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PIECEWISE ISOMETRIES OF HYPERBOLIC SURFACES

by Pierre de la Harpe

What does the group of piecewise isometries of a surface look like

More precisely, let us consider compact Riemannian surfaces. Boundaries

(if any) should be unions of finitely many geodesic segments; there is no

reason to impose connectedness or orientability. For two surfaces M,N of
this kind, a piecewise isometry from M to N is given by two partitions
M — ULî and N — ULi Ni in polygons, and a family §§ : Mt —4 A/,-

of surjective isometries; two such piecewise isometries are identified if they
coincide on the interiors of the pieces of finer polygonal partitions. When
such a piecewise isometry exists, M and N are said to be equidecomposable.
Piecewise isometries of a surface M to itself constitute the group of piecewise
isometries Vl(M). We want to stress that a piecewise isometry need not be

continuous. The group VT(M) is a two-dimensional analogue of the group
Vl{[0, IjlJ of exchange transformations of the interval (the transformations
themselves have been studied by Keane, Sinai, and Veech, among others, and

the group by Arnoux, Fathi, and Sali — see for example [7] and [1]).
It is well known that two Euclidean polygons are equidecomposable if and

only if their areas are equal (compare with Chapter IV in Hilbert's Grundlagen
der Geometrie [9]). This carries over to polygons in the hyperbolic plane
(See [4] for a proof). In particular, any orientable connected closed Riemannian
surface M of genus g > 2 and of constant curvature -1 is piecewise isometric
to a hyperbolic polygon, of area 4tx{g- 1). Thus, viewed as an abstract group,
TI(M) depends only on the area t Of M, and can be denoted by Vlt. There

are many ways to check that it is an uncountable group, containing torsion

of any order and containing free abelian groups of arbitrary large ranks.

Observe that, if y < t, the group Vls embeds as a subgroup of Tlt (think
of a hyperbolic polygon of area y contained inside a hyperbolic polygon of
area t).
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I would like to understand more of the groups Vlt.

As a first question, are these groups pairwise isomorphic In particular,
are and V1%.K isomorphic (Recall that, for a Riemannian metric of
constant curvature -1, a closed surface of genus g has area 47x(g - 1).)

If s < t, is any injective homomorphism Vls —> Vlt conjugate to one

described above

Are these groups acyclic Simple Or if not with simple commutator

subgroups (Arnoux-Fathi and Sah have defined a homomorphism from the

analogous group VI([0,1]) onto AqR> reminiscent of the Dehn invariant
for scissors congruences, and it is known that the kernel is a simple group;
see [1]].

Should they be regarded as topological groups If yes for which topology
(Two candidates: the topology of convergence in measure, see e.g. [3], and

the weak topology discussed in [8].)

Similar questions make sense for other groups of piecewise isometries, for

example related to polygons in a round sphere, or in a flat torus, or related to

other spaces and appropriates pieces. The case of flat tori is usually phrased
in terms of Euclidean spaces or polytopes ; concerning this case, the little I am

aware of ([2], [5], [10]) is about particular piecewise isometries and not about

groups V1(M). One difficulty with other spaces is to choose an interesting
class of pieces when "polygon" or "polytope" have no clear meaning.

A bijection of a finitely-generated group onto a subset of itself which
is given piecewise by left multiplications can be viewed as a piecewise

isometry. Bisections of tliis form are important ingredients in the theory of
amenable groups (Tarski characterization of non-amenability by the existence:

of paradoxical decompositions, see e.g. [11] and [6]).

Piecewise isometries make sense for large classes of metric spaces, but the

corresponding groups and pseudogroups seem to have been little explored so
far in this generality.

I am grateful to Pierre Arnoux for his comments on the first version of
this short Note.
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