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POWER SERIES THAT GENERATE CLASS NUMBERS

by Warren SINNOTT

Let £k be a CM field, i.e., k is a totally imaginary quadratic extension of
a totally real number field k. Let p be a prime, and let K be the basic
Z, -extension of k: then K C k(up~) (here p,~ is the group of p-power
roots of unity), and k has a unique extension k, in K of degree p” over k.
Let A} denote the relative class number of &, /k,‘," . Then Iwasawa [1] showed
that there are integers ¢ > 0,A > 0 and v such that

(1) ordy(hy) = pp" + A+ v

for n greater than or equal to some integer 7np. One way to show this
(not Iwasawa’s original method, which gives more general results) is to use
Hecke’s analytic class number formula and the theory of p-adic L-functions
(see for example Sinnott [3]): these results imply that there is a power series
F(T) € Z,[|T — 1]] such that

(2) my=n [[ F for n>no.

P =1

¢ £1
The Weierstrass Preparation Theorem implies that we may write F(T) =
pHO(Mu(T), where > 0, Q(T) is a monic polynomial of degree A congruent
to (T — D mod p, and w(7T) is a unit in Z,[[7 — 1]]. From this one can see
that (2) = (1).

But (2) contains much more information than (1), since it gives a formula

for the whole relative class number. My questions (basically just questions
about formal power series) are:

QUESTION 59.1. What does (2) tell us about class numbers ? Le., what
constraints are imposed on the sequence {h'} by the formula (2)?
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For example, (2) has the following curious consequence: let (4}) denote
the “prime-to-p” part of A, . Then (2) implies that
(3) lim (7)) exists in Z .

n—co

H. Kisilevsky [2] pointed out that one can show that the limit (3) exists for
the prime-to-p part (in fact for the €-primary part for any £ # p) of the class
numbers of any Z,-extension.

Conversely, we can ask:

QUESTION 59.2. What does (2) tell us about I(T) ?

For example, if a € pr then F(T%) gives the same sequence A, so
F(T) is not completely determined by (2). How much information about F(T)
is contained in (2)?7 The Newton polygon of F(T%) (as a power series in
Z,[[T —11]) is the same as the Newton polygon of F(T): does (2) determine
the Newton polygon of F(T') ?

Finally, it would be interesting to know whether a power series as in (2)
exists for other Z,-extensions:

QUESTION 59.3. Suppose that K/k is a ZL,-extension, hy, the class number
of k, . is there a power series F(T) € Z,[[T —11] such that (2) holds (with h,
in place of h;)?

These questions are interesting since the “Main Conjecture” of Iwasawa
theory (proved in the 1980s by Wiles [4]) relates F(T) — up to a unit
in Z,[[T — 1]] — to a characteristic polynomial defined from the action of
Gal(K /k)(~ Z,) on the p-primary part of the ideal class group of K.
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