Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 54 (2008)

Heft: 3-4

Artikel: Formal and rigid geometry : an intuitive introduction and some
applications

Autor: Nicaise, Johannes

DOI: https://doi.org/10.5169/seals-109937

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-109937
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 54 (2008), 213-249

FORMAL AND RIGID GEOMETRY :
AN INTUITIVE INTRODUCTION AND SOME APPLICATIONS

by Johannes NICAISE

ABSTRACT. We give an intuitive introduction to formal and rigid geometry, and
discuss some applications in algebraic and arithmetic geometry and to singularity
theory, with special emphasis on recent applications to the Milnor fibration and the
motivic zeta function by J. Sebag and the author.

1. INTRODUCTION

Let R be a complete discrete valuation ring, with quotient field K, and
residue field k. We choose a uniformizing parameter w, 1.e. ©m generates the
unique maximal ideal of R. Geometers may take R = C[[f]], the ring of formal
power series over the complex numbers, with K = C((#)), k = C, ® = t, while
number theorists might prefer to think of R = Z,, the ring of p-adic integers,
with K =Q,, k=F,, 7 =p.

Very roughly, a formal scheme over R consists of an algebraic variety
over k, together with algebraic information on an infinitesimal neighbourhood
of this variety. If X is a variety over R, we can associate to X its formal
completion X in a natural way. It is a formal scheme over R and can be
seen as an infinitesimal tubular neighbourhood of the special fibre Xq in X.
Its underlying topological space coincides with the space underlying X,
but additional infinitesimal information is contained in the sheaf of regular
functions on X.

An important aspect of the formal scheme X is the following phenomenon.
A closed point x on the scheme-theoretic generic fibre of X over K has
coordinates in some finite extension of the field K and (unless X is proper
over R) there is no natural way to associate to the point x a point of the special
fibre Xy/k by reduction modulo 7. However, by inverting 7 in the structure
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sheaf of X, we can associate a generic fibre X,, to the formal scheme X, which
is a rigid variety over K. Rigid geometry provides a satisfactory theory of
analytic geometry over non-archimedean fields. A point on X;, has coordinates
in the ring of integers of some finite extension K’ of K : if we denote by R’
the normalization of R in K’, we can canonically identify X, (K’) with X(R).
By reduction modulo = we obtain a canonical “contraction” of the generic
fibre X, to the special fibre X,. Roughly speaking, the formal scheme X has
the advantage that its generic and its special fibre are tightly connected; what
glues them together are the R'-sections on X, where R’ runs over the finite
extensions of R.

A main disadvantage of rigid geometry is the artificial nature of the
topology on rigid varieties: it is not a classical topology, but a Grothendieck
topology. In the nineties, Berkovich developed his spectral theory of non-
archimedean spaces. His spaces carry a true topology, which allows one to
apply classical techniques from algebraic topology. In particular, the unit disc R
becomes arcwise connected, while it is totally disconnected with respect to
its m-adic topology.

In Section 3 we give a brief survey of the basic theory of formal schemes,
and Section 4 is a crash course on rigid geometry. Section 5 contains
the basic definitions of Berkovich’s approach to non-archimedean geometry.
In the final Section 6 we discuss briefly some applications of the theory, with
special emphasis on the relation with arc spaces of algebraic varieties and
with the Milnor fibration.

This intuitive introduction merely aims to provide some insight into the
theory of formal schemes and rigid varietics. We do not provide proofs;
instead, we have chosen to give a list of more thorough introductions to the
different topics dealt with in this note.

2. (CONVENTIONS AND NOTATION

o Tor any field F, we denote by F¥¢ an algebraic closure, and by F* the
separable closure of F in F?&,

o If S i1s any scheme, an S-variety is a separated reduced scheme of finite
type over S.

» For any locally ringed space (site) X, we denote the underlying topological
space (site) by |X]|.

o Throughout this note, R denotes a complete discrete valuation ring, with
residue field £, and quotient field K. We fix a uniformizing parameter 7,
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i.e. a generator of the maximal ideal of R. For any integer n > 0, we
denote by R, the quotient ring R/ (7" T1). A finite extension R' of R is by
definition the normalization of R in some finite field extension K’ of K ;
R’ is again a complete discrete valuation ring.

e Once we fix a value || €]0, 1[, the discrete valuation v on K defines a
non-archimedean absolute value |.| on K, with |z] = |7|*@ for z € K*.
This absolute value induces a topology on K, called the w-adic topology.
The ideals #”R, n > 0, form a fundamental system of open neighbourhoods
of the zero element in K. The m-adic topology is totally disconnected. The
absolute value on K extends uniquely to an absolute value on K*#. For any
integer m > 0, we endow (K& with the norm ||z]| := max,—1 |z

3. FORMAL GEOMETRY

In this note we will only consider formal schemes which are topologically
of finite type over the complete discrete valuation ring R. This case is in many
respects simpler than the general one, but it serves our purposes. For a more
thorough introduction to the theory of formal schemes, we refer to [23, §10],
[22, no.182], [28], or [9].

Intuitively, a formal scheme X, over R consists of its special fibre Xj,
which is a scheme of finite type over k, endowed with a structure sheaf
containing additional algebraic information on an infinitesimal neighbourhood
of Xo .

3.1 AFFINE FORMAL SCHEMES

For any tuple of variables x = (x1,...,X»), we define an R-algebra R{x}
as the projective limit
R{x} = llran[x] .

The R-algebra R{x} is canonically isomorphic to the algebra of convergent
power series over R, i.e. the subalgebra of R[[x]] consisting of the elements

w= 3 (ciﬁxj’) € RI[x]]

i=(i1,.oi)ENT =1

such that ¢; — 0 (wr.t. the w-adic topology on K) as |i| = i1+ ...+ in
tends to oo. This means that for each n € N, there exists a value iy € N
such that ¢; is divisible by #” in R if |i| > iy. Note that this is exactly
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the condition which guarantees that the images of ¢(x) in the quotient rings
R,[[x]] are actually polynomials, i.e. belong to R,[x]. The algebra R{x} can
also be characterized as the sub-algebra of R[[x]] consisting of those power
series which converge on the closed unit disc R” = {z € K" | ||z]] < 1},
since an infinite sum converges in a non-archimedean field if and only if its
terms tend to zero. One can show that R{x} is Noetherian [23, 0.(7.5.4)].

An R-algebra A 1is called topologically of finite type (ift) over R if it
is isomorphic to an algebra of the form R{xi,...,x,}/I, for some integer
m > 0 and some ideal 7. For any integer n > 0, we denote by A, the quotient
ring A/ (7" 1. It is an R, -algebra of finite type. Then A is the limit of the
projective system (Ax).en, and if we endow each ring A, with the discrete
topology then A becomes a topological ring with respect to the limit topology
(the m-adic topology on A). By definition, the ideals ©"A, n > 0, form a
fundamental system of open neighbourhoods of the zero element of A.

To any #t R-algebra A we can associate a ringed space SpfA. It is defined
as the direct limit

SpfA := limSpecA,

in the category of topologically ringed spaces (where the topology on Ospeca,
is discrete for every n). So the structure sheaf Ospra is a sheaf of topological
R-algebras in a natural way. Moreover, one can show that the stalks of this
structure sheaf are local rings. A ffi affine formal R-scheme 1s a locally
topologically ringed space in R-algebras which is isomorphic to a space of
the form SpfA.

Note that the transition morphisms SpecA, — Specd,, m < n, are
nilpotent immersions and therefore homeomorphisms. Hence the underlying
topological space |SpfA| of SpfA is the set of open prime ideals J of A
(i.e. prime ideals containing 7 ), endowed with the Zariski topology, and it is
canonically homeomorphic to |Spec Ao|.

So we see that SprA is the locally topologically ringed space in R-algebras

(| Spec Ag|, im Ospeca,) -

In particular, we have Ospra(SpfA) = A. Whenever f is an element of A, we
denote by D(f) the set of open prime ideals of A which do not contain f.
This is an open subset of |SpfA|, and the ring of sections Ospra(D(f)) is
the 7-adic completion Ayqy of the localization Ay,
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A morphism between (ft affine formal R-schemes is by definition a
morphism of locally ringed spaces in R-algebras'). If h: A — B is a morphism
of ift R-algebras, then i induces a direct system of morphisms of R-schemes
SpecB, — SpecA, and by passage to the limit a morphism of fft affine
formal R-schemes Spf(h): Spf B — Spt A. The resulting functor Spf induces
an equivalence between the opposite category of {ff R-algebras and the category
of #ft affine formal R-schemes, just like in the algebraic scheme case.

The special fibre X of the affine formal R-scheme X, = SpfA is the k-
scheme Xy = SpecAg. As we have seen, the natural morphism of topologically
locally ringed spaces Xo — X 1s a homeomorphism,

EXAMPLE 1. Any finite extension R’ of R is a tft R-algebra. The affine
formal scheme Spf R’ consists of a single point, corresponding to the maximal
ideal of R’, but the ring of sections on this point is the entire ring R’.
So, in some sense the infinitesimal information in the topology of SpecR’
(the generic point) is transferred to the structure sheaf of SpfR’.

If A=R{x,v}/(m —xy) and X, = SpfA then, as a topological space,
X coincides with its special fibre Xy = Speck[x, y]/(xy), but the structure
sheaf of X_., is much “thicker” than the one of X,. The formal R-scheme
X~ should be seen as an infinitesimal tubular neighbourhood around Xj.

3.2 FORMAI. SCHEMES

A formal scheme X.. topologically of finite type (tft) over R is a locally
topologically ringed space in R-algebras which has a finite open cover by
it affine formal R-schemes. A morphism between (ft formal R-schemes is a
morphism of locally ringed spaces in R-algebras.

It is often convenient to describe X, in terms of the direct system
(Xp = X XgpRy)n>0. The locally ringed space X, is a scheme of finite type
over R,, for any n; if X, = SpfA then X, = SpecA,. For any pair of
integers 0 < m < n, the natural map of R,-schemes u,,: X» — X, induces
an isomorphism of R, -schemes X, = X, xp R, . The scheme X; is called
the special fibre of X, and X, 1s the n-th infinitesimal neighbourhood of X,
in X, (or “thickening”). The natural morphism of locally topologically ringed
spaces X, — X, 1s a homeomorphism for each n > 0.

