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SELF-SIMILAR CONTRACTING GROUPS

by Rostislav 1. GRIGORCHUK and Volodymyr NEKRASHEVYCH

Let X be a finite set (alphabet) and let X* be the free monoid generated
by it. We imagine X* as a rooted tree with the root equal to the empty word
and a word v connected to every word of the form wvx for x € X.

DEFINITION 35.1. A self-similar group is a group G acting faithfully
on X* such that for every ¢ € G and x € X there exist h € G and ve X
such that

g(xv) = yh(v)

for all v e X*.

It follows that for every g € G and u € X there exists /i € G such that

gluv) = glwh(v)

for all v € X*. The element £ is denoted g|, and is called the restriction
of g in v.

DEFINITION 352, A self-similar group G acting on X* is called con-
tracting if there exists a finite set N C G such that for every g € G there
exists n € N such that g|, € N for all » € X* of length |v| > n.

CONJECTURE 35.3. Finitely generated contracting groups have solvable
conjugacy problem.

CONIJECTURE 354. Finitely generated contracting groups have solvable
membership problem.
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REMARK 35.5. It is known that the word problem in contracting groups
is solvable in polynomial time.

The next three conjectures are ordered by their strength (the last one is
the strongest).

CONIECTURE 35.6. Contracting groups have no non-abelian free sub-
groups.

CONIECTURE 35.7. Contracting groups are amenable.

CONJECTURE 35.8. A simple random walk on a confracting group has
Zero entropy.

CONJECTURE 35.9. The group generated by the transformations a and b
of {0,1}* defined by

aOw) = lw, a(lw)=0a(w), bOw)=0b(w), b(lw)= la(w)

is amenable.

REMARK 35.10. This group is not contracting; however, it is known (due
to a result of S. Sidki [4]) that this group does not contain a free subgroup.
The graphs of the action of this group on the boundary of the tree X™ have
intermediate growth.

The next conjecture was suggested by Zoran Suni¢.

CONJECTURE 35.11.  The group Hy generated by the transformations a;
of {1,2,...,k}*, for 1 <i<j<k, defined by

ai(iw) = jw, ay(jw) =iw, a;lkw) =kag(w)  for k#1i,j

is non-amenable for k> 4.

REMARK 35.12. 'The group H; models the “Hanoi tower game” on k pegs.
The graph of its action on the nth level of the tree {1,...,k}* coincides
with the graph of the game with # discs [3]. It is also not contracting, but the
graphs of its action on the boundary of the tree are of intermediate growth.
The group H; is amenable and the graphs of the action on the boundary have
polynomial growth.
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Following Furstenberg we say that a group is Tvchonoff if it has a fixed ray
for any affine action on a convex cone with compact base [1]. A definition of
branch groups can be found in [2]. Every proper quotient of a branch group
is virtually abelian.

CONIJECTURE 35.13. A branch group G is Tvchonoff if and only if G is
indicable*) and every proper non-trivial quotient is Tvchonoff.

ADDED IN PROOF.  Conjecture 35.6 is now a theorem by the second author. See

V. NEKRASHEVYCH. ‘Free subgroups in groups acting on rooted trees’. Preprint arXiv :
math.GR/0802.2554 (2008).
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4) An infinite group is called indicable if it admits a homomorphism onto Z.
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