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FORMAL AND RIGID GEOMETRY:

AN INTUITIVE INTRODUCTION AND SOME APPLICATIONS

by Johannes Nicaise

ABSTRACT. We give an intuitive introduction to formal and rigid geometry, and
discuss some applications in algebraic and arithmetic geometry and to singularity
theory, with special emphasis on recent applications to the Milnor fibration and the
motivic zeta function by J. Sebag and the author.

1. Introduction

Let R be a complete discrete valuation ring, with quotient field K, and

residue field k. We choose a unifortnizing parameter it, i.e. it generates the

unique maximal ideal of R. Geometers may take R — C[[?]], the ring of formal

power series over the complex numbers, with K — C((/)>, k — C, 7r — t, while
number theorists might prefer to think of R — Z„, the ring of p-adic integers,
with K — Qp, k — Fp, it — p.

Very roughly, a formal scheme over R consists of an algebraic variety
over k, together with algebraic information on an infinitesimal neighbourhood
of this variety. If Visa variety over R, we can associate to X its formal
completion Y in a natural way. It is a formal scheme over R and can be

seen as an infinitesimal tubular neighbourhood of the special fibre Xo in X.
Its underlying topological space coincides with the space underlying Xg,:,

but additional infinitesimal information is contained in the sheaf of regular
functions on X.

An important aspect of the formal scheme X is the following phenomenon.
A closed point x on the scheme-theoretic generic fibre of X over K has

coordinates in some finite extension of the field K and (unless X is proper
over R there is no natural way to associate to the point x a point of the special
fibre X()/k by reduction modulo it. However, by inverting it in the structure
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sheaf of X, we can associate a generic fibre Xn to the: formal scheme X, which
is a rigid variety over K. Rigid geometry provides a satisfactory theory of
analytic geometry over non-archimedean fields. A point on Xv has coordinates
in the ring of integers of some finite extension K' of K : if we denote by R'

tire normalization of R in K', we can canonically identify XV(K') with X(R'),
By reduction modulo 7r we obtain a canonical "contraction" of the generic
fibre Xn to the special fibre Xf. Roughly speaking, the formal scheme X has

the advantage that its generic and its special fibre are tightly connected; what

glues them together are the R' -sections on X, where R' runs over the finite
extensions of R.

A main disadvantage of rigid geometry is the artificial nature Of the

topology on rigid varieties : it is not a classical topology, but a Grothendieck

topology. In the nineties, Berkovich developed his spectral theory of non-
archimedean spaces. His spaces carry a true topology, which allows one to

apply classical techniques from algebraic topology. In particular, the unit disc R

becomes arcwise connected, while it is totally disconnected with respect to
its 7T-adie topology.

In Section 3 we give a brief survey of the basic theory of formal schemes,

and Section 4 is a crash course on rigid geometry. Section 5 contains
the basic definitions of Berkovich's approach to non-archimedean geometry.
In the final Section 6 we discuss briefly some applications of the theory, with
special emphasis on the relation with arc spaces of algebraic varieties and

with the Milnor fibration.
This intuitive introduction merely aims to provide some insight into the

theory of formal schemes and rigid varieties. We do not provide proofs;
instead, we have chosen to give a list of more thorough introductions to the

different topics dealt with in this note.

2. Conventions and notation

• For any field F, we denote by Falg an algebraic closure, and by Fs the

separable closure of F in Falg,

• If S is any scheme, an S-variety is a separated reduced scheme of finite
type over S.

• For any locally ringed space (site) X, we denote the underlying topological
space (site) by [îf j.

• Throughout this note, R denotes a complete discrete valuation ring, with
residue field k, and quotient field K. We fix a uniformizing parameter w,
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i.e. a generator of the maximal ideal of R. For any integer n > 0, we
denote by R„ the quotient ring R/(ir"+l). A finite extension R' of R is by
definition the normalization of R in some finite field extension K' of K ;

R' is again a complete discrete valuation ring.
• Once we fix a value |7r| e]0,1[, the discrete valuation v on K defines a

non-archimedean absolute value .] on K, with jfj — 7r|'"® for z K*.
This absolute value induces a topology on K, called the n-adic topologyJ
The ideals tt"R n > 0, form a fundamental system of open neighbourhoods
of the zero element in K. The 7r-adic topology is totally disconnected. The

absolute value on K extends uniquely to an absolute value on Kalg, For any
integer m > 0, we endow (Kü&)m with tire norm [[zf maxm |z;|.

3. Formal geometry

In this note we will only consider formal schemes which are topologically
of finite type over the complete discrete valuation ring R. This case is in many
respects simpler than the general one, but it serves our purposes. For a more

thorough introduction to the theory of formal schemes, we refer to [23, § 10],

[22, no. 182], [28], or [9],

Intuitively, a formal scheme A\ over R consists of its special fibre Jf,»
which is a scheme of finite type over k, endowed with a structure sheaf

containing additional algebraic information on an infinitesimal neighbourhood
of X,;,.

3.1 Affine formal schemes

For any tuple of variables x — (xi,.. ,xm), we define an R-algebra /?{x}
as the projective limit

R{x.} JfcaJfg[x].
n

The R-algebra R{x} is canonically isomorphic to the algebra of convergent

power series over R, i.e. the subalgebra of i?[|x]j consisting of the elements

m

Cix) V (<• IK) c.A'll.vU

j=l
such that h —> (| (w.r.t. the 7r-adic topology on K) as \t\ - h + + i„,

tends to oc. This means that for each n e N, there exists a value % s N
such that Ci is divisible by w" in R if Jj] > |,. Note that this is exactly
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the condition which guarantees that the images of c(x) in the quotient rings

//„[[*]] are actually polynomials, i.e. belong to The algebra //{x} can
also be characterized as the sub-algebra of ÄIM] consisting of those power
series which converge on the closed unit disc Rm — {z e Kr" | |jfj| < 1},
since an infinite sum converges in a non-archimedean field if and only if its

terms tend to zero. One can show that R{x} is Noetherian [23, 0,(7.5.4)].

An R-algebra A is called topologically of finite type (ift) over R if it
is isomorphic to an algebra of the form R{x\,... ,xm}/I, for some integer
m > 0 and some ideal I. For any integer n > 0, we denote by A„ the quotient
ring A/(It is an /('„-algebra of finite type. Then A is the limit of the

projective system (A„)„eN, and if we endow each ring A„ with the discrete

topology then A becomes a topological ring with respect to the limit topology
(the 7r-adic topology on A), By definition, the ideals tt"A, n > 0, form a

fundamental system of open neighbourhoods of the zero element of A.

To any tft R -algebra A we can associate a ringed space SpfA. It is defined

as the direct limit

SpfA := lim Spec A„
n

in the: category of topologically ringed spaces (where the topology on Gspec/t»

is discrete for every n). So the structure sheaf Gspta is a sheaf of topological
//-algebras in a natural way. Moreover, one can show that the stalks of this

structure sheaf are local rings. A tft affine formal R -scheme is a locally
topologically ringed space in //-algebras which is isomorphic to a space of
the form Spf A.

Note that the transition morphisms Spec A,,, —^ SpecA„, m < n, are

nilpotent immersions and therefore homeomorphisms. Hence the underlying
topological space | SpfA [ of SpfA is the set of open prime ideals J of A

(i.e. prime ideals containing zr endowed with the Zariski topology, and it is

canonically homeomorphic to |SpecA()|.

So we See that SpfA is the locally topologically ringed space in R -algebras

SJ Spec An |, lim 0specA„)
n

In particular, we have GsPfa(Spf A) — A. Whenever / is an element of A, we
denote by D(f) the set of open prime ideals of A which do not contain /.
Ulis is an open subset of | SpfA |, and the ring of sections OsvtA(D(f)) is

the 7r-adic completion A^j of the localization Af,
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A morphism between tft affine formal A-schemes is by definition a

morphism of locally ringed spaces in R -algebras1 If h : A —»• B is a morphism
of tft R -algebras, then h induces a direct system of morphisms of R -schemes

Spec#,, Spec.1,, and by passage: to the limit a morphism of tft affine

formal R -schemes Spf (ft) : Spf A —» SpfA. The resulting functor Spf induces

an equivalence between the opposite category of tft R-algebras and the category
of tft affine formal A'-schemes, just like in the algebraic scheme case.

The special fibre X0 of the affine formal R-scheme — SpfA is the k-
scheme X0 - SpecA^. As we have seen, the natural morphism of topologically
locally ringed spaces jfe —> X^ is a homeomorphism.

Example 1. Any finite extension R' of R is a tft R-algebra. The affine

formal scheme Spf R' consists of a single point, corresponding to the maximal
ideal of R', but the ring of sections on this point is the entire ring A'.
So, in some sense the infinitesimal information in the topology of Spec R'

(the generic point) is transferred to the structure sheaf of SpfA'.
If A A{x,y}/(7F — xy) and ~ SpfA then, as a topological space,

Xœ coincides with its special fibre X0 — Spec£[.ï, y]/(jcy), but the structure
sheaf of X«, is much "thicker" than the one of Xq Hie formal R-Scheme

Xœ should be seen as an infinitesimal tubular neighbourhood around X0.

