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THE FUNDAMENTAL GROUP AT INFINITY

by Ross GEOGHEGAN

Let G be a finitely presented group which has one end. There are three
flavors of the question: homological, homotopical, and geometric.

THE HOMOLOGICAL FLAVOR

QUESTION 33.1. Is it true that the abelian group H*(G,Z.G) is free ?

REMARKS 33.2. (i) HY(G,ZG) and H'(G,ZG) are trivial.

(i) H*(G,ZG) is either trivial, or is infinite cyclic, or is an infinitely
generated abelian group ([5]).

(iii) H"(G,ZG) need not be free abelian when n > 2 [1], [4].

(iv) H*(G,ZG) need not be free abelian when G is only finitely generated.

Perhaps TP, could replace “finitely presented” in Question 33.1.

THE HOMOTOPICAL FLAVOR

Let X be any (one-ended) complex on which G acts cocompactly as a
group of covering transformations.

QUESTION 33.3. [s it true that the “fundamental group at infinity” of X
is semistable (aka Mittag-Leffler) ?

An inverse sequence of groups {G,} is semistable or Mittag-Leffler if,
given any n, the sequence of images of the groups G,y in G, is eventually
constant. We choose a proper ray w: [0, 00) — X and a filtration of X by finite
subcomplexes K,,. By reparametrizing w we can assume w([r,o0)) C X — K,
for all r. Let G, denote the fundamental group of the complement of K,
based at w(n), and let f,: G,+1 — G, be induced by inclusion using change
of base point along w. Question 33.3 asks if this {G,} is semistable.
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REMARKS 33.4, (i) The answer only depends on G, not on X nor on the
filtration nor on the base ray; so I can rephrase the homotopical question as

QUESTION 33.5. Is G semistable at infinity ?

(i) The answer is known to be ves for many classes of groups. For example,

all of the following imply that G is semistable at infinity:

e ( sits in the middle of a short exact sequence of infinite groups where
the kernel is finitely generated [7].

e ( is a one-relator group [9].

+ ( is the fundamental group of a graph of groups whose vertex groups are
finitely presented and semistable at infinity, and whose edge groups are
finitely generated [8].

(iii) There are positive answers coming from topology. Assume X admits
a Z-set compactifying boundary. Then the answer is ves if and only if this
(connected) boundary has semistable pro-m; in the sense of shape theory
(the technical term is “pointed 1-movable™); examples are Coxeter groups [3].
This 7 -condition holds if the boundary is locally connected; examples are
hyperbolic groups [2], [10].

(iv) The answer is unknown for CAT(0) groups (as far as I know).
The homological Question 33.1 is equivalent to:

QUESTION 33.6. Is it true that the inverse sequence of iniegral first
homology groups of the spaces X — K, is semistable ?

Thus Question 33.1 is the abelianized version of (Question 33.3, and is
perhaps more likely to have a positive answer.

THE GEOMETRIC FLLAVOR

QUESTION 33.7. Is it true that any two proper rays in X are properly
homotopic ?

This is so deliciously simple and “right” that it hardly needs comment*)
except to say that it is equivalent to Question 33.3 [7].

3) My book [6] contains a much more detailed account of what I summarize here.
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FINAL REMARK. There are lots of contractible locally finite 2-dimensional
complexes X having one end whose fundamental groups at infinity are not
semistable; for example the infinite inverse mapping telescope S associated
with a dyadic solenoid (suitably coned off to make it contractible). The problem
is to know if any of these admit a cocompact, free and properly discontinuous
group action. We know that § does not admit such an action.
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