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SHORT EXACT SEQUENCES AND A-T-MENABILITY

by Alain VALETTE

A locally compact, ¢-compact group is a-T-menable, or has the Haagerup
property, if it admits a metrically proper isometric action on a Hilbert space.
The class of a-T-menable groups is a huge class, containing amenable groups,
free groups, surface groups, Coxeter groups, and much more. .. (see [1] for
more information on that class). The interest of this class stems from a
remarkable result by N. Higson and G. Kasparov [3], that a-T-menable groups
satisfy the strongest possible form of the Baum—Connes conjecture, namely
the Baum—Connes conjecture with coefficients.

Given an interesting class of groups, it is a natural question to ask whether
it is stable under short exact sequences. For a-T-menability, this is well known
not to be the case: e.g. 77 and SLy(Z) are a-T-menable, but the semi-direct
product Z? x SL,(Z) is not, because of the relative property (1) with respect
to the normal subgroup.

QUESTION 62.1. Let 1 = N — G — Q — 1 be a short exact sequence of
locally compact groups, with N and Q a-T-menable. Under which conditions
is G a-T-menable ?

For example, this is known to be the case if  is amenable, as shown
in [1]. Let us single out the case of central extensions in Question 62.1:

CONJECTURE 62.2. Let 1 - 72 — G — Q — 1 be a central extension.
If Q is a-T-menable, then so is G.

Some evidence for that conjecture appears in [1] (in particular the case of
the universal cover of SU(n, 1)).
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When H, Q are (non-trivial) countable groups, recall that the wreath
product H1Q is the semi-direct product N x @0, where N = @©pH is a direct
sum of copies of H indexed by (), and @ acts on N by shifting indices.

QUESTION 62.3, Assume that H and Q are a-T-menable. Is H 1 Q
a-T-menable ?

As a particular case of Question 62.3, we single out what seems to be the
first case to look at:

QUESTION 62.4. Let ¥, denote the free group on 2 generators, and let H
be a (non-trivial) finite group. Is H 1 ¥, a-T-menable ?

The interest of these questions stems from a result of M. Neuhauser:
if H, Q are a-T-menable, then H!(Q has no infinite subgroup with the relative
property (T) (see Theorem 1.1 in [4]). So if the answer to these questions
is negative, this would provide new examples of countable groups which are
not a-T-menable, and do not contain any infinite subgroup with the relative
property (T) (the first examples — certain S-arithmetic lattices — have been
constructed by Y. de Cornulier ([2], Remarks 1.15 and 4.10)).

ADDED IN PROOF.  Questions 62.3 and 62.4 have been solved affirmatively by
Y. de Cornulier, Y. Stalder and the author. For the special case in 62.4, together with
applications in harmonic analysis, see ‘Proper actions of lamplighter groups associated
with free groups’, C. R. Acad. Sci. Paris Math. 346 (2008), 173-176. For the general
case in 02.3, see ‘Haagerup properties and wreath products’, paper in preparation.
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