3.2 Formal schemes

A formal scheme X«, topologically offinite type (tft) over R is a locally
topologically ringed space in A-algebras which has a finite open cover by
tft affine formal A-schemes. A morphism between tft formal A-schemes is a

morphism of locally ringed spaces in A-algebras.

It is often convenient to describe X^ in terms of the direct system
(Xn I— Xoo HRRn)n>o> The locally ringed space X„ is a scheme of finite type
over A„, for any n; if Xm Spf A then X„ — SpecA„. For any pair of
integers 0 < m < n, the natural map of A„ -schemes umjI : Xm X„ induces

an isomorphism of Rm -schemes Xm X„ xRm, The scheme X0 is called
the special fibre of X\ and X„ is the n-th infinitesimal neighbourhood of Xq

in Xpf. (or "thickening"). The natural morphism of locally topologically ringed
spaces X„ —> XM is a homeomorphism for each n > 0,

1 Such a morphism is automatically continuous with respect to the topology on the structure
sheaves, since it maps ir to itself; because the topology is the 7r~adic one, it is determined by
the R-algebra structure. This is specific to so-called R-adic formal schemes and does not hold
for more general formal R-schemes.
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Conversely, if (X,,)^ is a direct system of R-schemes of finite type such

that 7r"+1 — 0 on X„ and such that the transition morphism : Xm -> X„
induces an isomorphism of R„, -schemes Xm X„ xÄn//„, for each 0 < tu < n,
then this direct system determines a tft formal R-scheme X^ by putting

x°f>
n

as a locally topologically ringed space in R-algebras.
In the same way, giving a morphism /: Xm —> between tft formal

R-schemes amounts to giving a series of morphisms (/„: X„ —* J„3„>d, where

/„ is a morphism of Rn -schemes and all the squares

Xm 7 Xfi

fn

Ym 7 Yn

commute. In other words, a morphism of tft formal R-schemes consists of a

compatible system of morphisms between all the infinitesimal neighbourhoods
of the special fibres.

The formal scheme is called separated if the scheme X„ is separated
for each n. In fact, this will be the case as soon as tire special fibre X0

is separated. We will work in the category of separated formal schemes

topologically of finite type over R ; we shall call these objects stft formal
R-schemes.

An stft formal scheme Xoa over R is flat if its structure sheaf has no
7T-torsion. A typical example of a non-flat stft formal R -scheme is one with
an irreducible component concentrated in the special fibre. A flat stft formal
^-scheme can be thought of as a continuous family of schemes over the

infinitesimal disc SpfR. Any stft formal R -scheme has a maximal flat closed

formal subscheme, obtained by killing 7r-torsion.

3.3 Coherent modules

Let A be a tft //-algebra. An A-module N is coherent if and only if
it is finitely generated. Any such module N defines a sheaf of modules on

SpfA in the usual way. A coherent sheaf of modules Af on an stft formal
//-scheme Xm is obtained by gluing coherent modules on affine open formal
subschemes.

A more convenient description is the following : the category of coherent
sheaves A( on X«, is equivalent to the category of direct systems {Af„)„>n,
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where J\f„ is a coherent sheaf on the scheme X„ and the Ox„ -linear transition

map I'»,,»: Mm ~> M induces an isomorphism of coherent Oxm-modules
Mm M«,„A4 for any pair m < n. Morphisms between such systems are

defined in the obvious way.

3.4 THE COMPLETION FUNCTOR

Let X be any Noetherian scheme and J a coherent ideal sheaf on X,
and denote by V{J) the closed subscheme of X defined by J. The J-adic
completion X/Joî X is the limit of the direct system of schemes i\\ (/"))„.....
in the: category of topologically ringed spaces (where carries the

discrete topology). This is, in fact, a formal scheme, but in general not of
the kind we have defined before; we include the construction here for later

use. If A: T —h X ii a morphism of Noetherian schemes, and if we denote

by K. the inverse image JOy of J on f, then h defines a direct system
of morphisms of schemes V(K") —> V(J") and by passage to the limit a

morphism of topologically locally ringed spaces Y/IC -> X/J, called the

J -aclic completion of h.

If X is a separated R-scheme of finite type and J is the ideal generated

by 7r, then the J-adic completion of X is the limit of the direct system

(X„ — X XrR„)„>q, and this is an stft formal R-scheme, which we denote

simply by X. It is called the formal (ir-adic) completion of the R-scheme X.
Its special fibre Xq is canonically isomorphic to the fibre of X over the closed

point of Spec R. The formal scheme X is flat if and only if X is flat over R.

Intuitively, X should be seen as the infinitesimal tubular neighbourhood of X0

in X. As a topological space, it coincides with X(), but additional infinitesimal
information is contained in the structure sheaf.

Example 2. Tire formal completion of X — Specif,... ,x„]/(/i,...)
is simply X SpfR{xi,... ,x„}/(/i,... ,/#).

By the above construction, a morphism of separated R -schemes of finite

type f\X-ïY induces a morphism of formal /(-schemes /: X -ä Y between

the formal 7r-adic completions of X and Y. We get a completion functor

~ : (sft-Sch/R) -> (stft-For/R) : X h> X,

where (sft-Sch/R) denotes the category of separated /(-schemes of finite

type, and (stft-For/R) denotes the category of separated formal schemes

topologically of finite type over R.
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For a general pair of separated R-schemes of finite type X, Y, tire

completion map

Cx,Y- Hom^fl_Seh/R)(X, Y) —S- Homlstf,_For/R)(Xi Y) :f I-»/
is injective, but not bijective. It is a bijection, however, if X is proper over R :

this is a corollary of Grothendieck's Existence Theorem; see [24, 5.4.1],
In particular, the completion map induces a bijection between R' -sections of X
and R' -sections of X [i.e. morphisms of formal R -schemes SpfÄ' —>X), for

any finite extension R' of the complete discrete valuation ring R. Indeed,

SpecÄ' is a finite, hence proper R-scheme, and its formal 7r-adic completion
is Spf R'.

Example 3. If X Spec B, with B an R -algebra of finite type, and

Y — Spec 7?[c], then

I loin,ß s.; ijfXj Y) — B.

On the other hand, if we denote by B the 7r-adic completion of B, then

X — Spf B and Y — Spf Ä{c}, and we find

Hom(stft-For/R)(X, Y) — B

The completion map Cxj is given by the natural injection B —r B ; it is not

surjective in general, but it is surjective if B is finite over R.

If X is a separated R-scheme of finite type, and N is a coherent sheaf of
Ox -modules, then M induces a direct system (A/"„)„>o where Af„ is the pull-
back of M to X„. This system defines a coherent sheaf of modules Âf on X.
If X is proper over R, it follows from Grothendieck's Existence Theorem
that the functor N -> N is an equivalence between the category of coherent

Ox -modules and the category of coherent C^-modules [24, 5.1.6], Moreover,
there is a canonical isomorphism iP(X,M) — Hq(X,J\f) for each coherent

Ox -module M and each q> 0.

If an stft formal R -scheme T^ is isomorphic to the 7r-adic completion
Y of a separated R-scheme Y of finite type, we call the formal scheme F®
algebraizable, with algebraic model Y. The: following theorem is the main

criterion for recognizing algebraizable formal schemes [24, 5.4.5] : if Y» is

proper over k, and £ is an invertible Sjjs -bundle such that the pull-back
Co of £ to Y(j is ample, then Y<*, is algebraizable. Moreover, the algebraic
model Y for Y^ is unique up to canonical isomorphism, there exists a unique
line bundle M on F with £ — M, and M is ample. For an example of a

proper formal C[[f]] -scheme which is not algebraizable, See [28, 5.24(b)].
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3.5 Formal blow-ups

Let Xoo be a flat stft formal R -scheme, and let I be a coherent ideal sheaf

on X» such that X contains a power of the uniformizing parameter n. We

can define the formal Mow-up of X» at the centre 1 as follows [13, § 2] :

if Xoc, Spf A is affine, and I is the ideal of global sections of X on X^,
then the formal blow-up of Xoç at X is the 7rösPecA-adic completion of the

blow-up of Spec A at I. The general ease is obtained by glueing.
The formal blow-up of X^ at X is again a flat stft formal R -scheme,

and the composition of two formal blow-ups is again a formal blow-up
[13, 2.1+2.5]. If X is a separated R-scheme of finite type and X is a coherent

ideal sheaf on X containing a power of 7r, then the formal blow-up of X
at X is canonically isomorphic to the 7r-adic completion of the blow-up of X
at X.

4. Rigid geometry

In this note, we'll be able to cover only the basics of rigid geometry.
We refer the reader to the books [10, 20] and the research papers [8, 13, 39, 42]
for a more thorough introduction. A nice survey on Tate's approach to rigid
geometry can be found in [30],

4.1 Analytic geometry over non-Archimedean fields
Let L be a non-archimedean field (i.e. a field which is complete with

respect to an absolute value that satisfies tire ultrametric property) ; we assume
that the absolute value on L is non-trivial. For instance, if K is our complete
discretely valued field, then we can turn K into a non-archimedean field by
fixing a value |ît] G ]0,1 [ and putting |x| — 7rf®x) for x G K*, where v
denotes the discrete valuation on K (by convention, y(0) oo and |0| - 0).

