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RELATIVE COMPLETIONS OF LINEAR GROUPS

by Kevin P. KNUDSON

Here is a question that I've thought about a lot, but I can’t seem to solve.
The classical Malcev completion of a group is well known. It has a universal
mapping property that allows one to generalize the definition as follows.
Let k£ be a field and let G be a group. The unipotent k-completion of G is
a prounipotent k-group I that is universal among such groups admitting a
map from G. The Malcev completion is the case k = Q.

One possible problem with this construction is that it might be trivial;
that is, the group U may consist of a single element. This happens, for
example, when H(G,k) = 0. To get around this, there is a generalization
(due to Deligne) called the relaiive completion. The set-up is the following.
Suppose G is a discrete group and that p: G — § is a representation of G
in a semisimple algebraic k-group §. Assume that the image of p is Zariski
dense. The completion of G relative to p is a proalgebraic k-group G that
is an extension of § by a prounipotent k-group o :

l—U —G—85—1,

along with a lift g: G — G of p. The group G should satisfy the obvious
universal mapping property. If S is the trivial group, then this reduces to the
unipotent completion. Full details about this construction may be found in
[11, [2].

Consider the group G = SL,(k[f]) with the map p: SL,k[f]) — SL,(k)
induced by setting ¢ = 0.

QUESTION 43.1. What is the completion of G relative o p ?

There is an obvious guess, namely the group SL,(kX[[T]]), and this turns
out to be correct sometimes.
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I proved this when k is a number field or a finite field, and n > 3 [2]. The
proof goes like this. Let K be the kernel of p; this is the congruence subgroup
of the ideal (1). Filter K by powers of (1): K' ={AcK:A=1 mod '},
Then it is easy to see that for each i, K'/K'T! = 5[, (k). Moreover, the filtration
K* turns out to be the lower central series in this case, and so it follows that
the unipotent k-completion of K is lim K /K' = ker{SL,(k[[T1) =2 SL,(k)}.
General properties of the relative completion (e.g., it is always a split extension)
then imply that the correct answer is SL,(k[[T]]).

This approach fails for other fields though. Here’s why. Denote the lower
central series of K by I, For any field, there is a short exact sequence

1 — K*/T? — H(K,Z) — K/K* — 1.

The last group is sl,(k), and most of the time, the kernel Kz/l“2 sur-
jects onto the module Q,i /7 [4]. Recall that this is the k-module gener-
ated by symbols df, where the f range over k, subject to the relations
d(fg) = fdg + gdf for f,g € k, and dr = 0 for r € Z (here, we
mean the image of r under the map Z — k). For finite fields and num-
ber fields, this is no obstruction since it is easily seen that Qi 7= 0, but for
k = C, for example, we see that K° /1“2 is very large. So K*° differs wildly
from I and it is therefore not easy to compute the unipotent completion
of K.

Still, T conjecture that SI.,(k[[7T]]) is the correct answer all the time. In
fact, I make the following, more ambitious, conjecture.

CONIECTURE 43.2. Let k be a field and let C be a smooth affine
curve over k. Denote the coordinate ring of C by A and assume
that C has a k-rational point with associated maximal ideal m C A. Let
p: SL,(A) — SL,(k) be induced by the isomorphism A/m — k. Finally, let A
be the m-adic completion of A. Then the completion of SL,(A) relative to p
is the group SLH(X).

I proved [2] that this is true if we replace A by the localization of A
at m. And, not surprisingly, it is true when k& is a number field [3].
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