1y Such a morphism is automatically continuous with respect to the topology on the structure
sheaves, since it maps = to itself; because the topology is the m-adic one, it is determined by
the R-algebra structure. This is specific to so-called R-adic formal schemes and does not hold
for more general formal R-schemes.
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Conversely, if’ (X,),>0 is a direct system of R-schemes of finite type such
that #"T' =0 on X, and such that the transition morphism i, ,: X,, — X,
induces an isomorphism of R, -schemes X,, = X, Xg, R, for each 0 <m < n,
then this direct system determines a #ff formal R-scheme X, by putting

KXo, 1= lian
n

as a locally topologically ringed space in R-algebras.

In the same way, giving a morphism f: X — Y between ffi formal
K-schemes amounts to giving a series of morphisms (f,: X, — Y,)u>0, where
Jn 18 a morphism of R,-schemes and all the squares

Koy ————F X

W

Y, — Y,

commute. In other words, a morphism of #fi formal R-schemes consists of a
compatible system of morphisms between all the infinitesimal neighbourhoods
of the special fibres.

The formal scheme X is called separated if the scheme X, is separated
for each n. In fact, this will be the case as soon as the special fibre Xj
is separated. We will work in the category of separated formal schemes
topologically of finite type over R; we shall call these objects stft formal
R-schemes.

An sift formal scheme X, over R is flat if its structure sheaf has no
m-torsion. A typical example of a non-flat s#ft formal R-scheme is one with
an irreducible component concentrated in the special fibre. A flat s#ff formal
R-scheme can be thought of as a continuous family of schemes over the
infinitesimal disc Spf R. Any stff formal R-scheme has a maximal flat closed
formal subscheme, obtained by killing -torsion.

3.3 (COHERENT MODULES

ILet A be a ¢t R-algebra. An A-module N is coherent if and only if
it is finitely generated. Any such module N defines a sheat of modules on
SpfA in the usual way. A coherent sheaf of modules A on an stft formal
R-scheme X is obtained by gluing coherent modules on affine open formal
subschemes.

A more convenient description is the following: the category of coherent
sheaves A on X, is equivalent to the category of direct systems (N,)n>0,
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where A, is a coherent sheaf on the scheme X, and the Oy, -linear transition
map Vmp: N, — N, induces an isomorphism of coherent Oy, -modules
Ny = u,’;}nj\f,, for any pair m < n. Morphisms between such systems are
defined in the obvious way.

3.4 THE COMPLETION FUNCTOR

Let X be any Noetherian scheme and [ a coherent ideal sheaf on X,
and denote by V(7) the closed subscheme of X defined by 7. The [J -adic

completion X/ 7 of X is the limit of the direct system of schemes (V(J" a0
in the category of topologically ringed spaces (where Oygs) carries the
discrete topology). This 1is, in fact, a formal scheme, but in general not of
the kind we have defined before; we include the construction here for later
use. If A: ¥ — X is a morphism of Noetherian schemes, and if we denote
by K the inverse image JQOy of J on Y, then A defines a direct system
of morphisms of schemes V(K") — V(J") and by passage to the limit a
morphism of topologically locally ringed spaces Y//7C —> ﬁ? , called the
J-adic completion of h.

If X is a separated R-scheme of finite type and J is the ideal generated
by x, then the [7-adic completion of X is the limit of the direct system
(X, = X Xg Ry)u>o0, and this is an sfft formal R-scheme, which we denote
simply by X. Itis called the Jormal (m-adic) completion of the R-scheme X.
Its special fibre Xy is canonically isomorphic to the fibre of X over the closed
point of Spec R. The formal scheme X is flat if and only if X is flat over R.
Intuitively, X should be seen as the infinitesimal tubular neighbourhood of Xj
in X. As a topological space, it coincides with Xy, but additional infinitesimal
information 18 contained in the structure sheaf.

EXAMPLE 2. The formal completion of X = Spec R[X1,...,X.1/(fi,...,f¢)
iS Slmply X = Spr{Xh me e 7-xﬂ}/(f17 ot er)'

By the above construction, a morphism of separated R-schemes of finite
type f: X — Y induces a morphism of formal R-schemes f: X — ¥ between
the formal m-adic completions of X and Y. We get a completion functor

T (sft-Sch/R) — (stft-For/R) : X — X .

where (sft-Sch/R) denotes the category of separated R-schemes of finite
type, and (stft-For/R) denotes the category of separated formal schemes
topologically of finite type over R.
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For a general pair of separated R-schemes of finite type X,Y, the
completion map

Cx,y: Homg_go p)(X, ¥) — Hom(szft—For/R)Q? V) if =]

is injective, but not bijective. It is a bijection, however, if X is proper over R :
this is a corollary of Grothendieck’s Existence Theorem; see [24, 5.4.1].
In particular, the completion map induces a bijection between R’ -sections of X
and R -sections of X (i.e. morphisms of formal R-schemes SpfR" — X), for
any finite extension R’ of the complete discrete valuation ring R. Indeed,
Spec R’ is a finite, hence proper R-scheme, and its formal m-adic completion
is SpfR’.

ExampPLE 3, If X = SpecB, with B an R-algebra of finite type, and
Y = SpecRlz], then
Homyg_senipyX,¥Y) = B.

On the other hand, if we denote by B the m-adic completion of B, then
X =SpfB and Y = SpfR{z}, and we find

Hom(stft—For/R)(X\a Y)=B.

The completion map Cxy is given by the natural injection B — B ; it 18 not
surjective in general, but it is surjective if B is finite over R.

If X is a separated R-scheme of finite type, and A is a coherent sheaf of
Oyx -modules, then A induces a direct system (N,),>0, where A, is the pull-
back of AV to X,. This system defines a coherent sheaf of modules N on X.
If X is proper over R, it follows from Grothendieck’s Existence Theorem
that the functor A" — A is an equivalence between the category of coherent
Ox-modules and the category of coherent Og-modules [24, 5.1.6]. Moreover,
there is a canonical isomorphism H‘I()?,/\A/' y 2 H9X,N) for each coherent
Ox-module N and each ¢ > 0.

If an sfft formal R-scheme Y., is isomorphic to the w-adic completion
Y of a separated R-scheme Y of finite type, we call the formal scheme Y.
algebraizable, with algebraic model Y. The following theorem is the main
criterion for recognizing algebraizable formal schemes [24, 54.5]: if Yy is
proper over k, and £ is an invertible Oy_ -bundle such that the pull-back
Lo of £ to Yy is ample, then Y. is algebraizable. Moreover, the algebraic
model Y for Y. 18 unique up to canonical isomorphism, there exists a unique
line bundle M on ¥ with £ = M, and M is ample. For an example of a
proper formal C[[f]]-scheme which is not algebraizable, see [28, 5.24(b)].
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3.5 FORMAL BLOW-UPS

Let X be a flat sift formal R-scheme, and let Z be a coherent ideal sheaf
on X, such that Z contains a power of the uniformizing parameter 7. We
can define the formal blow-up of X at the centre 1 as follows [13, § 2]:
if Xoo = SpfA is affine, and I is the ideal of global sections of Z on X,
then the formal blow-up of X, at 7 is the 7Ogpeca-adic completion of the
blow-up of SpecA at I. The general case is obtained by glueing.

The formal blow-up of X, at Z is again a flat siff formal R-scheme,
and the composition of two formal blow-ups i1s again a formal blow-up
[13, 2.14+2.5]. If X is a separated R-scheme of finite type and Z is a coherent
ideal sheaf on X containing a power of w, then the formal blow-up of X
at T is canonically isomorphic to the w-adic completion of the blow-up of X
it I

4, RIGID GEOMETRY

In this note, we’ll be able to cover only the basics of rigid geometry.
We refer the reader to the books [10, 20] and the research papers [8, 13, 39, 42]
for a more thorough introduction. A nice survey on Tate’s approach to rigid
geometry can be found in [30].

4.1 ANALYTIC GEOMETRY OVER NON-ARCHIMEDEAN FIELDS

Let L be a non-archimedean field (i.e. a field which is complete with
respect to an absolute value that satisfies the ultrametric property); we assume
that the absolute value on L is non-trivial. For instance, if K is our complete
discretely valued field, then we can turn K into a non-archimedean field by
fixing a value |7| € 10,1[ and putting |x| = |7|*® for x € K*, where v
denotes the discrete valuation on K (by convention, v(0) = oo and |0 = 0).

The absolute value on L extends uniquﬂ to any finite extension of L,
and hence to I° and L%e, We denote by L the completion of 172 and
by I3 the closure of LS in L ; these are again non-archimedean fields. We
denote by L° the valuation ring {x € L | |x| < 1}, by L its maximal ideal
{xeL||x <1}, and by L the residue field L°/L°°. For L = K we have
[°=R, L =(m) and L = k.

Since L is endowed with an absolute value, one can use this structure to
develop a theory of analytic varieties over I by mimicking the construction
over C. Naively, we can define analytic functions on open subsets of L” as
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L-valued functions which are locally defined by a convergent power series
with coefficients in L. However, we are immediately confronted with some
pathological phenomena. Consider, for instance, the p-adic unit disc

Z,={xe Q| ¥ <1}.

The partition
rZ,,1+pZ,,....p—-1)+pZ,}

is an open cover of Z, with respect to the p-adic topology. Hence the
characteristic function of pZ, is analytic, according to our naive definition.
This contradicts some elementary properties that one expects an analytic
function to have. The cause of this and similar pathologies is the fact that the
unit disc Z, is totally disconnected with respect to the p-adic topology. In this
approach, there are “too many” analytic functions, and “too few” analytic
varieties (for instance, with this definition, any compact p-adic manifold is
isomorphic to a disjoint union of i unit discs, where i € {0,...,p— 1} is its
Serre invariant [41]).

Rigid geometry is a more refined approach to non-archimedean analytic
geometry, turning the unit disc into a connected space. Rigid spaces are
endowed with a certain Grothendieck topology, allowing only a special type
of covers.

we’ll indicate two possible approaches to the theory of rigid varieties
over L. The first is due to Tate [42], the second to Raynaud [39]. If we
return to our example of the p-adic unit disc Z,, Tate’s construction can be
understood as follows. In fact, we already know what the “correct” algebra of
analytic functions on Z, should be: the power series with coefficients in K
which converge globally on Z,. Tate’s idea is to start from this algebra and
then to construct a space on which these functions live naturally. This is similar
to the construction of the spectrum of a ring in algebraic geometry. Raynaud
observed that a certain class of Tate’s rigid varieties can be characterized in
terms of formal schemes.