The absolute value on L extends uniquely to any finite extension of L,
and hence to Ls and Lalg, We denote by Lalg the completion of Lalg, and

by Ls the closure of Ls in Lals ; these are again non-archimedean fields. We

denote by IX the valuation ring {.v L | |x] < 1}, by IX" its maximal ideal

(tel |x| < 1}, and by L the residue field IXjIX". For L — K we have

IX IX IX° (TT) and L — k.
Since L is endowed with an absolute value, one can use this structure to

develop a theory of analytic varieties over L by mimicking the construction

over C. Naively, we can define analytic functions on open subsets of L" as
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L-valued functions which are locally defined by a convergent power series

with coefficients in L. However, we are immediately confronted with some

pathological phenomena. Consider, for instance, the p-adic unit disc

is an open cover of Zp with respect to the p-adic topology. Hence the

characteristic function of pZp is analytic, according to our naïve definition.
This contradicts some elementary properties that one expects an analytic
function to have. The cause of this and similar pathologies is the fact that the

unit disc Zjp is totally disconnected with respect to the p-adic topology. In this

approach, there are "too many" analytic functions, and "too few" analytic
varieties (for instance, with this definition, any compact p-adic manifold is

isomorphic to a disjoint union Of i unit discs, where i e {0,... ,p - 1} is its

Serre invariant [41]).

Rigid geometry is a more refined approach to non-archimedean analytic

geometry, turning the unit disc into a connected space. Rigid spaces are

endowed with a certain Grothendieck topology, allowing only a special type
of covers.

We'll indicate two possible approaches to the theory of rigid varieties

over L. The first is due to Tate [42], the second to Raynaud [39], If we
return to our example of the p-adic unit disc Zp, Tate's construction can be

understood as follows. In fact, we already know what the "correct" algebra of
analytic functions on Zp should be: the power series with coefficients in K
which converge globally on Zp. Tate's idea is to start from this algebra and

then to construct a space on which these functions live naturally. This is similar
to the construction of the spectrum of a ring in algebraic geometry. Raynaud
observed that a certain class of Tate's rigid varieties can be characterized in

terms of formal Schemes.

4.2 Tate algebras

The basic objects in Tate's theory are the algebras of convergent power
series over L :

Zp {x. e Qp |x[ < 1}

The partition

{pZp,\+pZp,...,(p- \)+pZp}

jÉ (" IIxj ••• !-i\x V,„ 11 [ftïjH*t as \i\ —> oo }•
ieNm 7—1
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where jï| The: convergence condition implies in particular that

for each .a there exists Jf e N such that for \i\ > k the coefficient hi
belongs to L°. The algebra Tm is the algebra of power series over L which

converge on the closed unit polydisc (L°)m in Lm (since an infinite sum

converges in a non-archimedean field if and only if its terms tend to zero).
Note that, for L K, T„, R{xi,... ,xm}0nK Analogously, we can define an

algebra of convergent power series 5{x.i,... ,x„,} for any Banach algebra B.
The algebra Tm is a Banach algebra for the sup-norm ||/||sup oiax,-|as| „

It is Noetherian, and every ideal I is closed, so that the quotient Tm/I is

again a Banach algebra with respect to the residue norm.
A Tate algebra, or L-affinoid algebra, is an L-algebra A isomorphic to

such a quotient Tm/L The residue norm on A depends on the presentation
A Tm/f. However, any morphism of L-algebras Tmfl -ä is

automatically continuous, so in particular the residue norm on A is well-
defined up to equivalence, and the induced topology on A is independent of
the chosen presentation. For any maximal ideal y of A, the residue field A/y
is a finite extension of L. For proofs of all these facts, we refer to [20, 3.2.1],

By Proposition 1 of [10, 7.1.1], the maximal ideals y of Tm correspond

bijectively to G(Lalg/L)-orbits of tuples (zi,.,zm), with z; G (Lalg)°, via the

map

y i-G CCMfti • i#J I Tm/y ^ Lalg}

where f runs through the L-embeddings of Tm/y in Lalg. In particular, for

any morphism of L-algebras V': ~^ Talg and any index i, the element

belongs to (Z.alg)°. It follows that •§ is contractive, in the sense that

|^{£/)| < Ms» for any a in Tm -

The fact that we obtain tuples Of elements in (Lalg)0, rather than LaIg,

might look strange at first; it is one of the most characteristic properties
of Tate's rigid varieties. Let us consider an elementary example. If z is an

element Of L, then x - z is invertible in L{x} if and only if z does not

belong to LP. Indeed, for z ^ 0 the coefficients of the formal power series
1 fix — z) -(1 fz) J2i>()(x/zy ten(i t0 zero if and only if |z| > 1, i.e. iff
Z^LP. So (x - z) defines a maximal ideal in L{x] only if zel°.

4.3 Aefinoid spaces

The category of L-affinoid spaces is by definition the opposite category
of the category of Tate algebras over L. For any L-affinoid space X, we
shall denote tire corresponding Tate algebra by A(X) and call it the algebra of
analytic functions on X. Conversely, for any Tate algebra A we denote the
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corresponding affinoid space by SpA (some authors use the notation Spm

instead). For any m > Q, the affinoid space Sprm is called the closed unit
disc of dimension m over L.

To any L-affinoid space X — SpA we associate the set Xb of maximal
ideals of the Tate algebra A — A(X). If we present A as a quotient

,/„), then the elements of (SpA)1' correspond bijeetively to the

G(Lalg/L)-orbits of tuples z (zi,.. .,zw), with z; 6 (Lalg)° and ffigJ 0

for each j. In particular, if L is algebraically closed and X is the closed unit
disc Sp T\, then

- L" {xeL I (J| < 1}.
We have seen above that for any maximal ideal x of A, the quotient A/x

is a finite extension öf L, so it carries a unique prolongation Of the absolute
value j. on L. Hence, for any / g A and any x £ (SpA )', we can speak of
the value fix) of / at x (the image of / in A/x) and of its absolute value

]/(X)|. In this way, the elements of A are viewed as functions on (SpA)'.
Note that if x is a prime ideal of A, there is in general no canonical way
to extend the absolute value on L to the extension A/x. This is one of the

reasons for working with the maximal spectrum (SpA/, rather than the prime
spectrum Spec A. In Berkovich's theory (Section 5) the notion of a point is

generalized by admitting any prime ideal X and specifying an extension of
the absolute value on L to A/x.

The spectral semi-norm on A is defined by

11/I.U sup \f(x)\.

It is a norm if and only if A is reduced. By the maximum modulus principle
[10, 6.2.1.4], this supremum is in fact a maximum, i.e. there is a point x in
Xb with \f(x)\ — l/llasf. Moreover, for A Tm, this definition coincides with
tire one in the previous section, by [10, 5.1.4.6],

We could try to endow with the initial topology with respect to the

functions x h- |/(x)|, where / varies in A. If L is algebraically closed and

if we identify (SpL{x})b with L°, then this topology is simply the topology
on L° defined by the absolute value. It is totally disconnected, so it does not
have the nice properties we are looking for.

If ft À —> & is a morphism of L -affinoid algebras then, for any maximal
ideal x in B, Lp~l{x) is a maximal ideal in A, since B/x is a finite extension

of L. Hence, any moqthism of L-affinoid spaces h: X -A Y induces a

map 0Î Xb —> Yb on the associated sets. A morphism of L-affinoid spaces

ht X —> f is called a closed immersion if the corresponding morphism of
L-affinoid algebras A(Y) -> A(X) is surjective.
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4.4 Open covers

A morphism h'.Y^X of L-affinoid spaces is called an open immersion

if it satisfies the following universal property: for any morphism g: Z —> X
of L-affinoid spaces such that the image of f® is contained in the image
of m in X®, there is a unique morphism g': Z -3 Y such that g — ho g'.
If Iî is an open immersion, the image D of it in Xb is called an affinoid
domain. One can show that the map it is always injective [10, 7.2.2.1], so it
identifies the set D with Yb. The L-affinoid space Y and the open immersion
h : Y —> X are uniquely determined by the affinoid domain D, up to canonical

isomorphism. With a slight abuse of notation, we will identify the affinoid
domain D with the L-affinoid space Y, so that we can think of an affinoid
domain as an affinoid space sitting inside X, and we can speak of the Tate

algebra A(D) of analytic functions on D. If E is a subset of D, then E is an

affinoid domain in D If and only if it is an affinoid domain in X. In this case,

the universal property yields a restriction map A(D) -> A{E). The intersection

of two affinoid domains is again an affinoid domain, but this does not always
hold for their union. If h: Z —s- X is a morphism of L-affinoid spaces, then

the inverse image of an affinoid domain in X is an affinoid domain in Z.

Example 4. Consider the closed unit disc X — Spi{x}. For a L°
and r in the value group \L*\, we denote by D(a,r) the "closed disc"
flpj X' I |,ï(z)—£/| < r}, and by D~(a, r) the "open disc" {z£Xb | |je(z)—a| < r}.
We will see below that the disc D(a,r) is an affinoid domain in X, with
A(D(a,r)) L{x,T}/(x-a - pT), where p is any element of L with \p\ r.
On the other hand, the disc D~(a,r) cannot be an affinoid domain in X,
since the function |x(.) - a\ does not reach its maximum on D~(a,r).

