)] 7vim) + + < Mrii + + /£)

< Akian/k)" • A: — j .4«'' • (.1 - s),

where s — 1 - ft (f)'] > 0, for v < 1 large enough. From this and

we have:

Kin) log/(n) < logC + logfanf + An" (1 - s)
(o)

< (log C + felogQ + kbign). +Attl/ i|l — ëf < An"

for A large enough. In summary, recall that C, a and k are universal constants.

Take v < 1 large enough to satisfy |=s?J with e > 0. Now that e is fixed,
take A large enough to satisfy (o). This completes the induction step and

finishes the proof.

4. The group of automorphisms of a tree

Consider an infinite binary tree T as shown in Figure 1. Denote by V
the set of vertices v in T, which are in a natural bijection with finite 0-1
words v — (ïctfsSjj • • •) G {0,1}*.

OOC 01

Figure 1

The infinite binary tree T

Note that the root of T, denoted by r, corresponds to the empty word 0.
Orient all edges in the tree T away from the root. We denote by E the set
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of all (oriented) edges in T. By definition, (v,w) G E if w — vO or m v\.
Denote by \v\ the distance from the root r to the vertex v ; we call it the

level of v Finally, denote by T„ the subtree of T rooted in v e V. Clearly,

T„ is isomorphic to T.
The main subject of this section is the group Aut(T) of automorphisms

of T, i.e. the group of bijections r: V —> V which map edges into edges.

Note that the root r is always a fixed point of r. In other words, r(r) r
for all t G Aut(T). More generally, all automorphisms r G Aut(T) preserve
the level of vertices: |r(u)| — |u|, for all v G V. Denote by I G Aut(T) tlie

trivial (identity) automorphism of T.
An example of a nontrivial automorphism a G Aut(T) is given in Figure 2.

This is the most basic automorphism, which will be used throughout the paper
and can be formally defined as follows. Let a be the automorphism which

maps T0 into Ti and preserves the natural order on vertices:

a : (0, X\ x2,...) t—> (1, xi, x2,

Clearly, the automorphism a is an involution : a2 — I.

r r

Figure 2

The automorphism a G Aut(T)

Similarly, one can define an automorphism a„ which exchanges the

two branches T„0 and T.f,j of the subtree T„ rooted in v G V. These

automorphisms will be used in the next section to define finitely generated

subgroups of Aut(T)
More generally, denote by Aut(T„) the subgroup of automorphisms

in Aut(T) which preserve the subtree T„ and are trivial on the outside of T.„.
There is a natural graph isomorphism i„ : T Hs T.„ and a corresponding group
isomorphism t,, ; Aut(T)-> AutfT,,).

By definition, every automorphism r G Aut(T) maps two edges leaving
the vertex v into two edges leaving the vertex t(u). Thus we can define the
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sign 6„(t) G {0,1} as follows :

f Q if t(i'O) r(;t')0, r(çl) ri r)l
\ 1 if t(i'O) rf r)l r(;t 1j r( r )0

In other words, ev(r) is equal to 0 if the automorphism maps the left edge

leaving the vertex v into the left edge leaving t(i>):, and is equal to 1 if the

automorphism maps the left edge leaving v into the right edge leaving t(v).
Observe that the signs {e„(r), v T} can take all possible 0-1 values,

and uniquely determine the automorphism r G Aut(T). As a corollary, the

group Aut(T) is uncountable and cannot be finitely generated.

To further understand the structure of Aut(T), consider the map

tp : Aut(T) ft Aut(T) —> Aut(T),

defined as follows. If t&Ti G Aut(T), let r - ip(to,n) be the automorphism

defined by r := to(To) • 'i(ti) & Aut(T). Here io(T<>) G Aut(To) and

ii(Ti) G Aut(Ti) are the automorphisms of the subtrees T0 and Tl 5 respectively,

defined as above. Pictorially, the automorphism f is shown in Figure 3.

r

T() - ---- ----- 7~1

Figure i
The automorphism r -sirr,. -| g Aut(T)

For any group G, the wreath product Gl Z2 is defined as the Semidirect

product (G x G) x Z2, with Z2 acting by exchanging two copies of G.

