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THE GENUS OF A GROUP

by Karl GrùBSSERG

Localization methods arise in infinite group theory and also, in a seemingly
different incarnation, in integral representations of finite groups. Is there a

common generalization
Let 7T be a finite set of primes. A group P is it -local if x H* a? is

bijective for all integers m coprime to it. Every (abstract, discrete) group G

has (essentially) a unique it-localization 4>v'. G -4 G- (meaning (J- is

it -local and any homomorphism from G to a 7r-local group factors uniquely
through % Guido Mislin and Peter Hilton began the study of localizations

of finitely generated nilpotent groups that led Guido to introduce the genus
of a finitely generated nilpotent group [2], With this as a starting point, we
make the following definition (it coincides with Guido'S for finitely generated

nilpotent groups whose centre has finite index): the genus G(G) of G is

all isomorphism classes \H] of groups H such that H is finitely generated
and residually Of finite exponent and Hw ~ Gv for all finite sets it ; write
HVG. (If all structural requirements on H were dropped, then Q(G) would
be infinite for all G, which would not be a satisfactory situation.)

Guido's paper [2] is concerned with finitely generated nilpotent groups
whose centre has finite index. What happens for finitely generated abelian-by-
finite groups This question was successfully investigated by Niamh O" Sullivan

tm. Mr PB* Her techniques involve the module version of genus.

Recall that if Q is a finite group and A,B are Zg-lattices, then A V B

(same genus) means that An £y Bw for all finite sets it. A pointed lattice is a

pair (A,x) where x e H2(Q,A) and (A,x)V(ß,y) means there exists a ß-map

/: A Ms B with finite cokernel of order prime to \Q\ (such maps exist if,
and only if, A MB) and /*(x) =i y. Let Q(A,x) denote all isomorphism classes

[ZJ, y] such that (A,„t) V (B,y).
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Let G be: a finitely generated abelian-by-finite: group, choose m so that

^ := W I 9 G G) is free abelian of finite index in G and write Q — G/A.
Let x be the cohomology class of the resulting extension.

(1) There is a well defined, surjective map 9: {liA.x) -» Q(G) and G(A,x)
is finite.

(2) There is an explicitly defined subgroup J of AutQ that acts on G(A,x)
and 9 induces a bijection Q(A,X)/J g(G).

The point here is that the left hand side of (2) is better suited for calculations
than is the right hand side: cf. O'Sullivan's papers for explicit examples,

including new derivations of some of Guido's results.

What is the natural level of generalization for this point of view For

example, do the basic connexions that we have outlined cany over to the

class of polycyclic-by-finite groups A relevant fact here is that if G is

such a group, then the number of isomorphism classes of polycyclic-by-finite
groups H in the genus of G is known to be finite [1],

When Guido wrote his 1974 paper he added some problems at the end;
so he clearly thought there was unfinished business here5). I rather think that

this is still true today.
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