Assume now that L is algebraically closed. By Theorem 2 in [10, 9.7.2]
the affinoid domains in X are the finite disjoint unions of subsets of the form

D(aïh fp) \ Uii I) tu. /y)

with aj in and r; in |L*| fl]0,1] for i — 0, ,q.

An affinoid cover of X is a finite set of open immersions m : Ui —> X
such that the images of the maps (Hit cover Xb. A special kind of affinoid
cover is constructed as follows : take analytic functions f\,... ,/„ in A(X),
and suppose that these elements generate the unit ideal A(X). Consider, for
each i — 1,...the L-affinoid space 77; given by

A(U0 MXÙ T
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The: obvious morphism Uf : Ui—fX is an open immersion, and [/; is called a

rational subspace öf X. The image Of |is the set of points x in Xb such

that \fi(x)\ > \ fj(x)\ for j ~ 1,... ,n. Indeed, using the fact that a moiphism
of L -algebras Tm -j- Lalg is contractive (Section 4.2) and the assumption
that f: ,/„ generate A(X), one shows that a morphism of L -algebras
V>: A(X) —* L318 factors through a morphism of L-algebras A((/;) Lalg

if and only if ^ 0 and ^|7)) ip(fj)/4'(fi) belongs to (Lalg)0, i.e.

|$$| < ip(fi)I. In this case, if; is unique.
The set of morphisms is an affinoid cover and is called a

standard cover. It is a deep result that any affinoid domain of X is a finite
union of rational subsets of X, and any affinoid cover of X can be refined

by a standard cover [10, 7.3.5.3+8.2.2.2],
One of the cornerstones in the theory of rigid varieties is Tate's Acyclicity

Theorem [10, 8.2.1.1], It states that analytic functions on any affinoid cover

{»,: Ui —> X}iei satisfy the glueing property: the sequence

<'/ Uypei2

is exact.

Now we can define, for each L-affinoid space X, a topology on the

associated set Xb. It will not be a topology in the classical sense, but a

Grothendieck topology, a generalization of the topological concept in the

framework of categories. A Grothendieck topology specifies a class of opens
(admissible opens) and, for each admissible open, a class of covers (admissible
covers). These have to satisfy certain axioms which allow one to develop a

theory of sheaves and cohomology in this setting. A space with a Grothendieck

topology is called a site. Any topological space (in the classical sense) can

be viewed as a site in a canonical way : the admissible opens and admissible

covers are the open subsets and the open covers. For our purposes we do

not need the notion of Grothendieck topology in its most abstract and general
form: a sufficient treatment is given in [10, 9.1.1],

The weak G-topology on an L-affinoid space X is defined as follows: the

admissible open sets of X^ are the affinoid domains, and the admissible covers

are the affinoid covers [10, 9.1.4], Any morphism h of L-affinoid spaces is

continuous with respect to the weak G-topology (meaning that the inverse

image under hb of an admissible open is again an admissible open, and the

inverse image of an admissible cover is again an admissible cover). We can

define a presheaf of L-algebras Ox on Xb with respect to this topology by
putting Ox(D) — A(D) for any affinoid domain D of X (with the natural



FORMAL AND RIGID GEOMETRY 227

restriction maps). By Tate's Acyclicity Theorem, Ox is a sheaf. Note that the

exact definition of the weak G-topology varies in the literature: sometimes
the admissible opens are taken to be the finite unions of rational subsets in X,
and the admissible covers are tire covers by admissible opens with a finite
subcover (e.g. in [20, § 4.2]).

In the theory of Grothendieck topologies, there is a canonical way to

refine the topology without changing the associated category of sheaves [10,

9.1.2], This refinement is important to get good glueing properties for affinoid

spaces, and to obtain continuity of the analytification map (Section 4.6). This
leads to the following definition of the strong G-topology on an L -affinoid

space X.

• The admissible open sets are (possibly infinite) unions IJteI Dt of affinoid
domains D, in X such that, for any morphism of L-affinoid spaces
h: Y —* X, the image of hb in Xb is covered by a finite number of D,.

• An admissible cover of an admissible open subset V C Xb is a (possibly
infinite) set of admissible opens {Vj j e ./} in Xb such that V |J,
and such that, for any morphism of L-affinoid spaces p : Y -» X with
Inn T-'J c V, the cover I J ^ i} of Y can be refined by an

affinoid cover.

Any morphism of L-affinoid spaces is continuous with respect to the strong
G-topology. The strong G-topology on X - Sp A is finer than tire Zariski

topology on the maximal spectrum of A (this does not hold for the weak

G-topology). From now on, we will endow all L-affinoid spaces X with
the strong G-topology. The structure sheaf Ox of X extends uniquely to a

sheaf of L-algebras with respect to the strong G-topology, which is called the

sheaf of analytic functions on X. One can show that its stalks are local rings.
In this way we associate to any L-affinoid space X a locally ringed site in

L-algebras (Xb,Ox).

For any morphism of L-affinoid spaces h: Y —> X, there is a morphism of
sheaves of L-algebras Ox —> {hb%Or which defines a morphism of locally
ringed spaces (Fb,£>r) 4 (Xb,Ox) (if D SpA is an affinoid domain in X,
then (hb)~1(D) is an affinoid domain SpB in Y and there is a natural morphism
of L-algebras A -» B by the universal property defining affinoid domains).
This construction defines a functor from the: category of L -affinoid spaces to

the category of locally ringed sites in L-algebras, and this functor is fully
faithful [10, 9.3.1.1], i.e. every morphism of locally ringed sites in L-algebras

Sp />'!'. t'k:, a -> ((SpA)b, Öspa) is induced by a morphism of L-algebras
A -> B. With a slight abuse of notation, we will also call the objects in its
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essential image L-affinoid spaces, and we will identify an L-affinoid space

X with its associated locally ringed site in L-algebras (X^Ox).
If D is an affinoid domain in X, then the strong G-topology on X restricts

to the strong G-topology on D, and the restriction of Ox to D is the sheaf

of analytic functions Öd
One can check that the affinoid space Sp Tm is connected with respect to

the strong and the weak G-topology, for any m > Ö. More generally, connectedness

of an L-affinoid space X — SpH is equivalent for the weak G-topology,
the strong G-topology, and tire Zariski topology [10, 9.1.4, Prop. 8], and it is

also equivalent to the property that the ring A has no non-trivial idempotents;
so the: G-topologies nicely reflect the algebraic structure of A.

Example 5. Let X be the closed unit disc SpL{x}. The set

Ui - {z G X |x(z) I « 1} {l G X I |x(z)l > 1}

is a rational domain in X, so it is an admissible open already for the weak

G-topology. The algebra of analytic functions on U\ is given by

Ox(Ui) /.{.v. T}/(xT - 1).

The set

Ik {z e x I ]|gg)| < 1}

is not an admissible open for the weak G-topology (it cannot be affinoid
since the function \x{.)\ does not reach a maximum on U2), but it is an

admissible open for the strong G-topology: we can write it as an infinite
union of rational domains

Uf È X I |x(z)|" < ML
where n runs through N* and a is any non-zero element of Lq0.

This family satisfies the finiteness condition in the definition of the strong

G-topology: if Y —> X is any morphism of L-affinoid spaces whose image is

contained in U2, then by the maximum principle (Section 4.3) the pull-back
of the function |x(.)| to Y reaches its maximum on Y, so the image of Y is

contained in C/f ' for n sufficiently large.
The algebra Ox(U2) of analytic functions on U2 consists of the elements

Y^i>oatx' °f AMI such that \cii\r' tends to zero as i —P 00, for any r e ]0.1[.
Hence, we can write X as a disjoint union Ui U U2 of admissible opens.

This does not contradict the fact that X is connected, because {[/1, U2} is not
an admissible cover, since it cannot be refined by a (finite affinoid cover.
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4.5 Rigid varieties

Now we can give the definition of a general rigid variety over L. It is a

set X, endowed with a Grothendieck topology3) and a sheaf of L-algebras Ox,
such that X has an admissible cover with the property that each locally
ringed space (Ui,Ox\u,) is isomorphic to an L-affinoid space. An admissible

open U in X is called an affinoid domain in X if (U,Ox|y) is isomorphic
to an L-affinoid space. If X is affinoid, this definition is compatible with the

previous one. A morphism Y —> X of rigid varieties over L is a morphism
of locally ringed spaces in L-algebras.

A rigid variety over L is called quasi-compact if it is a finite union of
affinoid domains. It is called quasi-separated if the intersection of any pair of
affinoid domains is quasi-compact, and separated if the diagonal morphism is

a closed immersion.

