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THE GENUS OF A GROUP

by Karl GRUENBERG

Localization methods arise in infinite group theory and also, in a seemingly
different incarnation, in integral representations of finite groups. Is there a
common generalization ?

Let m be a finite set of primes. A group P is w-local if x — X" is
bijective for all integers m coprime to 7. Every (abstract, discrete) group G
has (essentially) a unique w-localization ¢.: G — G, (meaning G, 18
7-local and any homomorphism from G to a w-local group factors uniquely
through ¢, ). Guido Mislin and Peter Hilton began the study of localizations
of finitely generated nilpotent groups that led Guido to introduce the genus
of a finitely generated nilpotent group [2]. With this as a starting point, we
make the following definition (it coincides with Guido’s for finitely generated
nilpotent groups whose centre has finite index): the genus G(G) of G is
all isomorphism classes [H] of groups H such that H is finitely generated
and residually of finite exponent and H, ~ G, for all finite sets m; write
Hv G. (If all structural requirements on H were dropped, then G(G) would
be infinite for all &, which would not be a satisfactory situation.)

Guido’s paper [2] is concerned with finitely generated nilpotent groups
whose centre has finite index. What happens for finitely generated abelian-by-
finite groups ? This question was successfully investigated by Niamh O’Sullivan
([3], [4], [5]). Her techniques involve the module version of genus.

Recall that if @ is a finite group and A, B are Z(Q-lattices, then AV B
(same genus) means that A, ~ B, for all finite sets 7. A pointed lattice is a
pair (A, x) where x € H>(Q,A) and (A,x)V(B,y) means there exists a Q-map
f+ A — B with finite cokernel of order prime to |Q| (such maps exist if,
and only if, AV B) and f.(x) = y. Let G(A,x) denote all isomorphism classes
[B,v] such that (A, x)V (B,v).
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Let G be a finitely generated abelian-by-finite group, choose m so that
A:={(g" | g € G) is free abelian of finite index in G and write Q@ = G/A.
Let x be the cohomology class of the resulting extension.

(1) There is a well defined surjective map 0: G(A,x) — G(G) and G(A,x)
is finite.

(2) There is an explicitly defined subgroup J of AutQ that acts on G(A, x)
and 6 induces a bijection G(A,x)/J — G(G).

The point here is that the left hand side of (2) is better suited for calculations
than is the right hand side: cf. O’Sullivan’s papers for explicit examples,
including new derivations of some of Guido’s results.

What is the natural level of generalization for this point of view ? For
example, do the basic connexions that we have outlined carry over to the
class of polvevelic-by-finite groups 7 A relevant fact here is that if G is
such a group, then the number of isomorphism classes of polycyclic-by-finite
groups H in the genus of G is known to be finite [1].

When Guido wrote his 1974 paper he added some problems at the end;
s0 he clearly thought there was unfinished business here ). I rather think that
this is still true today.
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