Proposition 4.1. Aut(T) ex Aut(T) IZ2.

Proof. Let us extend the map (p to an isomorphism

ip: (Aut(T) x Aut(T)) x Z2 —> Aut(T)
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as follows. When a — I, let Titer) := </?(ro, ri), as before. When s ^ I,
let !j?(ro,rucr) ip(To,Ti)-a, where a g Aut(T) is defined as above. Now
check that the multiplication of automorphisms ip(-) coincides with that of
the semidirect product, and defines a group isomorphism. We leave this easy
verification to the reader.

We denote by 4' — <p~l the isomorphism Aut(T) —* Aut(T);Z2 defined
in the proof above. This notation will be used throughout the paper.

Exercise 4.2. Let Am c Aut(T) be the subgroup of all automorphisms

t g Aut(T) such that e„(r) 0 for all [ç] > m. For example, Ai {i,ö}.
Use the above idea to show that

A„, ~ Z2 Z2 • • • I Z2 (m times).

Conclude from this that the order of Am is | A„, 22"'_1.

Exercise 4.3. Consider the unique tree automorphism r g Aut(T) with

signs given by: et,(r) 1 if m — 1* 1... 1 (k times), for k > 0, and

,„(t) — 0 other-wise. Check that t has infinite order in Aut(T).
(Hint : Consider elements rm g Am with signs prescribed as for r above,

but only for k < m. Show that the order ord(rm) —> oa as m —> oo, and
deduce the result from this.)

5. The first construction

In this section we define a finitely generated group G C Aut(T) which we
call the first construction. Historically, this was the first example Of a group
with intermediate growth [4],

Let us first define the group G by defining a set of generators recursively.
More precisely, set G (a,b,c,d) c Aut(T), where a is the automorphism
defined in Section 4, and the automorphisms b, c and d are defined recursively
by the following equations :

(o) ft r-(a. c), c — p(a,d), d — ;ii.b\.
Observe that the automorphisms b, c, and d are defined in a circular fashion

via each other. Since the generator d acts as the identity automorphism on

the left subtree T0, and as b on the right subtree Tj, one can recursively
compute the action of all three automorphisms b, c, d g Aut(T).
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Here is a direct way of defining the automorphisms b,c,d:
b ",= (tfo ' Öl-'Ö ' fl60 ' • -H'firt ' fll40 ' ^l70

(*) c (t/o • öi3o • flj«o •.. .)(öj2q • flj50 • r/jSQ •

d '.= (fljo • flpo ' öi7o ' • -)(fli2o ' fli5o ' fli8o ')!
where 1"' is an abbreviation for 1...1 (m times). Note that the

automorphisms aVn0 used in (*) commute with each other, and thus the

elements h. c, tl e Aut(T) are well defined.

The elements b, c, d e Aut(T) are shown graphically in Figure 4. Here the

black triangles drawn at vertices correspond to places where the two subtrees

rooted at each of these vertices are interchanged.

PtOÜRE 4

The elements />, r and d fj Aut(T)

Theorem 5.1 (Main Theorem). The group G (a,b,c,d) has intermediate

growth.

The proof of Theorem 5.1 is quite involved and occupies much of the rest

of the paper.

Exercise 5.2. Check that the elements b,c,d e Aut(T) defined by (*)
satisfy the conditions (o).

Exercise 5.3. Check that the elements b, c and d are involutions (have

order 2), commute with each other.; and satisfy b c d — i. Conclude from
this that (b,c,d) ~ Z| and that the group G ~ {a,b,c,d) is 3-generated.

Exercise 5.4. Check the following relations in G : (ad)4 (acf —

(ab)16 — I. Deduce from this that the 2-generator subgroups (a,b), (a,c)
and (ayd) of G are finite.
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While these exercises have straightforward 'verification style' proofs, they

will prove useful in the sequel. Thus we suggest that the reader should study
them before proceeding to read (hopefully) the rest of the paper.

6. THE GROUP G IS INFINITE

We have yet to establish that G is infinite. Although one can prove this

directly, the proof below introduces definitions and notation which will be

helpful in the sequel.