4.6 Analytificâtion of an L-variety

For any L-Scheme X of finite type, we can endow the set X" of closed

points of X with the structure of a rigid L-variety.
More precisely, by [8, 0.3.3] and [30, 5.3] there exists a functor

- )an : (ft-Sch/L) -> {Rig/L)

from the category Of L-schemes of finite type to the category of rigid
L-varieties, such that

% for any L -scheme of finite type X, there exists a natural morphism of
locally ringed sites

i: Xan -a X

which induces a bijection between the underlying set of Xw and the set X"
of closed points of X. The couple (Xan,/) satisfies the following universal

property: for any rigid variety Z over L and any morphism of locally
ringed sites j: FaI, there exists a unique morphism of rigid varieties

f : Z —> Xan such that j i o/ ;

2. if /: A" ,• A" is a morphism of L-schemes of finite type, the square
/•an

(X')an — 1 Xan

4 i1'

X' ——8 X
commutes;

3 To be precise, this Grothendieck topology should satisfy certain additional axioms ; see.

[10,9.3.1.4],
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3. the functor )an commutes with fibred products and takes open (resp,

closed) immersions of L-schemes to open (resp. closed) immersions of
rigid L-varieties. In particular, Aan is separated if X is separated.

We call Aan the analytification of X. It is quasi-compact if X is proper
over L, but not in general. The analytification functor has the classical

GAGA properties: if X is proper over L, then analytification induces an

equivalence between coherent Ox -modules and coherent Ox«« -modules, and

the cohomology groups agree; a closed rigid subvariety of Aan is tire

analytification of an algebraic subvariety of X; and for any L-variety T,
all morphisms Xan -» Fan are algebraic. These results can be deduced from
Grothendieck's Existence Theorem; see [31, 2.8].

Example 6. Let D be the closed unit disc SpL{x}, and consider the

endomorphism a of D mapping x to a-x, for some non-zero a L°°. Then a
is an isomorphism from D onto the affinoid domain D{0, jaj] in D (notation
as in Example 4). The rigid affine line (A^)an is the limit of the direct system

D —> D —>
in the category of locally ringed sites in L-algebras. Intuitively, it is obtained

as the union of an infinite number of Concentric closed discs whose radii tend

to <x>.

4.7 Rigid spaces and formal schemes

Finally, we come to a second approach to the theory of rigid spaces, due

to Raynaud [39], We will deal only with the case where L — K is a complete

discretely valued field, but the theory is valid in greater generality (see [13]).

We have seen before that the underlying topological space: of an stft
formal R-scheme Xpp coincides with the underlying space of its special
fibre X(,. Nevertheless, the structure sheaf of contains information on an

infinitesimal neighbourhood of Xq, so one might try to construct the generic
fibre Xn of X^. As it turns out, this is indeed possible, but we have to leave

the category of (formal) schemes : this generic fibre Xn is a rigid variety
over K.

4.8 The affine cash

Let A be an algebra topologically of finite type over R, and consider the

affine formal Scheme X^ -- SpfA. The tensor product A ®gK is a A-affinoid
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algebra, and the generic fibre X.n of Xx is simply tire X-affinoid space

Sp. V K.
Let: A" be any finite extension of K, and denote by R' the normalization

of R in K'. There exists a canonical bijection between the set of morphisms of
formal R-schemes SpfX' —> X^ and the set of morphisms of rigid K-varieties
Sp K' —s- Xn. Consider a morphism of formal R -schemes Spf R' —> Xx Or,

equivalently, a morphism of R-algebras A —r R'. Tensoring with K yields a

morphism of K -algebras K - R' :/, K K', and hence a K' -point
of Xn. Conversely, for any morphism of K-algebras A K -> K', the image
of A will be contained in R', since we have already seen in Section 4.2 that
the image of R{xunder any morphism of X-algebras Tm —> XaIg

is contained in the normalization Xalg of R in Xalg.

To any R'-section on we can associate a point of Xi-«, namely the

image of the singleton |SpfX'|. In this way, we obtain a specialization map
of sets

sp: \X„\ -* jXocI - |X0|

4.9 The general case

The construction of the generic fibre for general stft formal R-schemes

is obtained by glueing the constructions on affine charts. The important point
here is that the specialization map sp is continuous: if Xoc SpfA is affine

then, for any open formal subscheme UP0 of Xk$, the inverse image sp~l(U0p)
is an admissible open in Xn ; in fact, if R® ~ Spf B is affine then sp iL\ 1

is an affinoid domain in X,;, canonically isomorphic to Un — Sp B®gK.
Hence, the generic fibres of the members tiH of an affine open cover of
an stft formal R-scheme X^ can be glued along the generic fibres of the

intersections UQ n to obtain a rigid K -variety Xa» r and the specialization

maps glue to a continuous map

sp: jX„| [Xœ<| |X0|.

This map can be enhanced to a morphism of ringed sites by considering the

unique morphism of sheaves

sp# : 0Xx sp*Oxv

which is given by the natural map

C'v ' ''

V i'jSfe K — spvöx^Uoo)

on any affine open formal subscheme £/x SpfA of X^.
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The generic fibre of an stft formal R-scheme is a separated, quasi-compact

rigid K-variety. The formal scheme Xx is called afortnal R-model for the

rigid .ST-variety Xn. Since the generic fibre is obtained by inverting n, it is

clear that the generic fibre does not change if we replace Xoc by its maximal
flat closed formal subscheme (by killing tt-torsion). If K' is a finite extension

of K and R' the normalization of R in K', then we still have a canonical

bijection — Xt)(K%
The construction of the generic fibre is functorial : a morphism of stft

formal R-schemes h: Y^ -> '%m induces a morphism of rigid K-varieties

hn : Yn ->• X,t, and the square

% - x.n

®! [SP

y± OG X x

commutes. We get a functor

)„: (stft-For/R) -t (sqc-Rig/K) : Xm j—f Xn

from the category of stft formal R-schemes to the category of separated,

quasi-compact rigid K-varieties.

For any locally closed subset Z of Xy, the inverse image sp~l(Z) is an

admissible open in X^, called the tube of Z in X^ and denoted by ]Z[.
If Z is open in JC§ then ]Z[ is canonically isomorphic to the generic fibre

of the open formal subscheme Z» (iZ^ö^lz) of X^. The tube ]Z[ is

quasi-compact if Z is open, but not in general.

Berthelot showed in [8, 0.2.6] how to construct the generic fibre of a

broader class of formal R-schemes, not necessarily tft. If Z is closed in X0,
then ]Z[ is canonically isomorphic to the generic fibre of the formal completion
Of "Me® along Z (this formal completion is the locally töpologically ringed

space with underlying topological space |Z| and structure sheaf

lim 0Xoo/l'i,
n

where X-z is the defining ideal sheaf of Z in In particular, if Z is a

closed point x of X0 then ]x[ is the generic fibre of the formal spectrum of
the completed local ring with its Qdic topology (we did not define this

notion; see [23, 10.1]).
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Example 7. Let X^ be an affine stft formal R-scheme, say Zj# — SpfA.
Consider a tuple of elements jj.,.., rf, in A, and denote by Z the closed
subscheme of Zo defined by the residue classes f1,...in iqThe tube ]Z[
of Z in Zoo consists of the points jc of Xn with \f(x)\ <1 for i — 1, r
(Since this condition is equivalent to f(x) 0 mod (Zals)00

If Zoo SpfZ{x} then X!} is the closed unit disc SpZ{.v} and the special
fibre Zo is the affine line A{.. If we denote by O the origin in Xn and by V
its complement, then ]L[ is the affinoid domain

Ui Sp K{x,T}f{xT- 1)

from Example 5 (the "boundary" of the closed3) unit disc), and ]0[ is the

open unit disc fj% from the same example. The first one is quasi-compact,
the second one is not.

4.10 Localization by formal blow-ups

The functor is not an equivalence. One can show that formal blow-ups
are turned into isomorphisms [13, 4.1]. Intuitively, this is clear: the centre X

of a formal blow-up contains a power of it, so it becomes the unit ideal after

inverting g,
In some sense, this is the only obstruction. Denote by C the category

of flat sift formal R-schemes, localized with respect to the formal blow-ups.
This means that we artificially add inverse morphisms for formal blow-ups,
thus turning them into isomorphisms. The objects of C are simply the flat stft
formal R-schemes, but a morphism in C from Yto Z^, is given by a triple
ÖömVi'f»)» where ¥>T* YL * is a formal blow-up and </>2f —tZ®
a morphism of stft formal R-schemes. We identify this triple with another

triple (T^,tèi,iââ) if there exist a third triple (Z^xiWc) and morphisms
of stft formal R-schemes Z^ -> >"x and Zx -¥ Y'f. such that the obvious

triangles commute.

Since admissible blow-ups are turned into isomorphisms by the functor

it factors through a functor C -A (sq.c-Rig/K). Raynaud [39] showed

that this is an equivalence of categories (a detailed proof is given in [13]).
This means that the: category of separated, quasi-compact rigid Z-varieties
can be described entirely in terms of formal schemes. To give an idea of this

dictionary between formal schemes and rigid varieties, we list some results.

Let Z be a separated, quasi-compact rigid variety over K.

3 The notion of boundary is well defined only if you specify a centre of the disc, since any
point of a closed disc can serve as a centre, due to the ultrametric property of the absolute value.
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• [13, 4.1(e), 4.7] There exists a flat stft formal R-scheme: A'v such that X
is isomorphic to Xv.

• [13, 4.1(c+d)] If Xoc and Xjy are stft formal R-schemes and <p: F,( -a Xv
is a morphism of rigid K-varieties, then in general tp will not extend

to a morphism F^ -§> X^ on the R-models. However, by Raynaud's
result, there exist a formal blow-up /: Y'x —) F^ and a morphism of stft
formal R -schemes g : F^ -a X«, such that <p gn o(/,;)_1. If is an

isomorphism, we can find (Y'^J^g) with both / and g formal blow-ups.