472 TATE ALGEBRAS

The basic objects in Tate’s theory are the algebras of convergent power
series over L :

T = LA By 55 955

—{a=Y(a]]5) €L, .oxall | Joil =0 as il — oo},

ieNm  j=1
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where [i| = 37,7 The convergence condition implies in particular that
for each « there exists iy € N such that for [i| > iy the coefficient «;
belongs to L°. The algebra 7, is the algebra of power series over L which
converge on the closed unit polydisc (L°Y" in L™ (since an infinite sum
converges in a non-archimedean field if and only if its terms tend to zero).
Note that, for L = K, T, = R{x1, ..., X%, }®rK . Analogously, we can define an
algebra of convergent power series B{xj,...,x,} for any Banach algebra B.
The algebra T,, is a Banach algebra for the sup-norm | f|lsp = max;|ei|.
It is Noetherian, and every ideal I is closed, so that the quotient T, /I is
again a Banach algebra with respect to the residue norm.

A Tate algebra, or L-affinoid algebra, is an L-algebra A isomorphic to
such a quotient 7,,/I. The residue norm on A depends on the presentation
A = T,/I. However, any morphism of L-algebras T,/ — T,/J is
automatically continuous, so in particular the residue norm on A is well-
defined up to equivalence, and the induced topology on A is independent of
the chosen presentation. For any maximal ideal y of A, the residue field A/y
is a finite extension of L. For proofs of all these facts, we refer to [20, 3.2.1].

By Proposition 1 of [10, 7.1.1], the maximal ideals y of T, correspond
bijectively to G(L¥€/L)-orbits of tuples (z1,...,zx), with z € (L*€)?, via the
map

v ) 0(en)) | @1 Tnfy — LY,

where ¢ runs through the L-embeddings of 7, /y in L*2. In particular, for
any morphism of L-algebras ¢: T, — L¥¢ and any index i, the element
Y(x;) belongs to (L42)°. It follows that ¢ is contractive, in the sense that
|(@)| < ||a|sup for any a in Tp,.

The fact that we obtain tuples of elements in (L2%8y | rather than 1€,
might look strange at first; it is one of the most characteristic properties
of Tate’s rigid varieties. Let us consider an elementary example. If z is an
element of L, then x — z is invertible in L{x} if and only if z does not
belong to L°. Indeed, for z # 0 the coefficients of the formal power series
1/(x —2) = —(1/2) Y. ,~(x/2)" tend to zero if and only if |z] > 1, ie. iff
z¢ 1°. So (x — z) defines a maximal ideal in L{x} only if z € L°,

4.3  AFFINOID SPACES

The category of L-affinoid spaces is by definition the opposite category
of the category of Tate algebras over L. For any L-affinoid space X, we
shall denote the corresponding Tate algebra by A(X) and call it the algebra of
analytic functions on X, Conversely, for any Tate algebra A, we denote the
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corresponding affinoid space by SpA (some authors use the notation Spm
instead). For any m > 0, the affinoid space Sp 7, is called the closed unit
disc of dimension m over L.

To any L-affinoid space X = SpA we associate the set X” of maximal
ideals of the Tate algebra A = A(X). If we present A as a quotient
Tn/(f1,---.fn), then the elements of (SpA)b correspond bijectively to the
G(L¥¢/L)-orbits of tuples z = (z1,...,%,), With z; € (L78)° and fi(z) = 0
for each j. In particular, if L is algebraically closed and X is the closed unit
disc Sp 17, then

X =L°={xelL|]x<1}.

We have seen above that for any maximal ideal x of A, the quotient A/x
is a finite extension of L, $o0 it carries a unique prolongation of the absolute
value |.| on L. Hence, for any f € A and any x € (SpA)’, we can speak of
the value f(x) of f at x (the image of f in A/x) and of its absolute value
|f(x)|. In this way, the elements of A are viewed as functions on (SpA).
Note that if x is a prime ideal of A, there is in general no canonical way
to extend the absolute value on L to the extension A/x. This is one of the
reasons for working with the maximal spectrum (SpA)’, rather than the prime
spectrum SpecA. In Berkovich’s theory (Section 5) the notion of a point is
generalized by admitting any prime ideal x and specifying an extension of
the absolute value on L to A/x.

The spectral semi-norm on A 1is defined by

|/ llswp = sup | /(0]
xeXP
It is a norm if and only if A is reduced. By the maximum modulus principle
[10, 6.2.1.4], this supremum is in fact a maximum, i.e. there is a point x in
X with |f(x)| = ||f|lsup. Moreover, for A = T,,, this definition coincides with
the one in the previous section, by [10, 5.1.4.6].

We could try to endow X” with the initial topology with respect to the
functions x — |f(x)|, where f varies in A. If L is algebraically closed and
if we identity (Sp L{x})b with L7, then this topology is simply the topology
on L° defined by the absolute value. It is totally disconnected, so it does not
have the nice properties we are looking for.

If ¢: A — B is a morphism of L-affinoid algebras then, for any maximal
ideal x in B, cp_l(x) is a maximal ideal in A, since B/x is a finite extension
of L. Hence, any morphism of L-affinoid spaces i: X — Y induces a
map h’: X* — ¥’ on the associated sets. A morphism of L-affinoid spaces
h: X — Y 1is called a closed immersion if the corresponding morphism of
L-affinoid algebras A(Y) — A(X) is surjective.
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4.4 (OPEN COVERS

A morphism #1: Y — X of L-affinoid spaces is called an open immersion
if it satisfies the following universal property: for any morphism g: Z — X
of L-affinoid spaces such that the image of g" is contained in the image
of A in X°, there is a unique morphism ¢': Z — ¥ such that g = ho g’ .
If & is an open immersion, the image D of K’ in X" is called an daffinoid
domain. One can show that the map /" is always injective [10, 7.2.2.1], so it
identifies the set D with Y. The L-affinoid space ¥ and the open immersion
h: Y — X are uniquely determined by the affinoid domain D, up to canonical
isomorphism. With a slight abuse of notation, we will identify the affinoid
domain D with the L-affinoid space Y, so that we can think of an affinoid
domain as an affinoid space sitting inside X, and we can speak of the Tate
algebra A(D) of analytic functions on D. If E is a subset of D, then E is an
affinoid domain in D if and only if it is an affinoid domain in X. In this case,
the universal property yields a restriction map A(D) — A(E). The intersection
of two affinoid domains is again an affinoid domain, but this does not always
hold for their union. If A: Z — X is a morphism of L-affinoid spaces, then
the inverse image of an affinoid domain in X is an affinoid domain in Z.

EXAMPLE 4. Consider the closed unit disc X = SpL{x}. For a € I°
and r in the value group [L*|, we denote by D(a,r) the “closed disc”
{zeX" | |x(z)—a| < r}, and by D~(a, r) the “open disc” {z€X’ | |x(2)—a| < r}.
We will see below that the disc D(a,r) is an affinoid domain in X, with
A(D(a,n) = L{x,T}/(x—a—pT), where p is any element of L with |p| = r.
On the other hand, the disc D~ (a,r) cannot be an affinoid domain in X,
since the function |x(.) —a| does not reach its maximum on D~ (a,r).

Assume now that L is algebraically closed. By Theorem 2 in [10, 9.7.2]
the affinoid domains in X are the finite disjoint unions of subsets of the form

D(ag, )\ UL, D™ (@i, 1)
with @; in L° and r; in [L*|N]0,1] for i=0,...,q.
An dgffinoid cover of X is a finite set of open immersions u;: U; — X
such that the images of the maps (u;)° cover X°. A special kind of affinoid
cover is constructed as follows: take analytic functions fi,...,f, in A(X),

and suppose that these elements generate the unit ideal A(X). Consider, for
each i =1,...,n, the L-affinoid space U; given by

AU = ACO{T, . T} /(= Tifdi=1,m -
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The obvious morphism #;: U; — X is an open immersion, and U; is called a
rational subspace of X. The image of (u;)” is the set of points x in X* such
that |f(x)| > |fj(x)| for j=1,...,n. Indeed, using the fact that a morphism
of L-algebras 7, — L¥8 is contractive (Section 4.2) and the assumption
that fi,...,fn generate A(X), one shows that a morphism of L-algebras
i A(X) — L¥¢ factors through a morphism of L-algebras ;: A(U;) — L
if and only if (f}) # 0 and W(T;) = ¥(f;)/¢(f)) belongs to (L32y | ie.
[D(f)] < |9(f)]. In this case, ¥; is unique.

The set of morphisms {uy,...,u,} is an affinoid cover and is called a
standard cover. It is a deep result that any affinoid domain of X is a finite
union of rational subsets of X, and any affinoid cover of X can be refined
by a standard cover [10, 7.3.5.3+8.2.2.2].

One of the cornerstones in the theory of rigid varieties is Tate’s Acyclicity
Theorem [10, 8.2.1.1]. Tt states that analytic functions on any affinoid cover
{ui: Uy — X}ier satisty the glueing property: the sequence

AX) = [Tawn = [T avino
i€l G, )er

is exact.

Now we can define, for each L-affinoid space X, a topology on the
associated set X*. It will not be a topology in the classical sense, but a
Grothendieck topology, a generalization of the topological concept in the
framework of categories. A Grothendieck topology specifies a class of opens
(admissible opens) and, for each admissible open, a class of covers (admissible
covers). These have to satisfy certain axioms which allow one to develop a
theory of sheaves and cohomology in this setting. A space with a Grothendieck
topology is called a site. Any topological space (in the classical sense) can
be viewed as a site in a canonical way: the admissible opens and admissible
covers are the open subsets and the open covers. For our purposes we do
not need the notion of Grothendieck topology in its most abstract and general
form: a sufficient treatment is given in [10, 9.1.1].

The weak G-topology on an L-affinoid space X is defined as follows: the
admissible open sets of X’ are the affinoid domains, and the admissible covers
are the affinoid covers [10, 9.1.4]. Any morphism 7 of L-affinoid spaces is
continuous with respect to the weak G-topology (meaning that the inverse
image under #” of an admissible open is again an admissible open, and the
inverse image of an admissible cover is again an admissible cover). We can
define a presheaf of L-algebras Oy on X° with respect to this topology by
putting Ox(D) = A(D) for any affinoid domain D> of X (with the natural
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restriction maps). By Tate’s Acyclicity Theorem, Oy is a sheaf. Note that the
exact definition of the weak G-topology varies in the literature: sometimes
the admissible opens are taken to be the finite unions of rational subsets in X,
and the admissible covers are the covers by admissible opens with a finite
subcover (e.g. in [20, § 4.2]).