Let StG(«) denote the subgroup of G which stabilizes all vertices of
level n. In other words, St®f») consists of all automorphisms re G such

that t(v) — v for all vertices v <5 T with [t»| n :

stGM nstG<u) •

\v\—n

The subgroup H := Stgf 1 is called the fundamental subgroup of G.

Lemma 6.1. The fundamental subgroup H c G satisfies:

H (b, c, d, b\ cf da) » H < G and [G : H] 2.

Proof. From Exercise 5.3 we conclude that every reduced decomposition w
is a product w — (a) * a* a * a* (a), where each * is either b, c, or d,
while the first and last a may appear or not. Denote by \w\ the length of
the word w, and by \w\„ the number of occurrences of a in w. Note that

w H if and only if |«;|„ is even. This immediately implies the third part
of the lemma. Since every subgroup of index 2 is normal, this also implies
the second part.

For the first part, suppose that |tc|<, is even. Join subsequent occurrences

of a to obtain w as a product of * and (a * a). Since a2 I, we
have (a * a) - *", which implies the result.

The following exercise generalizes the second part of Lemma 6.1 and will
be used in Section 10 to prove the upper bound on the growth function of G.

Exercise 6.2. Check that the stabilizer subgroup H„ := Stet ») has finite
index in G: [G : H„] < I A„ I — 22" 1

(see Exercise 4.2).
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Let «jp tß
1

: Aut(T) -» (Aut(T) x Aut(T)) n Z2 be the: isomorphism
defined in Section 4. By definition, H c G c Aut(T).

Lemma 6.3. The image #(H) is a subgroup of G x G such that the

projection of tXHi onto each component is surjective:

Proof. By definition, H stabilizes 0 and 1, so $(H) c Aut(T) x Aut(T).
From Exercise 5.2 we have

Now Lemma 6.1 implies that f0ï) c GxG. On the other hand, the projection
of Gill! onto each component contains all four generators a,b,c,d G G, and

is therefore surjective.

Proposition 6.4. The group G is infinite.

Proof. From Lemmas 6.1 and 6.3, we have that H is a proper subgroup
of G which is mapped subjectively onto G. If |G| < oo. then |G| > |Hj > |G|,
a contradiction.

Here is a different application of Lemma 6.3. Let G c Aut(T) be a

subgroup of the group automorphisms of the binary tree T. Denote by
G„ StG[u)|T„ c Aut(T„.) the subgroup of G of elements which fix the

vertex v T with the action restricted only to the subtree T„, We say that G
has the (strong) self-similarity property if G„ rd G for all v G T.

Proposition 6.5. The group G has the self-similarity property.

Proof. Use induction on the level |#|. By definition, Gr G, and

by Lemma 6.3 we have G0,G! ~ G. For any s G T, we similarly have

G,.(). G«i — G, Ulis implies the result.

Exercise 6.6. Consider the following rewriting rules :

Define a sequence of elements in G by setting Xi a and x;+j t$Mù for
all i > 1. Prove directly that all these elements are distinct. Conclude from
this that G is infinite.

If (c. a),
c' -> (il. a),
d" -r il>. I).

J7 a —> aba, b d, 6—^1, â —> c,
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7, SUPERPOLYNÖMIAL GROWTH OF G

In this section we prove the first half of Theorem 5.1, by showing that
the growth function y of the group G satisfies the conditions of the Lower
Bound Lemma.

Two groups Gi and G2 are called commensurable (which we denote by
Gi fa G2 if they contain isomorphic subgroups of finite index :

//, c G, //2 C G2, //, sa 11; and [Gj : [G2 : //>] < do.

For example, the group Z is commensurable with the infinite dihedral

group Dcû ~ ZsZj. Of course, all finite groups are commensurable

to each other. Another example is H ps G, since H is a subgroup
of finite index in G. Note also that commensurability is an equivalence
relation.

Proposition 7.1. The groups G and G x G are commensurable :

GaGxG.

Proposition 7.1 describes an important phenomenon which can be formalized

as follows. A group G is called multilateral if G is infinite and G «s G
for some m > 2. As we show below, all such groups have superpolynomial
growth.