• [13, 4.4] For any affinoid cover li of X, there exist a formal model X^ of
X and a Zariski cover {Hi,..., [/,} of Xo such that 11= {]tfi [,...,](/,[}.

See [13, 14, 15, 16] for many other results.

Example 8. Consider the stft formal R-schemes

x N. spfR{x}/cr - l),
Fee SpfR{x}/(r - 7T2)

The generic fibres Yn and Xn are isomorphic (both consist of two points
SpTT), but it is clear that there is no morphism of stft formal R-schemes

Yoo %oc which induces an isomorphism between the generic fibres.

The problem is that the section x/tt is not defined on Feo | however, blowing
up the ideal (x, it) adds this section to the ring of regular functions, and the

formal blow-up scheme is isomorphic to X^.
Next, consider the stft formal R -scheme Z^. Spf R{x} and the standard

cover of Z,; defined by the couple (x, tt) The cover consists of the closed disc

0(0, 7r|) and the closed annulus Zn \D~(0, |7r|) (notation as in Example 4).
These sets are not tubes in Z^, since by Example 7 both sets have non-empty
intersection with the tube ]0[ but do not coincide with it. But if we take

the formal blow-up Z^ —> Z^ at the ideal (x, tt), then the rational subsets

in our standard cover are precisely the generic fibres of the blow-up charts

Spf/?{x, T}/(xT - tt) and SpfRjx, T}/(x — irT).

4.11 Proper R -varieties

Now let X be a separated scheme of finite type over R, and denote by
XK its generic fibre. We denote by (XKf the set of closed points of XK.

By [8, 0.3.5], there exists a canonical open immersion tt: (X)n —> (XKfn.
If X is proper over R, then a is an isomorphism.



FORMAL AND RIGID GEOMETRY 235

For a proper R-scheme of finite type, we can describe the specialization

map

sp: (XK)° -, IfXtfH - %,\ -L |f| - |X0|

as follows : let x be a closed point of XK, denote by K' its residue field
and by R' the normalization of R in K'. The point x defines a morphism
X: Specif —> X. The valuative criterion for properneSS guarantees that the

morphism Spec R' —> Spec R lifts to a unique morphism h: Spec R' -> X
with h [specie — x. If we denote by 0 the closed point of Spec R', then

sp{X) /?(0) |X,;,| •

In general, the open immersion a: Xn —> (X^)aH is strict. Consider, for
instance, a proper R-variety X, and let X' be the variety obtained by removing
a closed point x from the special fibre Xo Then X'K — XK ; however, by taking
the formal completion X', we lose all the points in Xn that map to x under sp,
i.e. X'n X,;\M. We'll see an explicit example in the following section.

This is another instance of the fact that the rigid generic fibre X'n is "closer"
to the: special fibre than the scheme-wise generic fibre X'K.

4.12 Example: the projective line

Let X be the affine line Spec/^M over R ; then XK — Spec Äfft], and

(Xjc)w is the rigid affine line (Aj^jP from Example 6. On the other hand,

X — Spf/?{x} and X,r is the closed unit disc SpWjt}. The canonical open
immersion Xn (2f^)an is an isomorphism onto the affinoid domain in A"k )ar'

consisting of the points i with |x(2)| < 1.

If we remove the origin O from X, we get a scheme X' with X'K — XK.
However, the formal completion of X' is

X' SpfR{x, T}/(xT - 1)

and its generic fibre is the complement of ]0[ in Xn (see Example 7).

Now let us turn to the projective line Pj? ProjJ[.t,y]|. The analytic
projective line (P^) can be realized in different ways. First, consider
the usual affine cover of P^ by the charts U\ — Spec7T[x/y] and U2 —

Spec K [ yfx]. Their analytifications (Ulf* and (CA)3" are infinite unions of
closed discs (see Example 6) centred at 0, resp. oo. Glueing along the

admissible opens (t/i)an - {0} and C£f|JaB - {oo} in the obvious way, we
obtain (P{-)an.
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On the other hand, we can look at the formal completion P#. By the results

in Section 4.11, we know that its generic fibre is canonically isomorphic

to (P^)an. The stft formal R-scheme P# is covered by the affine charts

V\ — SpfR{x/y} and SpfR{y/x} whose intersection is given by

Vo S|U'A'{.V. V. V..V}. (i.V/V)(V ,V! - 1)

We have seen in Example 7 that the generic fibres of V\ and Vfi are closed
unit discs around x/y — 0, resp. y/x — 0, and that (F0)^ coincides with their
boundaries. So in this way, (P^)ai1 is realized as the Riemann sphere obtained

by glueing two closed unit discs along their boundaries.

5. Berkovich spaces

We recall some definitions from Berkovich's theory of analytic spaces over
non-archimedean fields. We refer to [2], or to [6] for a short introduction.
A very nice survey of the theory and some of its applications are given in [19].

For a commutative Banach ring with unity (fil, ||.||), the spectrum M(fil)
is the set of all bounded multiplicative semi-norms x: .4 • -> R+ (where
"bounded" means that there exists a number C > 0 such that x(a) <
for all a in fil). If x is a point of 3Yt(fil), then £_1(0) is a prime ideal of A,
and x descends to an absolute value |.| on the quotient field of fil/jt_1(0).
The completion of this field is called tire residue field of x and is denoted

by fifty). Hence any point x of M(fil) gives rise to a bounded ring moiphism
from A to the complete valued field Jf(x), and x is completely determined

by \,. In this way, one can characterize the points of M(fil) as equivalence
classes of bounded ring morphisms from fil to a complete valued field
[2, 1.2.2(ii)], just as one can view elements of the spectrum Spec A of a

commutative ring A either as prime ideals in A or as equivalence classes of
ring morphisms from A to a field.

If we denote the image of / e fil under \. by fix), then xif)
We endow fiVt(fil) with the weakest topology such that M(fii) 4R:jh \f(x)\
is continuous for each / in fil. This topology is called the spectral topology
on M(fil). If fil is not the zero ring, it turns M(fil) into a non-empty
compact Hausdorff topological space [2, 1.2.1], A bounded morphism of
Banach algebras fil —* B induces a continuous map M(B) M(fii) between

their spectra. In particular, the spectrum of fil depends only on the equivalence
class of II.II.
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If L is a non-archimedean field with non-trivial absolute: value and A is an

L-affinoid algebra (these are called strictly L-affinoid in Berkovich's theory),
then A carries a Banach norm, well-defined up to equivalence (Section 4.2).
The spectrum M(A) of A is called a strictly L-affinoid analytic space;
Berkovich endows these topological spaces with a structure sheaf of analytic
functions. General strictly L-analytic spaces are obtained by glueing strictly
L-affinoid analytic spaces.

Any maximal ideal x of A defines a point of M(A) : the bounded

multiplicative semi-norm sending / e A to |/(x)|. This defines a natural

injection SpA —» M(A), whose image consists of the points y of M(A) with
|:'i(v) : L] < oc. So M(A) contains the "classical" rigid points of SpA, but
in general also some additional points z with z_1(0) not a maximal ideal.

Beware that the natural map

M(A) Spec A : z z^O)

is not injective, in general : if P e Spec A is not a maximal ideal, there may be

several bounded absolute values on A/P extending the absolute value on L.
For a Hausdorff strictly L-analytic space X, the set of rigid points

Xrig :={xeX\ [Jf(.ï) : L| • x }

can be endowed with the structure of a quasi-separated rigid variety over L in

a natural way. Moreover, the functor X Xlig induces an equivalence between

the category of paracompact strictly L-analytic spaces, and the category of
quasi-separated rigid varieties over L which have an admissible affinoid

covering of finite type [3, 1.6.1], The space Xng is quasi-compact if and

only if X is compact.
The big advantage of Berkovich spaces is that they carry a "true" topology

instead of a Grothendieck topology, with very nice features (Hausdorff, locally
arcwise connected, As we have seen, Berkovich obtains his spaces by
adding points to the points of a rigid variety (not unlike the generic points
in algebraic geometry) which have an interpretation in terms of valuations.

We refer to [2, 1.4.4] for a description of the points and the topology of the

closed unit disc D — M(L{jt}).
To give a taste of these Berkovich spaces, let us explain how two points

of L>rig can be joined by a path in D. We assume, for simplicity, that L
is algebraically closed. For each point a of Dlig and each p e [0,1] we
define D(a,p) as the set of points z in Dlig with |jt(z)' — x(a)| < p. This
is not an affinoid domain if p $ |L*|. Any such disc E — D(a,p) defines
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a bounded multiplicative: semi-norm |.|£ on the Banach algebra L{x}, by
mapping / ~ ö)" t0

\f\E - sup l/tfll - max \a„\p"
K m

and hence E defines a Berkovich-point of D. Now a path between two points

a, b of Dtig — I." can be constructed as follows: put 8 — \x(a) — x(b) and

consider the path

Geometrically, this path can be seen as a closed disc around a, growing
continuously in time t until it contains b, and then shrinking to />.