In the theory of Grothendieck topologies, there is a canonical way to
refine the topology without changing the associated category of sheaves [10,
9.1.2]. This refinement is important to get good glueing properties for affinoid
spaces, and to obtain continuity of the analytification map (Section 4.6). This
leads to the following definition of the strong G-topology on an L-affinoid
space X.

o The admissible open sets are (possibly infinite) unions |J,., D; of affinoid
domains D; in X such that, for any morphism of L-affinoid spaces
h: Y — X, the image of A’ in X’ is covered by a finite number of D;.

« An admissible cover of an admissible open subset V C X” is a (possibly
infinite) set of admissible opens {V;|j € J} in X° such that V = U Vi
and such that, for any morphism of L-affinoid spaces ¢ : ¥ — X with
Im(p®) C V, the cover {((Pb)_l(‘/j) | j € J} of ¥ can be refined by an
affinoid cover.

Any morphism of L-affinoid spaces is continuous with respect to the strong
G -topology. The strong G-topology on X = SpA is finer than the Zariski
topology on the maximal spectrum of A (this does not hold for the weak
G-topology). From now on, we will endow all L-affinoid spaces X with
the strong G-topology. The structure sheat Oy of X extends uniquely to a
sheaf of L-algebras with respect to the strong G-topology, which is called the
sheaf of analyvtic functions on X. One can show that its stalks are local rings.
In this way we associate to any L-affinoid space X a locally ringed site in
L-algebras X, Ox).

For any morphism of L-affinoid spaces A: ¥ — X, there 1s a morphism of
sheaves of L-algebras Oy — (h°),Oy which defines a morphism of locally
ringed spaces (Y?,0y) — (X*,0%) (if D = SpA is an affinoid domain in X,
then (A”)~Y(D) is an affinoid domain SpB in Y and there is a natural morphism
of L-algebras A — B by the universal property defining affinoid domains).
This construction defines a functor from the category of L-affinoid spaces to
the category of locally ringed sites in L-algebras, and this functor is fully
faithful [10, 9.3.1.1], i.e. every morphism of locally ringed sites in L-algebras
((SpBY, Osy ) — ((SpAY, Ospa) is induced by a morphism of I-algebras
A — B. With a slight abuse of notation, we will also call the objects in its
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essential image L-affinoid spaces, and we will identify an L-affinoid space
X with its associated locally ringed site in L-algebras X°, Ox).

If D is an affinoid domain in X, then the strong G-topology on X restricts
to the strong G-topology on D, and the restriction of Ox to D is the sheaf
of analytic functions Op.

One can check that the affinoid space Sp T, is connected with respect to
the strong and the weak G -topology, for any m > 0. More generally, connect-
edness of an L-affinoid space X = Sp A is equivalent for the weak G-topology,
the strong G-topology, and the Zariski topology [10, 9.1.4, Prop. 8], and it is
also equivalent to the property that the ring A has no non-trivial idempotents;
so the G-topologies nicely reflect the algebraic structure of A.

EXAMPLE 5. lLet X be the closed unit disc SpZL{x}. The set
U={zeX|x@|=1}={zeX||x@)| > 1}

is a rational domain in X, so it is an admissible open already for the weak
G-topology. The algebra of analytic functions on U is given by

Ox(U1) = L{X, T}/(XT — 1).

The set
U, ={zeX|x(z) <1}

18 not an admissible open for the weak G-topology (it cannot be affinoid
since the function |x(.)| does not reach a maximum on U,), but it is an
admissible open for the strong G-topology: we can write it as an infinite
union of rational domains

U = {z € X | x@|" < |al},

where n runs through N* and ¢ is any non-zero element of L%,

This family satisfies the finiteness condition in the definition of the strong
G-topology: if ¥ — X is any morphism of L-affinoid spaces whose image is
contained in U, then by the maximum principle (Section 4.3) the pull-back
of the function |x(.)| to ¥ reaches its maximum on Y, so the image of Y is
contained in Ué") for n sufficiently large.

The algebra Ox(U;) of analytic functions on U, consists of the elements
> spaixt of L{[x]] such that |a;|r' tends to zero as i — oo, for any r € 10, 1[.

i{ence, we can write X as a disjoint union U; U U, of admissible opens.
This does not contradict the fact that X is connected, because {U;, U} is not
an admissible cover, since it cannot be refined by a (finite !) affinoid cover.
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4.5 RIGID VARIETIES

Now we can give the definition of a general rigid variety over L. It is a
set X, endowed with a Grothendieck topology?) and a sheaf of L-algebras Oy,
such that X has an admissible cover {U,;};c; with the property that each locally
ringed space (U;, Ox|y,) is isomorphic to an L-affinoid space. An admissible
open U in X is called an affinoid domain in X if (U,Ox|y) is isomorphic
to an L-affinoid space. If X is affinoid, this definition is compatible with the
previous one. A morphism ¥ — X of rigid varieties over L is a morphism
of locally ringed spaces in [-algebras.

A rigid variety over L is called guasi-compact if 1t 1s a finite union of
atfinoid domains. It is called quasi-separated if the intersection of any pair of
affinoid domains is quasi-compact, and separated if the diagonal morphism is
a closed immersion.

4.6 ANALYTIFICATION OF AN L-VARIETY

For any L-scheme X of finite type, we can endow the set X° of closed
points of X with the structure of a rigid L-variety.
More precisely, by [8, 0.3.3] and [30, 5.3] there exists a functor

()™ (f=Sch/L) — (Rig/L)

from the category of L-schemes of finite type to the category of rigid

L-varieties, such that

1. for any L-scheme of finite type X, there exists a natural morphism of
locally ringed sites

X" =X

which induces a bijection between the underlying set of X* and the set X°
of closed points of X. The couple (X*", 1) satisfies the following universal
property: for any rigid variety Z over L and any morphism of locally
ringed sites j: Z — X, there exists a unique morphism of rigid varieties
JiZ— X" such that j=ioj;

2. if f: X’ = X is a morphism of L-schemes of finite type, the square

(X/ )an f " 3 Xan

li Ji
x L x
commutes N

2) To be precise, this Grothendieck topology should satisfy certain additional axioms; see
[10, 9.3.1.4].
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3. the functor (.)* commutes with fibred products and takes open (resp.
closed) immersions of L-schemes to open (resp. closed) immersions of
rigid L-varieties, In particular, X*" is separated if X is separated.

We call X*" the analvtification of X. It is quasi-compact if X is proper

over L, but not in general. The analytification functor has the classical

GAGA properties: if X is proper over L, then analytification induces an

equivalence between coherent (Oy-modules and coherent Oya-modules, and

the cohomology groups agree; a closed rigid subvariety of X*' is the

analytification of an algebraic subvariety of X; and for any L-variety Y,

all morphisms X*" — ¥ are algebraic. These results can be deduced from

Grothendieck’s Existence Theorem; see [31, 2.8].

EXAMPLE 6. Tet D be the closed unit disc SpZ{x}, and consider the
endomorphism o of D mapping x to g-x, for some non-zero g € L°?. Then o
is an isomorphism from D onto the affinoid domain D(0, |a|) in D (notation
as in Example 4). The rigid affine line (A})™ is the limit of the direct system

T T

D s D

in the category of locally ringed sites in L-algebras. Intuitively, it is obtained
as the union of an infinite number of concentric closed discs whose radii tend
o .

47 RIGID SPACES AND FORMAL SCHEMES

Finally, we come to a second approach to the theory of rigid spaces, due
to Raynaud [39]. We will deal only with the case where L = K is a complete
discretely valued field, but the theory is valid in greater generality (see [13]).

We have seen before that the underlying topological space of an sift
formal R-scheme X, coincides with the underlying space of its special
fibre X,. Nevertheless, the structure sheaf of X, contains information on an
infinitesimal neighbourhood of Xy, so one might try to construct the generic
fibre X,, of X, . As it turns out, this is indeed possible, but we have to leave
the category of (formal) schemes: this generic fibre X, is a rigid variety
over K.

4.8 THE AFFINE CASE

Let A be an algebra topologically of finite type over R, and consider the
affine formal scheme X, = SpfA. The tensor product A&z K is a K-affinoid



FORMAL AND RIGID GEOMETRY 231

algebra, and the generic fibre X, of X, is simply the K-affinoid space
SpA @r K.

Let K’ be any finite extension of K, and denote by R’ the normalization
of R in K’. There exists a canonical bijection between the set of morphisms of
formal R-schemes Spf R’ — X, and the set of morphisms of rigid K -varieties
SpK’ — X,,. Consider a morphism of formal R-schemes SpfR — X, or,
equivalently, a morphism of R-algebras A — R’. Tensoring with K yields a
morphism of K-algebras A @p K — R’ @z K =2 K’, and hence a K’-point
of X,,. Conversely, for any morphism of K-algebras A @z K — K’, the image
of A will be contained in R’, since we have already seen in Section 4.2 that
the image of R{xi,...,X%»} under any morphism of K-algebras 7, — K8
is contained in the normalization R¥ of R in K?%¢.

To any R'-section on X., we can associate a point of X.., namely the
image of the singleton |SpfR’|. In this way, we obtain a specialization map
of sets

spe |1 Xy = | Xoe| = | Xo] -

4.9 THE GENERAL CASE

The construction of the generic fibre for general sift formal R-schemes X
is obtained by glueing the constructions on affine charts. The important point
here is that the specialization map sp is continuous: if X, = SpfA is affine
then, for any open formal subscheme U, of X, the inverse image sp‘l(Uoo)
is an admissible open in X,, ; in fact, if U,, = Spf B is affine then sp~(Us,)
is an affinoid domain in X, , canonically isomorphic to U, = SpB &z K.
Hence, the generic fibres of the members UY of an affine open cover of
an sfft formal R-scheme X, can be glued along the generic fibres of the
intersections UY NUY to obtain a rigid K -variety X, and the specialization
maps glue to a continuous map

spi Xy = | Xae| = |Xo] -

This map can be enhanced to a morphism of ringed sites by considering the
unique morphism of sheaves

spﬁ: Ox,. — .0y,
which is given by the natural map
Ox,.(Usxc) =A = A@r K = 5p.Ox, (Usx)

on any affine open formal subscheme U,, = SpfA of X .
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The generic fibre of an st formal R-scheme is a separated, quasi-compact
rigid K-variety. The formal scheme X is called a formal R-model for the
rigid K-variety X, . Since the generic fibre is obtained by inverting =, it is
clear that the generic fibre does not change if we replace X, by its maximal
flat closed formal subscheme (by killing 7 -torsion). If X’ is a finite extension
of K and R’ the normalization of R in K’, then we still have a canonical
bijection X (R') = X,,(K").