Proof. To prove the proposition, consider the subgroups H C G and

H : nil) C G x G. By Lemma 6.1 we have [G : H] < oo. Sincq is a

group isomorphism, we also have H ~ H. If we show that [G x G : H] < oo

then GkGxG, as claimed in Proposition 7.1.

Denote by B {b)G the normal closure of b e G, defined as

B := {g-1 bg I g G). Then the following lemma holds :

Lemma 7.2. The subgroup B has finite index in G. More precisely,

[G : B] < 8.

Proof By Exercise 5.4, we have a2 — d2 - {ad)4 — I. It is now easy
to see that the 2-generated subgroup (a,d) c G is a dihedral group D4 of
order 8. By Exercise 5.3, we have G {a, b, d). Therefore, G/B is a quotient
Of {a,d}, and [G : B] < |D4| 8.
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Lemmà 7.3. T!w subgroup H i/>(H) C G x G contains BxB.

Proof. By Lemma 6.1, we know that H 3 {^(cl).^i(da)) ((l,b),{b, I)}
Let ,v i H and tfi{x) (Lo,.ti). We have:

]$(tf) ij){x~ldx) tp(x~1),4>(d)'4'(x)

(x,71, xf1 I, &) Gt<, Xi (l,bXl).

By Lemma 6.3, we can take here any element d| G. Therefore the

image $(H) contains all elements of the form (I,bs), jgG. By definition,
these elements generate a subgroup 1 X B. In other words, H vi 11 3 IxB.
Similarly, using the element d" in place of d, we obtain HdBxI. Therefore

H 3 B x B, as announced.

Proposition 7.1 now follows immediately from Lemma 7.2:

[G X G : H] < [G x G : B x B] - [G : BJ® < 82 - 64.

Since G is infinite (Proposition 6.4) this implies that the group G is

multilateral.

Lemma 7.4. Every multilateral group G has superpolynomial growth.
Moreover, the growth function yG(n) exp(nö) for some a > 0.

Proof. By definition, G is infinite, and G ftj Gm for some m > I.
In other words, there exist H c G, H c Gm such that H ~ H and

[G : H], [Gm : 77] < oo. From Exercise 1.5 we obtain yG ~ 7h ~ ~ 7c».
Thus 7g 7®», and the Lower Bound Lemma (Lemma 2.1) implies the

result.

Proposition 7.1 and Lemma 7.4 now immediately imply the first part of
Theorem 5.1 :

Corollary 7.5. ne group G has superpolynomial growth. Moreover
the growth function 7c(«) ^ exp(«a) for some a > 0.

8. LENGTH OF ELEMENTS AND REWRITING RULES

To prove the second half of Theorem 5.1 we derive sharp upper bounds

on the growth function f 7I of the group G with generating set

S - {a,b,t,d}. In this section we obtain Some recursive bounds on tire
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length C(y) — £sG(g) of elements g £ G in terms of S. Note that, although G
is 3-generated, having the fourth generator is convenient for technical reasons.

We begin with a simple classification of reduced decompositions of
elements of G following the approach in the proof of Lemma 6.1. We define

four types of reduced decompositions :

(i) if g a*a*a---*a*a,
(ii) if g — a * a * a * a*
(iii) if g ~ *a * a * a * a,
(iv) if g *a*a*---a*a*.

Of course, an element g can have many different reduced decompositions.
On tire other hand, the type of a decomposition is almost completely determined

by 9-

Lemma 8.1. Every group element g £ G has all of its reduced

decompositions of the same type (i), or of type (iv), or of types (ii) and (iii).

Proof. Recall that the number of «'s in a reduced decomposition of g £ G
is even if g £ H, and odd otherwise. Thus g cannot have decompositions of
type (if and (iv) at the same time. Noting that decompositions of type (i)
and (iv) have odd length while those of type (ii) and (iii) have even length
implies the result.

It is easy to see that one cannot strengthen Lemma 8.1, since some elements

can have decompositions of both type (ii) and (iii). For example, adad ~ dada

by Exercise 5.4, and both are reduced decompositions. From now on we refer

to elements g G G as of type (i), (ii/iii), or (iv) depending on the type of
their reduced decompositions.

In the next lemma we use the isomorphism if — ip~l\ Aut(T) -a AuuTs/N.
where J| — — Hffc.