A remarkable feature of Berkovich's theory is that it can also be applied
to the case where L carries the trivial absolute value. If k is any field,
and X is an algebraic variety over k, then we can endow k with the trivial
absolute value and consider the Berkovich analytic space Aan associated to

X over k [2, 3.5], Surprisingly, the topology of Aan contains some non-
trivial information on X. For instance, if k - C, then the rational singular
cohomology Hsing(Aan,Q) of Aan is canonically isomorphic to the weight-zero
part of tire rational singular cohomology of the complex analytic space X(C)
[7, 1.1(c)]. We refer to [36] and [43] for other applications of analytic spaces

with respect to trivial absolute values.

Let us mention that there are still alternative approaches to non-archimedean

geometry, such as Fujiwara and Katp's Zariski-Riemann spaces [21], or Huber's
aclic spaces [27], See [38] for a (partial) comparison.

6.1 Relation to arc schemes and the Milnor fibration
6.1.1 Arc spaces. Let k be any field, and let A be a separated scheme

of finite type over k. Put R — £[[?]]. For each n > 1, we define a functor

from the category of ^-algebras to the category of sets. It is representable

by a separated k-scheme of finite type C.„(X) (this is nothing but tire Weil

restriction of Xx^R,, to k). For any pair of integers m > n > 0, the truncation

map Rm — R„ induces, by Yoneda's Lemma, a morphism of k-schemes

D(a,2t8), if 0 < t < 1/2,

D{p, 2(1 - /)!), if 1/2 < f < 1.

6. Some applications

F„ : k-Alg) -a (Sets) : A ^ X(A <f* R„)

Cm(X)^UX)-
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It is easily seen that these morphisms are affine, and hence we can consider

the projective limit
C(X) := lim£„(X)

n

in the category of k-schemes. This scheme is called the arc scheme of X.
It satisfies C(X)(k') •= Y(£'[[(]]) for any field k! over k (these points are

called arcs on X) and comes with natural projections

TT« : £{X)^C„(X)-

In particular, we have a morphism wo- C(X) -> Co(X) — X. For any
subscheme Z of X, we put C(X)z — C(X) xj Z. By Yoneda's Lemma,
a morphism of separated ^-schemes of finite type h: Y —> X induces

k -morphisms h: C„(Y) —» C„{X) and, by passage to the limit, a k-morphism
Jr. CO") -> C(X).

If X is smooth over k, the schemes Cn(X) and C(X) are fairly well
understood: if X has pure dimension d then, for each pair Of integers
m > n > 0, 7r,f is a locally trivial fibration with fibre Akm~"] (with respect
to the Zariski topology). If x is a singular point of X, however, the scheme

C(X)x is still quite mysterious. It contains a lot of information on the singular

germ (X, x) ; interesting invariants can be extracted by the theory of motivic

integration (see [17, 18, 44]).
The schemes C(X)x and C(X) are not Noetherian, in general, which

complicates the study of their geometric properties. Already the fact that they
have only finitely many irreducible components if k has characteristic zero, is

a non-trivial result. We will show how rigid geometry allows one to translate

questions concerning the arc space into arithmetic problems on rigid varieties.

6.1.2 Thé relative case. Let k be any algebraically closed field of
characteristic zero41, and put R - £[[(]] » For each integer d > 0, K k((t))
has a unique extension K(d) of degree d in a fixed algebraic closure 7Calg

Of K, obtained by joining a d-th root oî t to K. We denote by R(d) the

normalization of R in K(d). For each d > 0, we choose a r/-th root of t

in 7Calg, denoted by 07 such that yrt for each d,e > 0. This choice

defines an isomorphism of k -algebras R(d) k{[yft\\. It also induces an

isomorphism of R -algebras

f4i Bid) -»• R{0 : V ciii^tY *+ V dit,
i>0 f>0

4) This condition is imposed only to simplify the arguments.
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where R(d)' is the ring R with R-algebra structure given by

R ->• R : ^ J2bitid
i>0 i> 0

Let X be a smooth irreducible variety over k, endowed with a dominant

morphism /: X > A; Spec Ä:[f]. We denote by X the formal completion of
the R -scheme XR — X feffffl ; we will also call this the t-aclic completion
of /. Its special fibre Xo is simply the fibre of / over the origin.

There exists a tight connection between the points on the generic fibre Xn
of X, and the arcs on X. For any integer d > 0, we: denote by X{d) the

closed subscheme of C(X) defined by

x(d) f# e m:> I A# ' } •

We will construct a canonical bijection

ip: Xv(K(d)) ^ Xldnk)

such that the square

Xv(K(d)) X(d)(k)

sp

Miß) —^ Xo (k)

commutes.

As we saw in Section 4.9, the specialization morphism of ringed sites

sp: Xn -4> X induces a bijection Xn(K(d)) —> X(R(d)), and the morphism sp

maps a point of X^iKid)) to the reduction modulo \ft of the corresponding

point of X(R(d)). By Grothendieck's Existence Theorem (Section 3.4), the

completion functor induces a bijection {XR)(R(d)) —> X(R{d)), Finally, the

/(-isomorphism pd: R(d) -> R(d)' induces a bijection

iXpuRuh) (xRmd)') - mm
In other words, if we take an arc if*: Spec R —» X with f(4') — td, then the

morphism yields a K(d) -point on Xni and this correspondence defines a

bijection between X(d)(k) and Xn (K(d)). Moreover, the image of under
the projection xqû C(X) —> X is nothing but the image of the corresponding
element of Xn(K(d)) under the specialization map sp: |Xrj| —» |X| =s jZn|.

The Galois group G(K(d)/K) pd(k) acts on Xn(K(d)), and its action

on the level of arcs is easy to describe: if $ is an arc Spec// X with

/!$> <*, and i is an element of pAk). then
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The spaces X(d), with their ßd(k).-action, are quite close to the arc spaces

appearing in the definition Of the motivic zeta function associated to /[18, 3.2],
In fact, the motivic zeta function can be realized in terms of the motivic integral
of a Gelfand-Leray form on X,t, and the relationship between arc schemes

and rigid varieties can be used in the study of motivic zeta functions and the

monodromy conjecture, as is explained in [35, 34].

6.1,3 The absolute case. This case is easily reduced to the previous

one. Let X be any separated k-scheme Of finite type, and consider its base

change XR X x* R. We denote by X the formal completion of XR.

There exists a canonical bijection between the sets C(X)(k) and Xr(R).
Hence, by the results in the previous section, k -rational arcs on X correspond
to K -points on the generic fibre Xn of X, by a canonical bijection

p| L'iXuk) -A Xn(K),

and the square

-A X.JK)

-A X(k)X(k) -
commutes. So the rigid counterpart of the space C(X)z C(X) x^Z of arcs

with origin in some closed subscheme Z of X, is the tube ]Z[ of Z in Xn
(or rather, its set of K -rational points).

Of course, the scheme structure on C(X) is very different from the analytic
structure on Xn. Nevertheless, the structure on Xn seems to be much richer
than the one on CQQ, and one might hope that some essential properties
of the non-Noetherian scheme C(X) are captured by the more "geometric"
object Xn Moreover, there exists a satisfactory theory of étale cohomology
for rigid K-varieties (see for instance [3] or [27]), making it possible to apply

cohomological techniques to the study of the arc space.

6.1.4 The analytic Milnor fibre. Let g: Cm -f C be an analytic map;
we denote by ¥q the analytic space defined by g — 0. Let x be a point of Y

Consider an open disc D 5(0, rj) of radius p around the origin in C, and

an open disc B := B(x,s) in Cm. We denote by D* the punctured disc

D - {0}, and we put

X' /y il)
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Then, for 0 < 7/ -C s«C 1, the induced map

g':X' —> Dx

is a C°° locally trivial fibration, called the Milnor fibration of g at .t. It is

trivial if g is smooth at x. Its fibre at a point f of flx is denoted by Fx(t),
and it is called the (topological) Milnor fibre of g at jr (with respect to t).
To remove the dependency on the base point, one constructs the canonical

Milnor fibre Fx by considering the fibre product

Fx : X' xflx m,
where Dx is the universal covering space

Dx — {z G CI Qfz) > - log g} -> Dx exp(iz).

Since this covering space is contractible, Fx is homotopically equivalent to

Fx(t). The group of covering transformations tt\(Dx) acts on the singular
cohomology of Fx ; the action of the canonical generator z 1-» z + 27r of
7ti(Dx) is called the monoclromy transformation of g at x. The Milnor
fibration g' was devised in [32] as a tool for gathering information on the

topology of Fn near x.
We return to the algebraic setting: let k be an algebraically closed field

of characteristic zero, let R — £[[?]], let X be a smooth irreducible variety
over k, and let /: X —> A[ Spec£[f] be a dominant morphism. As before,

we denote by X the formal f-adic completion of /, with generic fibre Xn.
For any closed point x on X0, we put IFX :=M, and we call this rigid
X-variety the analytic Milnor fibre of / at x. This object was introduced and

studied in [33, 34], We consider it as a bridge between the topological Milnor
fibration and arc spaces ; a tight connection between these data is predicted by
the motivic monodromy conjecture. See [35] for more on this point of view.