The construction of the generic fibre is functorial: a morphism of stff
formal R-schemes h: Yo, — X, induces a morphism of rigid K -varieties
hy . Y, — X,,, and the squarc

hg

Y, — X,

Spl JSp

Yoo —— X,

commutes. We get a functor
()t (sHft=For/R) — (sqc—Rig/K) : Xoo — X,

from the category of sift formal R-schemes to the category of separated,
quasi-compact rigid K -varieties.

For any locally closed subset Z of Xy, the inverse image sp‘l(Z) is an
admissible open in X, called the fube of Z in X, and denoted by ]Z[.
If Z is open in Xy then ]Z[ is canonically isomorphic to the generic fibre
of the open formal subscheme Z.. = (|Z],Ox_|z) of X . The tube 1Z[ is
quasi-compact if Z is open, but not in general.

Berthelot showed in [8, 0.2.6] how to construct the generic fibre of a
broader class of formal R-schemes, not necessarily #fi. If Z is closed in X,
then ]1Z[ is canonically isomorphic to the generic fibre of the formal completion
of X, along Z (this formal completion is the locally topologically ringed
space with underlying topological space |Z| and structure sheaf

lim Oy, /T3,
where 7 is the defining ideal sheaf of Z in X, ). In particular, if Z is a
closed point x of Xy then ]x[ is the generic fibre of the formal specirum of
the completed local ring Ox_ . with its adic topology (we did not define this
notion; see [23, 10.1]).
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EXAMPLE 7. Let X, be an affine s#ft formal R-scheme, say X, = SpfA.
Consider a tuple of elements fi,...,f, in A, and denote by Z the closed
subscheme of X, defined by the residue classes f,,...,f, in Ag. The tube 1Z[
of Z in X consists of the points x of X, with |fix)| <1 for i=1,...,r
(since this condition is equivalent to f;(x) =0 mod (Keleyeo,

If X, = SpfR{x} then X, is the closed unit disc SpK{x} and the special
fibre X, is the affine line A}. If we denote by O the origin in X, and by V
its complement, then [V[ is the affinoid domain

U =SpK{x,T}/(xT — 1)

from Example 5 (the “boundary” of the closed?) unit disc), and ]O[ is the
open unit disc U; from the same example. The first one is quasi-compact,
the second one is not.

4,10 LOCALIZATION BY FORMAIL BLOW-UPS

The functor (.), is not an equivalence. One can show that formal blow-ups
are turned into isomorphisms [13, 4.1]. Intuitively, this is clear: the centre Z
of a formal blow-up contains a power of m, so it becomes the unit ideal after
inverting 7.

In some sense, this is the only obstruction, Denote by C the category
of flat sift formal R-schemes, localized with respect to the formal blow-ups.
This means that we artificially add inverse morphisms for formal blow-ups,
thus turning them into isomorphisms, The objects of C are simply the flat stft
formal R-schemes, but a morphism in C from Y., to X, is given by a triple
(YL, 01,92), where ¢1: Y. — Yo is a formal blow-up and ¢2: ¥, — X
a morphism of sfft formal R-schemes. We identify this triple with another
triple (Y ,1)1,40) if there exist a third triple (Z., x1,Xx2) and morphisms
of stft formal R-schemes Z,, — Y. and Z,, — Y such that the obvious
triangles commute.

Since admissible blow-ups are turned into isomorphisms by the functor
(.)y, it factors through a functor C — (sqc—Rig/K). Raynaud [39] showed
that this is an equivalence of categories (a detailed proof is given in [13]).
This means that the category of separated, quasi-compact rigid K-varieties
can be described entirely in terms of formal schemes. To give an idea of this
dictionary between formal schemes and rigid varieties, we list some results.
Let X be a separated, quasi-compact rigid variety over K.

3} The notion of houndary is well defined only if you specify a centre of the disc, since any
point of a closed disc can serve as a centre, due to the ultrametric property of the absolute value.
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o [13, 4.1(¢e), 4.7] There exists a flat sfft formal R-scheme X.. such that X
is isomorphic to X,,.

o [13, 4.1(c+d)] If X0 and Y. are stft formal R-schemes and ¢: Y, — X,
is a morphism of rigid K -varieties, then in general ¢ will not extend
to a morphism Y. — X, on the R-models. However, by Raynaud’s
result, there exist a formal blow-up f: Y, — Y., and a morphism of sift
formal R-schemes g: Y. — X such that ¢ = g, o(ﬁ,)_l. If ¢ is an
isomorphism, we can find (Y. ,f,g) with both f and ¢ formal blow-ups.

e [13, 4.4] For any affinoid cover i of X, there exist a formal model X, of
X and a Zariski cover {U), ..., Us} of Xy such that & = {10 [,...,1Us[ }.

See [13, 14, 15, 16] for many other results.

EXAMPLE 8. Consider the siff formal R-schemes

Xy = SpFR{x}/(x* — 1),
Yoo = SpER{x}/(* — 7).

The generic fibres ¥, and X, are isomorphic (both consist of two points
SpK), but it is clear that there is no morphism of s#ftf formal R-schemes
Y — X. which induces an isomorphism between the generic fibres.
The problem is that the section x/7 is not defined on Y, ; however, blowing
up the ideal (x,7) adds this section to the ring of regular functions, and the
formal blow-up scheme is isomorphic t0 X« .

Next, consider the siff formal R-scheme Z.. = SpfR{x} and the standard
cover of Z, defined by the couple (x, 7). The cover consists of the closed disc
D(0, |x|) and the closed annulus Z, \ D~(0, |x|) (notation as in Example 4).
These sets are not tubes in Z.., since by Example 7 both sets have non-empty
intersection with the tube JO[ but do not coincide with it. But if we take
the formal blow-up Z. — Z., at the ideal (x,7), then the rational subsets
in our standard cover are precisely the generic fibres of the blow-up charts
SpER{x,T}/(xT — 7) and SpfR{x,T}/(x — «T).

4,11 PROPER R-VARIETIES

Now let X be a separated scheme of finite type over R, and denote by
Xk its generic fibre. We denote by (Xg)° the set of closed points of Xg.
By [8, 0.3.5], there exists a canonical open immersion «: (}/(\)77 — (Xg)™.
If X is proper over R, then « is an isomorphism.
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For a proper R-scheme of finite type, we can describe the specialization
map

sp: X = |Xe)™| = [X,] = |1X] = %ol

as follows: let x be a closed point of Xg, denote by K’ its residue field
and by R’ the normalization of R in K’. The point x defines a morphism
x: Spec K’ — X. The valuative criterion for properness guarantees that the
morphism SpecR’ — SpecR lifts to a unique morphism #: SpecR' — X
with Alspecxr = x. If we denote by 0 the closed point of SpecR’, then
sp(x) = h(0) € [Xq|.

In general, the open immersion o« }?,, — (Xg)*™ is strict. Consider, for
instance, a proper R-variety X, and let X’ be the variety obtained by removing
a closed point x from the special fibre X. Then X = X ; however, by taking
the formal completion )?’, we lose all the points in 5(), that map to x under sp,
146 )?’,7 = )/(\f,,\]x[. We’ll see an explicit example in the following section.
This is another instance of the fact that the rigid generic fibre )?’7, is “closer”
to the special fibre than the scheme-wise generic fibre Xk .

4,12 EXAMPLE: THE PROJECTIVE LINE

Llet X be the affine line SpecR[x] over R; then Xx = Spec K[x], and
(Xg)*™ is the rigid affine line (A})* from Example 6. On the other hand,
X = SpfR{x} and X,, is the closed unit disc SpK{x}. The canonical open
immersion X\n — (Xg)*" 1s an isomorphism onto the affinoid domain in (Xg )™
consisting of the points z with |x(z)] < 1.

If we remove the origin O from X, we get a scheme X' with X = Xg.
However, the formal completion of X’ is

X' = SpfR{x, T} /(xT — 1)

and its generic fibre is the complement of JO[ in 5(\7, (see Example 7).

Now let us turn to the projective line Py = ProjR[x,y]. The analytic
projective line (P}<)a“ can be realized in different ways. First, consider
the usual affine cover of P}( by the charts U; = SpecK[x/y] and U, =
Spec K[v/x]. Their analytifications (U;)* and (U,)*" are infinite unions of
closed discs (see Example 6) centred at 0O, resp. oo. Glueing along the
admissible opens (Up)*™ — {0} and (U>)™ — {co} in the obvious way, we
obtain (P%)2.
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On the other hand, we can look at the formal completion P}. By the results
in Section 4.11, we know that its generic fibre is canonically isomorphic

to (P%)™. The syt formal R-scheme P} is covered by the affine charts
Vi = SpfR{x/v} and V, = SpfR{y/x} whose intersection is given by

Vo = Spf R{x/y,y/x}/(&x/m/x)—1).

We have seen in Example 7 that the generic fibres of Vi and V» are closed
unit discs around x/y = 0, resp. y/x = 0, and that (V;),, coincides with their
boundaries. So in this way, (P)* is realized as the Riemann sphere obtained
by glueing two closed unit discs along their boundaries.

5. BERKOVICH SPACES

We recall some definitions from Berkovich’s theory of analytic spaces over
non-archimedean fields. We refer to [2], or to [6] for a short introduction.
A very nice survey of the theory and some of its applications are given in [19].

For a commutative Banach ring with unity (A, |.|]), the spectrum M(A)
is the set of all bounded multiplicative semi-norms x: A — R. (where
“pounded” means that there exists a number C > 0 such that x(a) < Cla||
for all g in A). If x is a point of M(A), then x~1(0) is a prime ideal of A,
and x descends to an absolute value |.| on the quotient field of A/x~1(0).
The completion of this field is called the residue field of x and is denoted
by H(x). Hence any point x of M(A) gives rise to a bounded ring morphism
xy from A to the complete valued field H(x), and x is completely determined
by x.. In this way, one can characterize the points of M(A) as equivalence
classes of bounded ring morphisms from A to a complete valued field
[2, 1.2.2(i1)], just as one can view elements of the spectrum SpecA of a
commutative ring A either as prime ideals in A or as equivalence classes of
ring morphisms from A to a field.