Lemma 8.2. Let 1(g) be the length of g £ G in the generators
S — {a,b,c,d}. Suppose that if(g) — where go,g\ £ G
and a £ S2 Then :

< xi'L/! - 1) if 9 has type (i),

^5o), 4») < 1 %) if 9 has type (ii/iii),
%(?>! < |{Ms) + 1) if 9 has type (iv).
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Proof. Fix an element g e G, and let go,g\,o be as in Lemma 8.2.

We have a - I if g e H, and a — a otherwise (See the proof of Lemma 6.1).
For every reduced1) decomposition w — (a)*a*a -*a*(a) of g we shall
construct decompositions of the elements go,gi with lengths as in the lemma. As

before, we use * to denote any one of the generators b,c,d. Also, for every *
in a reduced decomposition we denote by «(*) the number of a's preceding *.

Consider the following rewriting rules:

<I>'o •

and

O l •

G —y I
b —»• a, c —t ü d * I if k.(*} is odd,

b • c. c ' d. d > h if k.(*} is even,

g —y 15

%-*af c —)• a s d -f I if «(*) is even,

b -a e, c —f d, tf —b:& if «(*) is odd.

These rules act on words w in the generators S, and substitute each occurrence
of a letter with the corresponding letter or I.

Let <!>. (no. <I> (no be the words obtained from the word w — (a)*a a*(a)
by the rewriting rules as above, and let g'6, g[ e G be the group
elements defined by these products. Check by induction on the length ((g)
that 4'(g) — ff0' s'l >CT) • Indeed, note that the rules give the first and second

components in the formula for ip in the proof of Lemma 6.3. Now, as in the

proof of Lemma 6.1, subdivide the product w into elements (a) and (*a*) and

obtain the induction step. From here we have go ~ g'Q f g\ g[, and by
construction of the rewriting rales the lengths of go,gi are as in Lemma 8.2.

As we show below, the rewriting rules are very useful in the study of the

group G, but also in a more general setting.

Corollary 8.3. Under the conditions of Lemma 8.2 we have :

((go) + ((gi)<£(g) + l.

The above bound is not sharp and can be improved in certain cases.

The following exercise gives bounds in the other direction, limiting potential
extensions of Corollary 8.3.

1 Here by (a) we mean that this generator may or may not be present in the decomposition.
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Exercise 8.4. Under the conditions of Lemma 8.2 we have:

%)<2%o) + 2C(5l) + 50.

This result can be used to show that tg exp(yfn). The proof is more
involved than those of the other exercises ; the result will not be used in this paper.

Exercise 8.5. Prove that evety element g G has order 2k, for some

integer k. (Hint: Use induction to reduce the problem to the elements go, g\ ;

cf. Lemma 8.2.)

9. The word problem

The classical word problem can be formulated as follows: given a word

w Vfj Sin in the generators sj S, decide whether this product is equal
to I in G (S). To set up the problem carefully, one would have to

describe the presentation of the group and allowed operations [8], We skip
these technicalities in tire hope that the reader has an intuitive understanding
of the problem.

Now, from an algorithmic point of view the problem is undecidable, i.e.

there is no Turing machine which can solve it in finite time for every group.
On the other hand, for certain groups the problem can be solved very efficiently,
in time polynomial in the length n of the product. For example, in the free
group Ft — 1% • - • ?%tl) problem can be solved in linear time: take

a product w and repeatedly cancel every occurrence of Xi.xf1 and
1 < i < k ; the product w is equal to I if and only if the resulting word
is empty. Since every letter is cancelled at most once and no new letters are

created, the algorithm takes 0{n] cancellations.

Exercise 9.1. By the construction, at every iteration there is a search for
the next cancellation, increasing the complexity of the algorithm to as much

as 0(n2). Modify the algorithm to show that the word problem in Ft can in

fact be solved in linear time.

The: class of groups where the word problem can be solved in a linear
number of cancellations is called word hyperbolic. This class has a simple
description and many group-theoretic applications [7], The following result
shows that the word problem can be solved in G in nearly linear time2 k

2 In the computer science literature, 'nearly linear time' usually stands for Of/tlog4 ?;), for
some fixed k.
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Theorem 9.2. The word problem in G can be solved in (Hn log«) time.

