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THE CHROMATIC RED-SHIFT IN ALGEBRAIC X-THEORY

by Christian AUSONI and John ROGNES

The algebraic K -theory of the sphere spectrum S is of interest in geometric
topology, by Waldhausen’s stable parametrized #h-cobordism theorem [7]
(ca. 1979). We wish to understand K(S) like we understand K(Z), via
Galois descent. As a building block, the algebraic K -theory of the Bousfield
localization Lgy,)S of S with respect to the #-th Morava K-theory K(n)
might be more accessible. The second author has developed a theory of Galois
extensions for S-algebras, and in this framework he has stated extensions of
the Lichtenbaum—Quillen conjectures. Their precise formulation is distilled
from the clues provided by our computations of the algebraic K -theory of
topological K-theory and related spectra, and it is to be expected that they
will keep maturing in a cask of skepticism for a few years.

Writing X" for the homotopy fixed-point spectrum of a finite group G
acting on a spectrum X, we recall:

DEFINITION 4.1 ([6]). A map A — B of commutative S-algebras is
a K(n)-local G-Galois extension if G acts on B through commutative
A-algebra maps, and the canonical maps A — B"® and BA B — [IsB
are K(n)-equivalences.

Let E, be Morava’s E-theory [5] with coefficients given by (£,), =
W(F)llu1, ... ,un_l]][uil]. Then LgeS — E, is an example of a K(n)-local
pro-Galois extension.

Let V be a finite CW-spectrum of chromatic type n+1, and let T = v, _ +11V
be the mapping telescope of its essentially unique v,y -self-map. For # =0
take V = V(0) = S/p (the Moore spectrum), and for n = 1, p > 3 take
V=V({1)=V(0)/v.
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CONJECTURE 4.2, Let A — B be a K(n)-local G-Galois extension. Then

there is a homotopy equivalence
T AKA) = T A (KB)"™ .

For n =0, A — B is a G-Galois extension of commutative Q-algebras,
and Conjecture 4.2 is the descent conjecture of Lichtenbaum—Quillen (1973).
For n = 1, Conjecture 4.2 holds by [1], [2], [4] for the K(1)-local F;j -Galois
extension L, — KU,, where KU, is the p-complete periodic K-theory
spectrum and L, its Adams summand.

CONIECTURE 4.3. Let B be a suitably finite K(n)-local commutative
S-algebra (for example LxS — B could be a G-Galois extension). Then
the map V AK(B) — T AK(B) induces an isomorphism on homotopy groups
in sufficiently high degrees.

If n =0 and B = HF for a reasonable field I, then
VAK(F)=K(F,Z/p) — T ANK(F) ~ K4F,Z/p)

induces an isomorphism on homotopy groups in sufficiently high degrees by
Thomason’s theorem (1985). For n = 1, p > 5 and B = L,, KU, or their
connective versions £, and ku,, it is known ([2], [4]) that V(1),K(B) is a
finitely generated free K,[v;]-module in high degrees, hence Conjecture 4.3
holds for these S-algebras. This is evidence for the “red-shift conjecture”,
which, in a less precise formulation than Conjecture 4.3, asserts that algebraic
K -theory increases chromatic complexity by one.

The algebraic K -theory of a ring of integers Op (in a number field F)
can be computed from the K-theory of its residue fields and fraction field,
by a localization sequence. To compute K(F;Z/p), one uses Suslin’s theorem
(1983) that K(F;Z/p) =~ V(0) A ku, and descent with respect to the absolute
Galois group Gr.

To generalize this program we wish to make sense of the K(n)-local
S -algebraic fraction field F of Lgq»S (or one of its pro-Galois extensions),
construct a separably closed extension €),,, and evaluate its algebraic K-theory.

CONIECTURE 44. If Q, is a separable closure of the fraction field of
LxaS, then there is a homotopy equivalence

Lg(nK(L2,) = E, 1 .
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For n = 0 this reduces to LgyK(Q) ~ E; ~ KU,, a weaker formulation
of Suslin’s theorem. For n = 1, we did some computations [3] aimed at
understanding what the fraction field F of KU, might be. We define K(F)
to sit in a hypothetical localization sequence K(KU/p) — K(KU,) — K(F),
as the cofiber of the transfer map for KU, — KU/p. The result is that
V(1),.K(F) is, in high enough degrees, a free F,[v;]-module on 2(p2—|—3)(p— 1)
generators. In particular F cannot be the HQ,-algebra KU,[1/p]. We rather
believe that F is an S-algebraic analogue of a two-dimensional local field.
For example, there appears to be a perfect arithmetic duality pairing in the
Galois cohomology of F, analogous to Tate—Poitou duality (1963) for local
number fields.
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