If we denote the image of f € A under x, by f(x), then x(f) = |f(x)|.
We endow M(A) with the weakest topology such that M(A) — R : x — | f(x)]
is continuous for each f in A. This topology is called the spectral topology
on M(A). If A is not the zero ring, it turns M(A) into a non-empty
compact Hausdorff topological space [2, 1.2.1]. A bounded morphism of
Banach algebras A — B induces a continuous map M(B) — M(A) between
their spectra. In particular, the spectrum of A depends only on the equivalence
class of ||.||.
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If L is a non-archimedean field with non-trivial absolute value and A is an
L-affinoid algebra (these are called strictly L-affinoid in Berkovich’s theory),
then A carries a Banach norm, well-defined up to equivalence (Section 4.2).
The spectrum M(A) of A is called a strictly L-affincid analytic space;
Berkovich endows these topological spaces with a structure sheaf of analytic
functions. General strictly L-analyiic spaces are obtained by glueing strictly
L-affinoid analytic spaces.

Any maximal ideal x of A defines a point of M(A): the bounded
multiplicative semi-norm sending f € A to |f(x)|. This defines a natural
injection SpA — M(A), whose image consists of the points y of M(A) with
[H(y): L] < oc. So M(A) contains the “classical” rigid points of SpA, but
in general also some additional points z with z71(0) not a maximal ideal.
Beware that the natural map

M(A) = SpecA : 2+ z71(0)

18 not injective, in general: if P € SpecA is not a maximal ideal, there may be
several bounded absolute values on A/P extending the absolute value on L.
For a Hausdorff strictly L-analytic space X, the set of rigid points

Xiig = {x e X | [HX): L] < oo}

can be endowed with the structure of a quasi-separated rigid variety over L in
a natural way. Moreover, the functor X — X, induces an equivalence between
the category of paracompact strictly L-analytic spaces, and the category of
quasi-separated rigid varieties over L which have an admissible affinoid
covering of finite type [3, 1.6.1]. The space X, is quasi-compact if and
only if X is compact.

The big advantage of Berkovich spaces is that they carry a “true” topology
instead of a Grothendieck topology, with very nice features (Hausdorft, locally
arcwise connected, ...). As we have seen, Berkovich obtains his spaces by
adding points to the points of a rigid variety (not unlike the generic points
in algebraic geometry) which have an interpretation in terms of valuations.
We refer to [2, 1.4.4] for a description of the points and the topology of the
closed unit disc D = M(L{x}).

To give a taste of these Berkovich spaces, let us explain how two points
of Dy, can be joined by a path in D. We assume, for simplicity, that L
is algebraically closed. For each point a of Dy, and each p € [0,1] we
define D(a, p) as the set of points z in Dy with |x(z) — x(a)| < p. This
is not an affinoid domain if p ¢ |[L*|. Any such disc E = D(a, p) defines



238 1. NICAISE

a bounded multiplicative semi-norm |.|, on the Banach algebra L{x}, by
mapping f = >~ a,(T — a)" to

flg = sup | f(z)] = max |a,|p",
ZEE H

and hence I defines a Berkovich-point of D. Now a path between two points
a, b of Dy, = L° can be constructed as follows: put & = |x(a) — x(b)| and
consider the path

D(a, 215), ifo<r<1/2,
Db, 2(1—0b), if1/2<r<1.

Geometrically, this path can be seen as a closed disc around @, growing
continuously in time ¢ until it contains b, and then shrinking to b.

A remarkable feature of Berkovich’s theory is that it can also be applied
to the case where L carries the trivial absolute value. If k& is any field,
and X is an algebraic variety over k, then we can endow k with the trivial
absolute value and consider the Berkovich analytic space X*' associated to
X over k [2, 3.5]. Surprisingly, the topology of X*" contains some non-
trivial information on X. For instance, if & = C, then the rational singular
cohomology Hgne(X™, Q) of X*" is canonically isomorphic to the weight-zero
part of the rational singular cohomology of the complex analytic space X(C)
[7, 1.1(c)]. We refer to [36] and [43] for other applications of analytic spaces
with respect to trivial absolute values.

Let us mention that there are still alternative approaches to non-archimedean
geometry, such as Fujiwara and Kato’s Zariski-Riemann spaces [21], or Huber’s
adic spaces [27]. See [38] for a (partial) comparison.

fy:[O,l]—>D:t»—>{

6. SOME APPLICATIONS

6.1 RELATION TO ARC SCHEMES AND THE MILNOR FIBRATION

6.1.1 ARC SPACES. Let k be any field, and let X be a separated scheme
of finite type over k. Put R = k[[f]]. For each n > 1, we define a functor

Fy: (k-Alg) — (Sets) : A — X(A & Ry,)

from the category of k-algebras to the category of sets. It is representable
by a separated k-scheme of finite type L£,(X) (this is nothing but the Weil
restriction of X xR, to k). For any pair of integers m > n > 0, the truncation
map R, — R, induces, by Yoneda’s Lemma, a morphism of k-schemes

T LX) = L(X).
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It is easily seen that these morphisms are affine, and hence we can consider
the projective limit
LX) = lim £,(X)

in the category of k-schemes. This scheme is called the arc scheme of X.
It satisfies L(X)(K') = X(K'[[£]]) for any field k&’ over k (these points are
called ares on X)) and comes with natural projections

T LX) = L,(X).

In particular, we have a morphism my: £(X) — Lo(X) = X. For any
subscheme 7 of X, we put L(X)z; = L(X) xx Z. By Yoneda’s L.emma,
a morphism of separated k-schemes of finite type A: Y — X induces
k-morphisms h: L£,(Y) — L£,(X) and, by passage to the limit, a k-morphism
h: L(Y) — L(X).

If X is smooth over k, the schemes L,(X) and L(X) are fairly well
understood: if X has pure dimension d then, for each pair of integers
m>n>0, 7 is a locally trivial fibration with fibre Af(m_") (with respect
to the Zariski topology). If x is a singular point of X, however, the scheme
L(X), is still quite mysterious. It contains a lot of information on the singular
germ (X, x); interesting invariants can be extracted by the theory of motivic
integration (see [17, 18, 44]).

The schemes L(X), and L(X) arc not Noetherian, in general, which
complicates the study of their geometric properties. Already the fact that they
have only finitely many irreducible components if k& has characteristic zero, is
a non-trivial result. We will show how rigid geometry allows one to translate
questions concerning the arc space into arithmetic problems on rigid varieties.

6.1.2 THE RELATIVE CASE. Let k& be any algebraically closed field of
characteristic zero*), and put R = k[[f]]. For each integer d > 0, K = k((1))
has a unique extension K(d) of degree d in a fixed algebraic closure K%
of K, obtained by joining a d-th root of f to K. We denote by R(d) the
normalization of R in K(d). For each d > 0, we choose a d-th root of ¢
in K%, denoted by /¢, such that ( $/1)° = \/f for each d,e > 0. This choice
defines an isomorphism of k-algebras R(d) = K[[\/f1. It also induces an
isomorphism of R-algebras

it R@) = R@ 1 Y aiD' =) ait',

i>0 i>0

4} This condition is imposed only to simplify the arguments.
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where R(d) is the ring R with R-algebra structure given by

R—R: Zbili — Zbil‘id.
i>0 i>0

Let X be a smooth irreducible variety over &, endowed with a dominant
morphism f: X — Al = Speck[t]. We denote by X the formal completion of
the R-scheme Xp = X =g k[[£]]; we will also call this the t-adic completion
of f. Tts special fibre X is simply the fibre of /' over the origin.

There exists a tight connection between the points on the generic fibre }?7,
of X, and the arcs on X. For any integer d > 0, we denote by X(d) the
closed subscheme of L(X) defined by

Xd)y={d € LOO | f) =1}
We will construct a canonical bijection
o Xy (K(d) = X(d)(K)

such that the square
X, (K(d) —2— X(d)(Kk)

spl Jm

Xolk) —— Xolk)
commutes.

As we saw in Section 4.9, the specialization morphism of ringed sites
sp: )?n — X induces a bijection )?n(K(d)) — )?(R(d)), and the morphism sp
maps a point of )?,,(K(d)) to the reduction modulo +/f of the corresponding
point of )?(R(d)). By Grothendieck’s Existence Theorem (Section 3.4), the
completion functor induces a bijection (Xg)(R(d)) — f(R(d)). Finally, the
R-isomorphism ¢, : R(d) — R(d) induces a bijection

(XR)R() — Xr)R()) = X(@)(k).

In other words, if we take an arc v»: Spec R — X with f(z) = ?, then the
morphism @Zn yields a K(d)-point on X,,, and this correspondence defines a
bijection between X(d)(k) and X 2(K(d)). Moreover, the image of ¢ under
the pIOJGCtIOII mo: L(X) — X is nothing but the image of the correspondmg
element of X, (K(d)) under the specialization map sp: 1X,| = 1X| = |Xo|.

The Galois group G(K(d)/K) = pa(k) acts on XT,(K(d)) and its action
on the level of arcs is easy to describe: if ¢ is an arc SpecR — X with
fy) =17, and € is an element of gy (k), then £.40(H) = W(E.D).
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The spaces X' (d), with their p;(k)-action, are quite close to the arc spaces
appearing in the definition of the motivic zeta function associated to f[18, 3.2].
In fact, the motivi¢ zeta function can be realized in terms of the motivic integral
of a Gelfand-Leray form on )?,,, and the relationship between arc schemes
and rigid varieties can be used in the study of motivic zeta functions and the
monodromy conjecture, as is explained in [35, 34].

6.1.3 THE ABSOLUTE CASE. This case is easily reduced to the previous
one. Let X be any separated k-scheme of finite type, and consider its base
change Xz = X x; R. We denote by X the formal completion of Xg.