Proof. Consider the following algorithm. First, cancel products of b, c, d
to write the word as w (a) * a * • • * a* (a). If the number 7r(w) of a's
is odd, then the product w ^g T If ir(w) is even, use the rewriting rules

(proof of Lemma 8.2) to obtain words wq — ®0(w) and mi — #|f®) (which

may no longer be reduced). Recall that the product w —g i if and only
if tOoim —g i- Now repeat the procedure for the words ifMjfc to obtain

words WQQ,WQi,iviQ,wn, etc. It is easy to check that w —g I if and only if
all the obtained words are trivial.

Observe that the length of each word v, is at most (« + l)/2. Iterating
this bound, we conclude that the number of 'rounds' in the algorithm of
constructing smaller and smaller words is 0(log«). Therefore each letter is

replaced at most 0(log n) times and thus the algorithm finishes in 0(n log n)
time.

Remark 9.3. For every reduced decomposition as above one can construct
a binary tree of words The distribution of height and shape (profile)
of these trees is closely connected to the growth function 7G. Exploring this
connection is of great interest, but lies outside the scope of this paper.

10. SUBEXPONENTIAL GROWTH OF G

In this section we prove the second half of Theorem 5.1 by establishing
the upper bound on the growth function 7 of the group G with generators
S — {a,b,e, d} The proof relies on the technical Cancellation Lemma which
will be stated here and proved in the next section.

Let H3 := Stc(3) be the stabilizer of vertices on the third level, and

recall that the index [G : H3] <2 128 (Exercise 6.2), There is a natural

embedding

' IE —? Gooo x G001 x X Gni

(see Section 6). By self-similarity, the eight groups in the product are

isomorphic: Gyk a G, where i,j,k e {0.1}. These isomorphisms are

obtained by restrictions of natural maps: t"1: AutiT,.) Aut(T), where

sgT. Now combine i/>3 with the map jJJp to obtain a group
homomorphism y: H3 # G8, which we write as y(/t) (fliwfl»|fcW) • ,9m),
where h e H3 and ge G.
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It follows easily from Corollary 8.3 that £(soi») + ?(Sqb) + • • • <
f(/î) + 7. The following result is an improvement on this bound.

Lemma 10.1 (Cancellation Lemma). Let h G Hb. With the above notation
we have:

^(Sôôô) + ftsoßi) + + %iii) < t + 8.

We postpone the proof of the Cancellation Lemma until the next section.

We are now ready to complete the proof of the Main Theorem.

Proposition 10.2. The group G has subexponential growth. Moreover.;

ftel») s4 exp(nv) for some v < 1.

Proof. All elements g G G can be written as g — a- k, where h G Hb

and h is a coset representative of G/Hb Since [G : Hb] < 128, there

are at most 128 such elements a. Note that we can choose elements u

which have length at most 127 in S — {a,b, c, el}, since all prefixes of a

reduced decomposition can be made to lie in distinct cosets. The decomposition
h u~1g then gives t[M) < £{g)+ 127.

Now write g ufi — ttmmotm gm - The Cancellation Lemma yields :

Ç < I em + s < § (%) +127) + s < | %) +114.
ijk

Putting all this together we conclude (using Exercise 10.3 below) :

7(«) < 128 ^ 7(wi)- Jim),

where the summation is over all integer 8-tuples with t?i + „,<{-&$ < §7?+ 114.

Set m — n + 137, so that §n. + 114 < |hî. Now by Exercise 1.2 note that

7(m) 7(17+ 137) < 7(n)-7(137) < 7(7?)- ]5f 41377(«).

Therefore we have :

7(?;?) < 4137 7(w) < 4137 • 128 • 7*8 n + 114) < 22817*8 (J 777)

From this and the Upper Bound Lemma (Lemma 3.1) we obtain the result.

