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A REALIZATION PROBT EM

by Kalathoor Varadarajan

In his groundbreaking papers ([7], [8]) C.T. C. Wall associated with each

(always assumed O-connected) finitely dominated space A an element w(X)
in XfiPSr) where it — 7ti(A) and proved that X is of the homotopy type of
a finite CW-complex if and only if «5(A) — 0. Also «5(A) is an invariant

of the homotopy type of X. In subsequent literature ffi(A) is referred to as

the finiteness obstruction (alternatively as the Wall obstruction) of X. Another

major result proved by Wall asserts that given any finitely presented group it
and any element x in K0(Zit), there exists a finitely dominated CW-complex X
with 7Ti(X) isomorphic to 7r and to(A) •= x. Using Dock Sang Rim's result [5]
that KuCZitp) for any prime p is isomorphic to the ideal class group Cl(Z[w]),
where itp denotes a cyclic group of order p and u — exp(jyi) and the fact
that Cl(Z[u;]) is not zero when p — 23, Wall shows that there exist finitely
dominated CW-complexes which are not of the homotopy type of a finite

CW-complex. This settled a famous problem of J. H. C. Whitehead [9] in the

negative.
Guido is the first person who started studying the Wall obstruction of

finitely dominated nilpotent spaces [2] and [3], In his 1976 work he proved
that ÛPÇ — 0 for any finitely dominated nilpotent space with 7Ti(A) infinite.
In his 1975 work he showed that if A is a finitely dominated nilpotent space

with it\ (A) finite cyclic, then «5(A) has to satisfy certain restrictions. Inspired
by his results, I extended his 1975 results to finitely dominated nilpotent spaces
with finite abelian fundamental groups. My result [6] appeared in 1978. For

any nilpotent group it, let Z7r denote a maximal order in Qit containing Z7r

and D(Zit) denote the kernel of

,/* : K. iZ.T! K(){Zit).

In the joint paper [4] in 1979, Guido and myself showed that for any finitely
dominated nilpotent space A with a finite (necessarily nilpotent) fundamental
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group 7T, the Wall obstruction w(X) satisfies the restriction that w(X) is in

D(Ztt). This considerably strengthened the result in [6],
As stated earlier in this article, for any finitely presented group tt and any

element x in K0{Zir), there exists a finitely dominated CW-complex X with
7ri(X) 7T and w(X) x (Wall's work in 1965, 1966). In [1], Ewing, Loftier
and Pedersen showed that for a finite nilpotent group of composite order, the

set of elements of KtfiZs) that can be realized as the finiteness obstruction of
a nilpotent space with fundamental group tt is not in general equal to D(Zw).
This suggests the following.

Question 63.1. Given a finite nilpotent group ir characterize completely
the elements in D{Ztt) which occur as the finiteness obstruction of a finitely
dominated nilpotent space and for such an element x give an explicit
construction of a finitely dominated nilpotent space X with w(X) — x.

In this article, I have concentrated on just one aspect of Guide's work.
His work is very profound and has influenced tire development of topology
in many ways.
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