There exists a canonical bijection between the sets L(X)(k) and Xgr(R).
Hence, by the results in the previous section, k-rational arcs on X correspond
to K-points on the generic fibre )?7, of X, by a canonical bijection

o1 LX) = X,(K),

and the square
LXK —E— X, (K)

’“’l lSp

Xk —— Xk

commutes. So the rigid counterpart of the space L(X)z := L(X) xx Z of arcs
with origin in some closed subscheme Z of X, is the tube ]Z[ of Z in }?n
(or rather, its set of K-rational points).

Of course, the scheme structure on £(X) is very different from the analytic
structure on )2,,. Nevertheless, the structure on )?n seems to be much richer
than the one on L(X), and one might hope that some essential properties
of the non-Noetherian scheme £(X) are captured by the more “geometric”
object 55,,. Moreover, there exists a satisfactory theory of étale cohomology
for rigid K-varieties (see for instance [3] or [27]), making it possible to apply
cohomological techniques to the study of the arc space.

6.1.4 THE ANALYTIC MILNOR FIBRE. Let g: C" — C be an analytic map;
we denote by Y, the analytic space defined by g = 0. Let x be a point of Yj.
Consider an open disc D := B(0,n) of radius n around the origin in C, and
an open disc B := B(x,¢) in C™. We denote by D* the punctured disc
D — {0}, and we put

X' :=Bng YD),
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Then, for 0 <y K e « 1, the induced map
g: X — D*

is a C° locally trivial fibration, called the Milnor fibration of g at x. It is
trivial if g is smooth at x. Its fibre at a point t of D* is denoted by F,(1),
and it is called the (topological) Milnor fibre of g at x (with respect to f).
To remove the dependency on the base point, one constructs the canonical
Milnor fibre F, by considering the fibre product

Fy:= X' xpx DX,
where 5;< is the universal covering space
DX = {z€ C|S(2) > —logn} — D™ : z+— exp(iz) .

Since this covering space is contractible, F, is homotopically equivalent to
F.(1). The group of covering transformations 7;(D*) acts on the singular
cohomology of F,; the action of the canonical generator z — z + 27 of
m(D*) is called the monodromy transformation of ¢ at x. The Milnor
fibration ¢’ was devised in [32] as a tool for gathering information on the
topology of Yy near x.

We return to the algebraic setting: let & be an algebraically closed field
of characteristic zero, let R = k[[f]], let X be a smooth irreducible variety
over k, and let f: X — A}C = Speck[f] be a dominant morphism. As before,
we denote by X the formal ¢-adic completion of f, with generic fibre 5{\”.
For any closed point x on Xy, we put F,:=]x[, and we call this rigid
K -variety the analytic Milnor fibre of f at x. This object was introduced and
studied in [33, 34]. We consider it as a bridge between the topological Milnor
fibration and arc spaces; a tight connection between these data is predicted by
the motivic monodromy conjecture. See [35] for more on this point of view.

The topological intuition behind the construction is the following: the
formal neighbourhood SpfR of the origin in A} = Speck[f] corresponds to
an infinitesimally small disc around the origin in C. Its inverse image under f
is realized as the f-adic completion of the morphism f'; the formal scheme X
should be seen as a tubular neighbourhood of the special fibre X defined by
J on X. The inverse image of the punctured disc becomes the “complement”
of Xy in ¥ ; this “complement” makes sense in the category of rigid spaces,
and we obtain the generic fibre }?n of X. The specialization map sp can be
seen as a canonical “contraction” of )/fn on Xp, such that F, corresponds to
the topological space X’ considered above. Note that this is not really the
Milnor fibre yet: we had to base-change to a universal cover of D™, which
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corresponds to considering ]-"XQ K@ instead of F,, by the dictionary between
finite covers of D* and finite extensions of K. The monodromy action is
translated into the Galois action of G(K? /K) = 2(1)(1() on f)& K@

It follows from the results in Section 6.1.2 that, for any integer d > 0,
the points in F,(K(d)) correspond canonically to the arcs

w: Speck[[f]] = X

satisfying f(x0) = * and m=(v») = x. Moreover, by Berkovich’s comparison
result in [5, 3.5] (see also Section 6.3), there are canonical isomorphisms

Hi(F X K%, Qp) & Ritp, (Q)s

such that the Galois action of G(K?2 /K) on the left-hand side corresponds to
the monodromy action of G(K®8/K) on the right. Here H is étale (-adic
cohomology, and R, denotes the £-adic nearby cycle functor associated to f.
In particular, if £ = C, this implies that Hét(FXQK@7QE) is canonically
isomorphic to the singular cohomology Hg'mg(Fx, Q¢) of the canonical Milnor
fibre F, of f at x, and that the action of the canonical topological generator
of G(K*& /K) = 2(1)(C) corresponds to the monodromy transformation, by
Deligne’s classical comparison theorem for étale and analytic nearby cycles
[1, XIV]. In view of the motivic monodromy conjecture, it is quite intriguing
that F, relates certain arc spaces to monodromy action; see [35] for more
background on this perspective.

6.2 DEFORMATION THEORY AND LIFTING PROBLEMS

Suppose that R has mixed characteristic, and let Xy be a scheme of
finite type over the residue field k. In [28, 5.1] Hlusie sketches the following
problem: is there a flat scheme X of finite type over R such that Xo = X xgk ?
Grothendieck suggested the following approach: first, try to construct an
inductive system X, of flat R, -schemes of finite type such that X, = X,, xp, R,
for m > n > 0. In many situations, the obstructions to lifting X, to X,y live
in a certain cohomology group of Xy, and when these obstructions vanish,
the isomorphism classes of possible X, correspond to elements in another
appropriate cohomology group of Xg. Once we find such an inductive system,
its direct limit is a flat formal R-scheme X, topologically of finite type.
Next, we need to know if this formal scheme is algebraizable, i.e. if there
exists an R-scheme X whose formal completion X is isomorphic 10 Xw .
This scheme X would be a solution to our lifting problem. A useful criterion
for proving the existence of X 1is the one quoted in Section 3.4: if X, 1s
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proper and carries an ample line bundle that lifts to a line bundle on X,
then X, is algebraizable. Moreover, the algebraic model X is unique up to
isomorphism by Grothendieck’s Existence Theorem (Section 3.4). For more
concrete applications of this approach, we refer to Section 5 of [28].

6.3 NEARBY CYCLES FOR FORMAIL SCHEMES

Berkovich used his étale cohomology theory for non-archimedean analytic
spaces, developed in [3], to construct nearby and vanishing cycle functors
for formal schemes [4, 5]. His formalism applies, in particular, to siff formal
R-schemes X and to formal completions of such formal schemes along
closed subschemes of the special fibre Xo. Let us denote by Ry, the functor
of nearby cycles, both in the algebraic and in the formal setting. Suppose that
k is algebraically closed. Let X be a variety over R; we denote by X s
formal completion, with generic fibre }?,]. Let Y be a closed subscheme of
Xy, and let F be an étale constructible sheaf of abelian groups on X xz K,
with torsion orders prime to the characteristic exponent of k. Then Berkovich
associates to F in a canonical way an étale sheaf .7-" on XT, and an étale
sheaf F / Y on the tube 1¥[. His comparison theorem [5, 3.1] states that there
are canonical quasi-isomorphisms

Ry (F) = Riby(F)  and Ry (Fly = Ry (F/Y).
Moreover, by [5, 3.5] there is a canonical quasi-isomorphism
RI(Y, Riby(F)|y) = RT(Y[5 kK, F/¥).

In particular, if x is a closed point of Xy, then Riwn(Qg)x is canonically
isomorphic to the i-th £-adic cohomology space of the tube XX KI?E . Similar
results hold for tame nearby cycles and vanishing cycles.

This proves a conjecture of Deligne’s, stating that Rep, (F)|y depends only
on the formal completion of X along Y. In particular, the stalk of R, (F)
at a closed point x of Xy depends only on the completed local ring @X,x.

6.4 SEMI-STABLE REDUCTION FOR CURVES

Bosch and Litkebohmert show in [12, 11] how rigid geometry can be
used to construct stable models for smooth projective curves over a non-
archimedean field 1., and uniformizations for Abelian varieties. Let us briefly
sketch their approach to semi-stable reduction of curves.
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If A is a reduced Tate algebra over L, then we define

A ={feAlllflap <1},
C={reAllflee <1}

Note that A is a subring of A, and that A° is an ideal in A?. The quotient
A= A° /A% is a reduced algebra of finite type over L , by [10, 1.2.5.7+6.3.4.3],
and X SpecA is called the canonical reduction of the affinoid space

= SpA. There is a natural reduction map X — X mapping pomts of X to
Closed points of X . The inverse image of a closed point x of X is called the
Jormal fibre of X at x; it is an open rigid subspace of X.

Let C be a projective smooth geometrically connected curve over L of
genus g > 2; we consider its analytification C*'. By a technical descent
argument, we may assume that L 1is algebraically closed. The idea is to
construct a finite admissible cover 4 of C*" by affinoid domains U whose
canonical reductions U are semi-stable. If the cover &I satisfies a certain
compatibility property, the canonical reductions U can be glued to a semi-
stable f-variety. From this cover 4 one constructs a stable model for C.
The advantage of passing to the rigid world is that the Grothendieck topology
on C*" is much finer than the Zariski topology on C, thus allowing finer
patching techniques.

To construct the cover i, it is proved that smooth points and ordinary
double points on U can be recognized by looking at their formal fibre in U.
For instance, a closed point x of U is smooth if and only if its formal fibre
is isomorphic to an open disc of radius 1. An alternative proof based on rigid
geometry is given in [20, 5.6].

6.5 CONSTRUCTING ETALE COVERS, AND ABHYANKAR’S CONJECTURE

Formal and rigid patching techniques can also be used in the construction
of Galois covers; see [26] for an introduction to this subject. This approach
generalizes the classical Riemann Existence Theorem for complex curves to
a broader class of base fields. Riemann’s Existence Theorem states that, for
any smooth connected complex curve X, there is an equivalence between
the category of finite étale covers of X, the category of finite analytic
covering spaces of the complex analytic space X®", and the category of finite
topological covering spaces of X(C) (with respect to the complex topology).
So the problem of constructing an étale cover is reduced to the problem
of constructing a topological covering space, where we can proceed locally
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with respect to the complex topology and glue the resulting local covers.
In particular, it can be shown in this way that any finite group is the Galois
group of a finite Galois extension of C(x), by studying the ramified Galois
covers of the complex projective line.