The topological intuition behind the construction is the following: the

formal neighbourhood SpfX of the origin in A{. Spec£[f] corresponds to

an infinitesimally small disc around the origin in C. Its inverse image under /
is realized as the f-adic completion of the morphism /; the formal scheme X
should be seen as a tubular neighbourhood of the special fibre Xq defined by

/ on A. The inverse image of the punctured disc becomes the "complement"
of Xq in X ; this "complement" makes sense in the category of rigid spaces,
and we obtain the generic fibre Xv of X. The specialization map sp can be

seen as a canonical "contraction" of Xn on X«, such that JFr corresponds to
the topological space X' considered above. Note that this is not really the

Milnor fibre yet: we had to base-change to a universal cover of Dx, which
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corresponds to considering bFxxKKäl% instead of tFx, by the dictionary between

finite covers of Dx and finite extensions of K. The monodromy action is

translated into the Galois action of GiK^/K) Z(l)(fc) on

It follows from the results in Section 6.1.2 that, for any integer d > 0,
the points in Fx(K(d)) correspond canonically to the arcs

4k Spec £[[?]] -> X

satisfying /(/') f1 and 7ro(#) Is Moreover, by Berkovich's comparison
result in [5, 3.5] (see also Section 6.3), there are canonical isomorphisms

£^(Fx&Kmt Q/ £
such that the Galois action of G{Kdg/K) on the left-hand side corresponds to
the monodromy action of G(Xalg/X) on the right. Here llxl is étale £-adic

cohomology, and lit \,( denotes the t-adic nearby cycle functor associated to/.
In particular, if k — C, this implies that Hlél(fFxXKKA&, Qc) is canonically
isomorphic to the singular cohomology H'sinJFx,Qf) of the canonical Milnor
fibre Fx of / at x, and that the action of the canonical topological generator
Of GiK^/K) - Z(1)(C) corresponds to the monodromy transformation, by
Deligne's classical comparison theorem for étale and analytic nearby cycles
[1, XIV], In view of the motivic monodromy conjecture, it is quite intriguing
that Tx relates certain arc spaces to monodromy action; see [35] for more

background on this perspective.

6.2 Deformation theory and lifting problems

Suppose that R has mixed characteristic, and let Xq be a scheme of
finite type over the residue field k. In [28, 5.1] Illusie sketches the following
problem: is there a flat scheme X of finite type over R such that Xa — Xx^kl
Grothendieck suggested the following approach: first, try to construct an

inductive system X„ of flat R„ -schemes of finite type such that X„ S XmXRmR„

for m > n > 0. In many situations, the obstructions to lifting X„ to X„+\ live
in a certain cohomology group of X0, and when these obstructions vanish,
the isomorphism classes of possible X„+1 correspond to elements in another

appropriate cohomology group of Xq. Once we find such an inductive system,
its direct limit is a flat formal R-scheme X«,, topologically of finite type.
Next, we need to know if this formal scheme is algebraizable, i.e. if there

exists an R -scheme X whose formal completion X is isomorphic to
This scheme X would be a solution to our lifting problem. A useful criterion
for proving the existence öf X is the one quoted in Section 3.4: if X0 is
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proper and carries an ample line bundle that lifts to a line bundle on X^,
then Xijç is algebraizable. Moreover, the algebraic model X is unique up to

isomorphism by Grothendieck's Existence Theorem (Section 3.4). For more
concrete applications of this approach, we refer to Section 5 of [28].

6.3 Nearby cycles for formal schemes

Berkovich used his étale cohomology theory for non-archimedean analytic

spaces, developed in [3], to construct nearby and vanishing cycle functors
for formal schemes [4, 5], His formalism applies, in particular, to stft formal
R-schemes Xm and to formal completions of such formal Schemes along
closed subschemes of the special fibre Xq Let us denote by Rnpv the functor
of nearby cycles, both in the algebraic and in the formal setting. Suppose that

k is algebraically closed. Let X be a variety over R ; we denote by X its

formal completion, with generic fibre X,t. Let f be a closed subscheme of
Jo, and let F be an étale constructible sheaf of abelian groups on X x« K,
with torsion orders prime to the characteristic exponent of k. Then Berkovich
associates to F in a canonical way an étale sheaf 7s on Xn and an étale

sheaf F/F on the tube ]T[. His comparison theorem [5, 3.1] states that there

are canonical quasi-isomorphisms

A'-.VF! AV,(iF! and Rv„(F5* - ATVF>>.

Moreover, by [5, 3.5] there is a canonical quasi-isomorphism

8L(F,Ä^(F)(f) s ÄTflyjxtfXSFfh -

In particular, if x is a closed point of X<}, tlren R'il>n{Qe)x is canonically
isomorphic to the /-th L-adic cohomology space of the tube JjJxjjlfF Similar
results hold for tame nearby cycles and vanishing cycles.

This proves a conjecture of Deligne's, stating that Ä^(F)\f depends only
on the formal completion of X along Y. In particular, the stalk of R^n(T)
at a closed point x of Xn depends only on the completed local ring 0x,x.

6.4 Semi-stable reduction for curves

Bosch and Lütkebohmert show in [12, 11] how rigid geometry can be

used to construct stable models for smooth projective curves over a non-
archimedean field L, and uniformizations for Abelian varieties. Let us briefly
sketch their approach to semi-stable reduction of curves.
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If A is a reduced Tate: algebra over L, then we define

A° {/ A | ||/||sup < 1},

{/eA I ||/||sup< l}.
Note that A" is a subring of A, and that A°° is an ideal in A". The quotient
Ä A"/A00 is a reduced algebra of finite type over L, by [10, 1.2.5.7+6.3.4.3],
and X SpecA is called the canonical reduction of the affinoid space

X SpA. There is a natural reduction map X -k X mapping points of X to

closed points of X. The inverse image of a closed point x of X is called the

formal fibre of X at x; it is an open rigid subspace öf X.
Let C be a projective smooth geometrically connected curve over L of

genus g > 2 ; we consider its analytification Can. By a technical descent

argument, we may assume that L is algebraically closed. The idea is to

construct a finite admissible cover it of Can by affinoid domains U whose

canonical reductions U are semi-stable. If the cover Si satisfies a certain

compatibility property, the canonical reductions Ü can be glued to a semi-

stable L-variety. From this cover Si one constructs a stable model for C.
The advantage of passing to the rigid world is that the Grothendieck topology
on Cw is much finer than the Zariski topology on C, thus allowing finer

patching techniques.

To construct the cover it, it is proved that smooth points and ordinary
double points on U can be recognized by looking at their formal fibre in U.
For instance, a closed point x of U is smooth if and only if its formal fibre
is isomorphic to an open disc of radius 1. An alternative proof based on rigid
geometry is given in [20, 5.6],

6.5 Constructing étale covers, and Abhyankar's Conjecture

Formal and rigid patching techniques can also be used in the construction

of Galois covers; see [26] for an introduction to this subject. This approach

generalizes the classical Riemann Existence Theorem for complex curves to

a broader class of base fields. Riemann's Existence Theorem states that, for

any smooth connected complex curve X, there is an equivalence between

the category of finite étale covers of X, the category of finite analytic
covering spaces of the complex analytic space Xan, and the category of finite
topological covering spaces of X(C) (with respect to the complex topology).
So the problem of constructing an étale cover is reduced to the problem
of constructing a topological covering space, where we can proceed locally
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with respect to the complex topology and glue the resulting local covers.
In particular, it can be shown in this way that any finite group is the Galois

group of a finite Galois extension of C(x), by studying the ramified Galois

covers of the complex projective line.

The strategy in rigid geometry is quite similar: given a smooth curve X
over a non-archimedean field L, we consider its analytification Xm.
We construct an étale cover Y' of Aan by constructing covers locally and

glueing them to a rigid variety. Then we use a GAGA-theorem to show that
Y' is algebraic, i.e. Y' — Tan for some curve Y oyer L ; Y is an étale cover
of X. Of course, several technical complications have to be overcome to carry
out this strategy.

We list some results that can be obtained by means of these techniques,
and references to their proofs.

• (Harbater) For any finite group G, there exists a ramified Galois cover

f: X P| with Galois group G, such that X is absolutely irreducible,
smooth, and projective, and such that there exists a point x in X(L) at

which / is unramified. An accessible proof is given by Q. Liu in [29] ;

see also [37, § 3],

• (Abhyankar's Conjecture for the projective line) Let k be an algebraically-
closed field of characteristic p > 0. A finite group G is the Galois group
of a covering Of P]. ramified only over oo, if and only if G is generated

by its elements of order p" with n > 1. This conjecture was proved

by Raynaud in [40]. This article also contains an introduction to rigid
geometry and étale covers.

• (Abhyankar's Conjecture) Let k be an algebraically closed field of
characteristic p > 0. Let A be a smooth connected projective curve
over k of genus g, let £n, if > 0) be distinct closed points on X,
and let rff,r be the topological fundamental group of a complex Riemann

surface of genus g minus r + 1 points (it is the free group on 2g + r
generators). Put U — X \ {f f, j • A finite: group G is the Galois

group Of an unramified Galois cover of U if and only if every prime-
to-p quotient of G is a quotient of tLT, This conjecture was proved by
Harbater in [25],
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