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ALPERIN'S WEIGHT CONJECTURE

by Radha Kessar and Markus I i\< ki t m \n\

Let p be a prime number.

Conjecture 42.1. Let G be a finite group and let P be a Sylow

p-subgroup of G.

(i) The number of conjugacy classes of p'-elements of G is greater than

or equal to the number of conjugacy classes of NG(P)/P.

(ii) If P is abelian, then the number of conjugacy classes of G is greater
than or equal to the number of conjugacy classes of NG(P).

The above inequalities would follow from Alperin's weight conjecture [1]
which we describe now.

Let k be an algebraically closed field of characteristic p. For a finite

group H denote by l(kH) the number of isomorphism classes of simple
kH -modules, and by w(kH) the number of isomorphism classes of simple
projective kH -modules. The weight conjecture predicts the following

Conjecture 42.2. Let G be a finite group. Then

Qei

where I denotes a set of representatives of G-conjugacy classes of
p -subgroups of G.

Conjecture 42.2 comes in a block-wise version as well. The reformulation
of this conjecture in terms of alternating chains in [13] paved the way for

many extensions (see for instance [9], [10], [11], [16]). Despite having been

verified for many families of finite groups, including finite p -solvable groups,
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symmetric groups, and in some cases for finite groups of Lie type and some

sporadic simple groups (see for instance [2], [3], [4], [5], [6], [8], [12]), a

true understanding of Conjecture 42.2 or indeed of Conjecture 42.1 remains

elusive.

In its original form stated above, Alperin's weight conjecture is a numerical

equality interpreting the number of simple modules of a finite group or
a p -block in terms of the involved p -local structure. In subsequent years
structural approaches to this and related conjectures in terms of linear source:

modules [7], fusion category algebras [14], and cohomological invariants of
functors over certain finite categories [15], have emerged.

We briefly explain how 42.1 would follow from 42.2. By a theorem of
Brauer, l(kG) is equal to the number of conjugacy classes of p' -elements

in G, and the summand for Q — P on the right side of the equality 42.2 is

equal to the number of conjugacy classes of Ng(P)/P. Thus 42.2 implies the

inequality 42.1 (i). The inequality 42.1 (ii) follows from 42.1 applied to

centralizers of p -elements.
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