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#-HOMOLOGY OF ONE-RELATOR GROUPS

by Peter A. LLINNELL

Let G be a group and let

s CGE oG B A et 2 06— € —3 0

be a free CG-resolution of C. Let 1 <p < oo and for n > 0, let
d"': CG™+' ®cg F(G) — CG* @cg HF(G),
d, . Homeg(CG™, #(G)) — Homeg(CG™+, #(G))

be the maps induced by d,; for convenience, we let d' = d*; = 0. Then
one has the usual homology and cohomology groups

H,(G,#(G) = kerd"™ ' /imd" ,

H' (G, (G)) =kerd, /imd,;_,,

which we shall call the (unreduced) #-homology and cohomology groups
of G respectively. In the case when all the e, are finite,

CG* @cg #(G) = (G = Homeg(CG™, #((G)),

so one can also define the reduced 7 -homology and cohomology groups
of G:

H.(G, (&) = kerd"~* /imar

H(G,7(() = kerd" [imd__,
where ~ indicates the closure in #7(G)®*. The first (P -cohomology groups
(reduced and unreduced) have been studied extensively recently by Bekka,

Bourdon, Martin, Valette and others. Also Kappos has interesting results on
general reduced homology and cohomology groups.
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Let us concentrate now on the case where G is a finitely generated torsion-
free one-relator group. Let d denote the number of generators of G. Then
we have a CG-resolution of the form

0 — CG — CG* — CG—C—0.

From this it is clear that the homology groups H, (G, #(G)), H G, #(G)),
H,(G,?(G)) and H (G,¢(G)) are all zero for n > 3. Warren Dicks
and T determined the #?-Betti numbers of such groups [2], Theorem 4.2;
an immediate consequence of this is that H,(G,#(G)) = H:(G,#(G)) = 0
for p < 2. The proof of this depended on the results that a torsion-free
one-relator group is left orderable, and that if H is a left orderable group,
04 a&cCH and 0 £ 0 € ¢*(H), then af £ 0 [4], Theorem 2. However
if p > 2, then we can have 0 # o« € CH and 0 # 6 € ¢(H) with
af = 0; see [5] for information about this. Thus we have the following
conjecture :

CONIECTURE 49.1. Let G be a finitely generated torsion-free one-relator
group and let 1 < p < oo. Then H>(G,(P(G)) = H:(G,P(G)) = 0.

By Poincaré duality, this conjecture is true if G is a surface group,
orientable or not. If Conjecture 49.1 is true, then it follows from Kappos’s [3],
Proposition 3.5 that HQ(G,EP(G)) = 0 for all p > 1. The situation for
unreduced cohomology is less clear. et us consider the special case p = 2.
Recall that (x,v | x*v> = 1) is the Klein bottle group. Our next conjecture is

CONJECTURE 49.2. Let G be a finitely generated torsion-free one-relator
group. Then H*(G,2(G)) = 0, provided G has neither 7. x 1. nor the Klein
bottle group as a free facior.

This conjecture is also true if G is a surface group, orientable or not. On the
other hand if G is Z xZ or the Klein bottle group, then H*(G, {*(G)) # 0, and
then it follows from the Mayer—Vietoris sequence that H*(GxZ, (*(G+Z)) £ 0 ;
of course G x Z is still a torsion-free one-relator group.

Finally we consider the first homology groups. A result of Guichardet [1],
Theorem A shows that if G is an arbitrary infinite group, then the natural
epimorphism HY(G, £(G)) — H (G, {2(G)) is an isomorphism if and only if
G is non-amenable. This leads to the following conjecture.
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CONIECTURE 49.3. Let G De a finitely generated torsion-free one-relator
group that has neither 1. x 4 nor the Klein bottle group as a free factor. Then
the natural epimorphism Hy(G,{*(G)) — H(G,0X(G)) is an isomorphism.

I am very grateful to the referee for pointing out that my original
formulations of Conjectures 49.2 and 49.3 were too easy to answer.
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