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ON ALGEBRAIC CHARACTERIZATIONS

FOR THE FINITENESS OF THE DIMENSION OF EG

by Olympia Talelli

In [5] the following theorem was proved :

Theorem 61.1. If G is an h $-group of type TR:x then G admits a finite
dimensional model for EG.

The class h5 was introduced by RH. Kropholler in [4] and it is defined

as the smallest class of groups containing the class of finite groups, with the

property: if a group G admits a finite dimensional contractible G-CW-complex
with all cell stabilizers in then G is in h^.

This theorem, especially its proof, was the motivation for defining groups
of type <t> in [7] and for proposing those as the ones which admit a finite
dimensional model for EG.

DeeinItION 61.2 ([7]). A group G is said to be of type <t> if it has the

property that for every ZG-module M, projdimZGM < qq if and only if
projdimZHM < oo for every finite subgroup H of G.

Conjecture 61.3. The following statements are equivalentfor a group G:

(1) G admits a finite dimensional model for EG.

(2) G admits a finite dimensional contractible G-CW-complex with finite cell
stabilizers.

3) G is of type <t>.

(4) sphZG<oo.
(5) silpZGC oo.

(6) findim ZG < do
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The algebraic invariants spli ZG and silp ZG were defined in [3] : siip ZG
is the Supremum of the injective lengths of the projective ZG-modules and

spiiZG is the supremum of the projective lengths of the injective ZG-modules.
It was shown in [3] that silpZG < spiiZG, and that if spiiZG < oo
then spiiZG silpZG. The flnitistk dimension of ZG, findimZG, is the

supremum of the projective dimensions of the ZG-modules of finite pro jective
dimension.

It is not very difficult to show that (1) => (2) => (3) (4) => (5) (6),
see [7],

If G is an h -group of type FPpç then there is a bound on the orders of
the finite subgroups of G [4], and projdimZG B(G, Z) is finite, where B(G, Z)
is the ZG-module of the bounded functions from G to Z [1],

Theorem 61.1 is now an immediate: consequence of tire following theorem

which was proved in [5] :

Theorem 61.4. If G is an h-group such that there is a bound on the

orders of the finite subgroups and projdimZG B(G, Z) is finite, then G admits

a finite dimensional model for jî8.

Since if G is an h $ -group, projdimZGB( G, Z) is finite if and only
if findimZG is finite [1], it follows from Theorem 61.4 that (6)=Hl) in

Conjecture 61.3 if G is an H^-group with a bound on the orders of the finite
subgroups. Moreover in [8] it is shown that (6) (1) if G is a torsion-free

elementary amenable group.
In [6] it was shown that if a group G admits a finite dimensional model for

EG then for every finite subgroup H of G, admits a finite dimensional
model for EW(H), where W(H) — Ng(H)/H. In [7] we show that if spiiZG
is finite, then spliZITj//) is finite for every finite subgroup H of G.

In support of Conjecture 61.3 is also the following characterization of
finite groups, which we obtained in [2] : a group G is finite if and only if
spli ZG 1.
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