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THE KROPHOLLER CONJECTURE

by Graham A. NIBLO and Michah SAGEEV

A finitely generated group G is said to split over a subgroup H if and only
if G may be decomposed as an amalgamated free product G = A;} B (with

A # H # B) or as an HNN extension G = A % The Kropholler conjecture is
concerned with the existence of such splittings.

Given a subgroup H of a finitely generated group G the invari-
ant e(G,H) 1is defined to be the number of Freudenthal (topological)
ends of the quotient of the Cayley graph of G under the action of
the subgroup H. This number does not depend on the (finite) gen-
erating set chosen for G (see [3]) so it is an invariant of the pair
(G,H).

For example, if G is a free abelian group and H is an infinite cyclic
subgroup then e(G,H) =0 if G has rank 1, e(G,H) =2 if G has rank 2
and e(G,H) =1 if G has rank greater than or equal to 3.

This invariant generalises Stallings’ definition of the number of ends of
the group G since if H = {1} then e(G,H) = e(G).

In [4] Stallings showed that the group G splits over some finite subgroup C
if and only if e(G) > 2. There are several important generalisations of this
fact, the most wide ranging being the algebraic torus theorem, established
by Dunwoody and Swenson [1]. This states that, under suitable additional
hypotheses, if G contains a polycyclic-by-finite subgroup H of Hirsch length n
with e(G,H) > 2 then either

(1) G is virtually polycyclic of Hirsch length n 41,

(2) G splits over a virtually polycyclic subgroup of Hirsch length #n, or

(3) G is an extension of a virtually polycyclic group of Hirsch length
n—1 by a Fuchsian group.
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This theorem generalises the classical torus theorem from low-dimensional
topology which asserts that a closed 3-manifold which admits an immersed
incompressible torus either admits an embedded incompressible torus or has a
Seifert fibration. These topological conclusions imply the algebraic conclusions
for the fundamental group of the manifold.

An important ingredient of the proof of the algebraic torus theorem is a
special case of the so-called Kropholler conjecture. Its original formulation
relies on the following observation of Scott:

A subgroup H of a finitely generated group G satisfies e(G,H) > 2 if
and only if G admits a subset A satisfying the following:

(1) A=HA,

(2) A is H-almost invariant, and

(3) A is H-proper, i.e., neither A nor G — A is H-finite.

We will refer to the subset A as a proper H-almost invariant subset.

In his proof of the algebraic torus theorem for Poincaré duality groups
Kropholler observed that, under certain additional hypotheses, if G admits
a proper H-almost invariant subset A such that A = AH, then G admits a
splitting over some subgroup C < G related to H (see [2] for an outline
of the proof). He conjectured that the additional hypotheses were inessential.
Specifically :

CONIECTURE 53.1 (The Kropholler conjecture). Let G be a finitely
generated group and H < G. If G contains a proper H-almost invariant
subset A such that A = AH then G admiis a non-trivial splitting over a
subgroup C which is commensurable with a subgroup of H.

The conjecture is known to hold when G is a Poincaré duality group
or when G is word hyperbolic and H is a quasi-convex subgroup. In
general it is known (for an arbitrary finitely generated group G) when-
ever H is a subgroup which satisfies the following descending chain condi-
tion

Every descending chain of subgroups H = Hq > Hy > H» > ... such that
H;1; has infinite index in H; eventually terminates.

This condition holds for example for the class of finitely generated
polycyclic groups, in which class the Hirsch length is the factor controlling
the length of such a chain. This is a key ingredient in the proof of the full
algebraic torus theorem.
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An alternative, more geometric, point of view on the conjecture is provided
by the following characterisation:

THEOREM 53.2. Given a finitely generated group G and a subgroup
H < G the invariant e(G,H) is greater than or equal to 2 if and only if G
acts with no global fixed point on a CAT(0) cubical complex with one orbit
of hyperplanes, and so that H is a hyperplane stabiliser. H admits a right
invariant, proper H-almost invariant subset if and only if the action can be
chosen so that H has a fixed poini in the complex.
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