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TWO PROBLEMS CONCERNING POLYCYCLIC SPACES

by Oliver BAUES

A finite space (CW-complex) X is called a nilpotent space if the
fundamental group m(X) acts nilpotently on the homotopy groups of X.
In particular, m(X) is finitely generated nilpotent itself. Sullivan proved that
the group of homotopy equivalences of a nilpotent space is, modulo finite
kernels, commensurable with an arithmetic group.

Natural examples for nilpotent spaces are aspherical spaces X with torsion-
free, finitely generated nilpotent fundamental group. For such spaces X, the
statement about the homotopy equivalences corresponds to a purely group
theoretic result on the outer automorphism group of m(X).

For aspherical spaces with finitely generated nilpotent fundamental group
natural compact smooth model spaces exist. These spaces are traditionally
called nilmanifolds. Among all smooth manifolds representing a given nilpotent
aspherical homotopy type, nilmanifolds are characterised by their distinctive
geometric properties, for example, the existence of almost flat Riemannian
metrics. Surprisingly, there do exist also exotic smooth models in a nilpotent
aspherical homotopy type, which are then not diffeomorphic to any nilmanitold.

Quite close to nilmanifolds, but less well understood, are solvmanifolds
and their finite geometric quotients, which are called infrasolv-manifolds. By
definition, a solvmanifold is a homogeneous space for a solvable Lie group.
Generalising nilmanifolds (which admit a transitive action of a nilpotent Lie
group), these smooth manifolds do provide natural compact smooth models
for aspherical manifolds with a torsion-free polycyclic-by-finite fundamental
group.

Here come two problems, which are in the realm of the above ideas.

The first concerns the existence of “good” geometric structures on smooth
aspherical compact manifolds with solvable fundamental group. (Note that,
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in this case, the fundamental group is necessarily a torsion-free polycyclic
group.)

PROBLEM 1. A recent result states that a compact aspherical Kdhler
manifold with solvable fundamental group is (diffeomorphic to) an infra-nil-
manifold, and it is also finitely covered by a standard torus. On the other hand,
it is well known that there exist many solv- and nilmanifolds (not necessarily
covered by a torus) which admit a complex manifold structure.

QUESTION 7.1. Given any aspherical compact complex manifold with
solvable fundamental group, is it diffeomorphic to an infra-solvmanifold ?

The second problem concerns Sullivan’s arithmeticity result for nilpotent
spaces.

PROBLEM 2. As proved recently, the outer automorphism group of any
polycyclic-by-finite group, and, hence, also the group of homotopy equivalences
of any aspherical space with a polycyclic-by-finite fundamental group is an
arithmetic group. Hence, we ask:

QUESTION 7.2. Does Sullivan’s arithmeticity resuli for nilpotent spaces
carry over to da (suitable) more general class of polycyclic spaces ?

For more background on Problem 1, see [1], and the references therein.
For Problem 2, see [2] and also the references there.
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