Exercise 10.3. Let G be a group with length function § and growth 7
(relative to some finite generating set). Show that the size of the set

A {(sa- Gk i %i) + • • • 4- £(gk) < A} consisting of all
k-tuples of 'total' length less than some constant A satisfies: |A| <
E,„1 -?("i) ' • •rï(r'k), where the sum is over all k-tuples such that
771 + • • • + < A.
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Recall that the superpolynomial growth of G has been shown in Corollary

7.5. This completes the proof of Theorem 5.1.

11. Proof of the Cancellation Lemma

Fix a reduced decomposition (a) * a * a • * {a) of h G H3, and denote

it by w. By applying the rewriting rules O0 and ®i to tu, we obtain

words wo and w\. Now remove all identities I. Then apply these rules again

to obtain woo,woi, Wio and w\\, and remove the identities I. Finally, repeat
this once again to obtain words wm, %gi,... Following the proof of
Theorem 9.2, all these words give decompositions of the elements go, gi, then

of goo,... ,5n, and of gijk G Gjjk, respectively. Note that these decompositions
are not necessarily reduced, so for the record :

(*) %i)<|wi[, %y) < |wy|, < \wijk\, for all ij,k G {0,1},

where |m| denotes the length of the word u. Also, by Corollary 8.3 we have;

<«/;)+1,
(P) ((:9m) + + C(gn) S ((go) + C(gi) + 2,

f(gim) + £(gooi) + + iigm) < ((gm) + + ((gn) + 4.

To simplify the notation, consider the following concatenations of these words :

w' — wo ' wf r w" wm * • w\\, and w"' — ivooq - wooi ' • '-»iii

By construction of the rewriting rules, since the only possible cancellation

happens when d -> I we have: (uf \ < rtl 4- 1 - |w|rf, where \w\d is the

number of letters d in w. Indeed, simply note that each letter d in w is

cancelled by either O0 or <E>i. Unfortunately we cannot iterate this inequality,
as the words w; are not reduced. Note on the other hand that each letter c

in w produces one letter d in w' and that each of these is cancelled again

by either O0 or Oj. Finally, each letter b in w produces one letter c in w',
which in turn produces one letter d in w", and each of these is cancelled

again by either O0 or <E>i. Taking into account the types of decompositions
we obtain:

\iu'\ < |w| 4 1 - |w|rf

P5 K| < \w\+3 - |-lg|c,

\w"'\ < |w[4 7 — \w\b.
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Since |p:J.# + |«i|c 4- M# > CM ~ 1 )/2, at least one of the: numbers

f«]» > [ïi>|/É - 1- Combining this with (W), (Oj and we conclude that

^(ffQQo) + C(<7oQi) 4- f(gin) £ max{ |u/ +2 + 4, jW | + 4, \w"'\}

< «öl +-ï — max \w\* < Itul + 7 — (ku|/6 — 1) |f(/i) + 8,
*dz{b,c,d} "

as desired.

12. Further developments, conjectures, and open problems

There is a number of open problems on groups of intermediate growth.
Below we include only the most interesting results and conjectures which
are closely connected to the material presented in this paper. We refer to

surveys [1, 2, 6] and the monograph [8] for details and further references.

Let us start by saying that the Upper Bound and Lower Bound lemmas

can be used to obtain effective bounds on the growth function of G. Although
considerably sharper bounds are known, the exact asymptotic behavior of jg
remains an open problem. Unfortunately, we do not even know whether it
makes sense to say that has growth exp(n") for some fixed a > 0 :

Conjecture 12.1. Let 7 +g be the growth function of the group G.
Then the limit a — lim,,.^ log,, log %n) exists.

In fact, the limit in the conjecture is not known to exist and satisfy
0 < a <1 for any finitely generated group. Also, the extent to which results

for G generalize to other groups of intermediate growth remains unclear as

well. Although there are now constructions of groups with subexponential

growth function 7O?) ~ e"a °a>>, there is no known example of a group
with superpolynomial growth function 7(n) ~ exp(«atti). The following
conjecture has been established for a large class of groups, but not in

general :

Conjecture 12.2. Let G be a group of intermediate growth, and let fa
be its growth function. Then -(;in) expf«") for some a > 0.

In conclusion, let us mention that the group G is not finitely presented.
The existence of finitely presented groups of intermediate growth is a major

open problem in the field, and the answer is believed to be negative.
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