The strategy in rigid geometry is quite similar: given a smooth curve X
over a non-archimedean field 1, we consider its analytification X",
We construct an étale cover Y/ of X* by constructing covers locally and
glueing them to a rigid variety. Then we use a GAGA-theorem to show that
Y’ is algebraic, i.e. ¥ = ¥* for some curve Y over L; Y is an élale cover
of X. Of course, several technical complications have to be overcome to carry
out this strategy.

We list some results that can be obtained by means of these techniques,
and references to their proofs.

¢ (Harbater) For any finite group (, there exists a ramified Galois cover
f: X — P} with Galois group G, such that X is absolutely irreducible,
smooth, and projective, and such that there exists a point x in X(L) at
which f is unramified. An accessible proof is given by Q. Liu in [29];
see also [37, § 3].

¢ (Abhyankar’s Conjecture for the projective line) Let k be an algebraically
closed field of characteristic p > 0. A finite group G is the Galois group
of a covering of P}, ramified only over oo, if and only if G is generated
by its elements of order p” with n > 1. This conjecture was proved
by Raynaud in [40]. This article also contains an introduction to rigid
geometry and étale covers.

o (Abhyankar’s Conjecture) Let k be an algebraically closed field of
characteristic p > 0. Let X be a smooth connected projective curve
over k of genus g, let &,...,& (r > 0) be distinct closed points on X,
and let I'y » be the topological fundamental group of a complex Riemann
surface of genus ¢ minus r + 1 points (it is the free group on 2g +r
generators). Put U = X\ {&,...,&}. A finite group G is the Galois
group of an unramified Galois cover of U if and only if every prime-
to-p quotient of G is a quotient of I'y . This conjecture was proved by
Harbater in [25].



[1]

[2]
[3]

[4]
[5]

[6]
[7]
[8]
[]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

FORMAL AND RIGID GEOMETRY 247

REFERENCES

Groupes de monodromie en géomeétrie algébrique. II. In: Séminaire de
géométrie algébrique du Bois-Marie 1967-1969 (SGA 7 II). Dirigé par P.
Deligne et N. Katz. Lecture Notes in Mathematics 340. Springer-Verlag,
Berlin, 1973.

BERKOVICH, V. G. Spectral Theory and Analytic Geometry over Non-Archimed-
ean Fields. Math. Surveys and Monographs 33. Amer. Math. Soc., 1990.

—— Ltale cohomology for non-Archimedean analytic spaces. Publ. Math.
Inst. Hautes Etudes Sci. 78 (1993), 5-171.

—— Vanishing cycles for formal schemes. Invent. Marh. 115 (1994), 539-571.

—— Vanishing cycles for formal schemes, II. fnvent. Math. 125 (1996), 367—
390.

—— p-adic analytic spaces. Doc. Math., J. DMV Extra Vol. ICM Berlin 1998,
Vol. 11, 1998, 141-151.

—— An analog of Tate’s conjecture over local and finitely generated fields.
Internat. Math. Res. Notices 2000 (13) (2000), 665-680.

BERTHELOT, P. Cohomologie rigide et cohomologie rigide a supports propres.
Prépublication Inst. Math. de Rennes, 1996.

Bosch, S. Lectures on formal and rigid geometry. Preprint available at: http:
/fwww.math].uni-muenster.de/stb/about/publ/bosch.html, 2005.

BoscH, S., U. GUNTZER and R. REMMERT. Non-Archimedean Analysis. A
Systematic Approach to Rigid Analytic Geomerry. Grundlehren der
Mathematischen Wissenschatten 267. Springer-Verlag, 1984.

Bosch, S. and W. LUTKEBOHMERT. Stable reduction and uniformization of
abelian varieties. Il. lnvenr. Math. 78 (1984), 257-297.

BoscH, S. and W. LUTKEBOHMERT. Stable reduction and uniformization of
abelian varieties. I. Math. Ann. 270 (1985), 349-379.

BOScH, S. and W. LUTKEBOHMERT. Formal and rigid geometry. I: Rigid spaces.
Math. Ann. 295 (1993), 291-317.

BoscH, S. and W. LUTKEBOHMERT. Formal and rigid geometry. 1I: Flattening
techniques. Math. Ann. 296 (1993), 403-429.

BoscH, S., W. LUTKEBOHMERT and M. RAYNAUD. Formal and rigid geometry.
III: The relative maximum principle. Math. Ann. 302 (1995), 1-29.

BoscH, S., W. LUTKEBOHMERT and M. RAYNAUD. Formal and rigid geometry.
IV: The reduced fibre theorem. Invent. Math. 119 (1995), 361-398.

DENEF, J. and F. LOESER. Germs of arcs on singular algebraic varieties and
motivic integration. Invenf. Math. 135 (1999), 201-232. Also: arxiv:
math.AG/9803039.

DENEF, J. and F. LOESER. Geometry on arc spaces of algebraic varieties. In:
Progress in Mathematics 207, Birkhauser, 2001, 327-348. Also: arxiv:
math.AG/0006050.

Ducros, A. Espaces analytiques p-adiques au sens de Berkovich. Séminaire
Bourbaki, Exp. 958 (mars 2006).

FRESNEL, J. and M. VAN DER PUT. Rigid Analytic Geometry and its Applications.
Progress in Mathematics 278. Birkhauser, Boston, 2004.



I. NICAISE

FUIMWARA, K. and F. KAT0. Rigid geometry and applications. In: Moduli Spaces
and Arithmetic Geometry, Mukai, S. et al., editor, 327-386. Advanced
Studies in Pure Mathematics 45. Math. Soc. of Japan, Tokyo, 2006.

GROTHENDIECK, A. Fondements de la géométrie algébrique. Extraits du
Séminaire Bourbaki 1957-1962. Paris: Secrétariat mathématique, 1962.

GROTHENDIECK, A. et J. DIEUDONNE. Lléments de Géométrie Algébrique, L
Publ. Math. Inst. Hautes Etudes Sci. 4 (1960), 5-228.

GROTHENDIECK, A. et J. DIEUDONNE. Eléments de Géométrie Algébrique, III.
Publ. Math. Inst. Hautes Etudes Sci. 11 (1961), 5-167.

HARBATER, D. Abhyankar’s conjecture on Galois groups over curves. Invent.
Math. 117 (1994), 1-25.

—— Patching and Galois theory. In: Galois Groups and Fundamental Groups,
Schneps, L. (ed.), 313-424. Math. Sci. Res. Inst. Publ. 4/. Cambridge
University Press, Cambridge 2003.

HUBER, R. Etale Cohomology of Rigid Analytic Varieties and adic Spaces.
Aspects of Mathematics E30. Vieweg, Wiesbaden, 1996.

ILLUSIE, L. Grothendieck’s existence theorem in formal geometry. In: Funda-
mental Algebraic Geometry, Grothendieck’s FGA Explained, B. Fantechi,
L. Gottsche, L. Illusie, S. Kleiman, N. Nitsure and A. Vistoli, editors.
Math. Surveys and Monographs /23. Amer. Math. Soc., 2005.

Liu, Q. Tout groupe fini est un groupe de Galois sur Q,(7), d’apres Harbater.
In: Recent Developments in the Inverse Galois Problem, M. Fried, editor,
261-265. Contemp. Math. /86. Amer. Math. Soc., 1995.

—— Une mini introduction a la géométrie analytique rigide. In: Arithmétique
des revétements algébriques — Actes du colloqgue de Saint-Etienne,
B. Deschamps, editor, 43—61. Séminaires et Congrés 5. Soc. Math. France,
Paris, 2001.

LUTKEBOHMERT, W. Formal-algebraic and rigid-analytic geometry. Math. Ann.
286 (1990), 341-371.

MILNOR, I. Singular Points of Complex Hypersurfaces. Annals of Math. Studies
61. Princeton University Press, 1968.

NICAISE, J. and J. SEBAG. Invariant de Serre et fibre de Milnor analytique.
C. R. Math. Acad. Sci. Faris 341 (2005), 21-24.

NICAISE, J. and J. SEBAG. The motivic Serre invariant, ramification, and the
analytic Milnor fiber. Invent. Math. 168 (2007), 133-173.

NICAISE, J. and J. SEBAG. Rigid geometry and the monodromy conjecture. In:
Singularity Theory, Proceedings of the 2005 Marseille Singularity School
and Conference, D. Chéniot et al., editors, 819-836. World Scientific,
2007,

PoINEAU, I. Espaces de Berkovich sur Z. Ph.D. thesis, Rennes, 2007.

VAN DER PUT, M. Valuation theory in rigid geometry and curves over
valuation rings. In: Valuarion Theory and its Applications. Volume I F.V.
Kuhlmann, ed. Proceedings of the international conference and workshop,
University of Saskatchewan, Saskatoon, Canada, 1999, 369-383. Fields
Inst. Commun. 32. Amer. Math. Soc., 2002.

VAN DER PUT, M. and P. SCHNEIDER. Points and topologies in rigid geometry.
Marth. Ann. 302 (1995), 81-103.



[39]
[40]
[41]
[42]

[43]

[44]

FORMAL AND RIGID GEOMETRY 249

RAYNAUD, M. Géométrie analytique rigide d’apres Tate, Kiehl, ... . In: Mémoires
Soc. Math. France 3940, 319-327. Soc. Math. France, Paris, 1974.

—— Revétements de la droite affine en caractéristique p > 0 et conjecture
d’Abhyankar. fnvenr. Math. 116 (1994), 425-462.

SERRE, J.-P. Classification des variétés analytiques p-adiques compactes.
Topology 3 (1965), 409-412.

TATE, J. Rigid analytic geometry. Invent. Math. 12 (1971), 257-289.

THUILLIER, A. Géométrie toroidale et géométrie analytique non archimédienne.
Application au type d’homotopie de certains schémas formels. Manu-
scripta Math. 123 (2007), 381-451.

VEYS, W. Arc spaces, motivic integration and stringy invariants. In: Singulariry
Theory and its Applications, S. Izumiya (ed.) et al., 529-572. Advanced
Studies in Pure Mathematics 43. Math. Soc. of Japan, Tokyo, 2006.

{(Recu le 27 février 2007)

Johannes Nicaise

Université Lille 1

Laboratoire Painlevé, CNRS - UMR 8524
Cité Scientifique

F-59655 Villeneuve d’Ascq Cédex

France

e-mail : johannes.nicaise@math.univ-lillel fr



	Formal and rigid geometry : an intuitive introduction and some applications
	...


