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THE FRIEDLANDER-MILNOR CONJECTURE

by Eric M. Friedlander

The conjecture of the title of this note has resisted 40 years of effort and

remains not only unsolved but also lacking in a plausible means of either

proof or counter-example.
The original form of this conjecture is one I struggled with during my

days at Princeton in the early 1970's:

Conjecture 32.1. Let G(C) be a complex reductive algebraic group and

let G(C)S denote this group viewed as a discrete group. Uten the map on

classifying spaces of the continuous (identity) group homomorphism

h G(Cf -4 G( C)

induces an isomorphism in eohomology with finite coefficients Z/n for any
n > 0 ;

:f ; H*(BG(C), Z/n) ~ H*(G(C)S ,Z/n).

Conjecture 32.1 is easily seen to be true for a torus (i.e., G — G*r for
some r > 0 ], but even the simplest non-trivial case (that of G — SL2) remains

inaccessible.

Guido and I published 5 papers together, all in some sense connected

with this conjecture. We used the integral form Gz Of a complex reductive

algebraic group (which is a group scheme over SpecZ) in order to form the

group G(F) of points of G with values in a field F. Most of our joint work
investigated various relations between G(C) and G(F), the case F —¥p (the

algebraic closure of a prime field Fp being of special interest.

One knows from considerations of étale eohomology that the, eohomology
Of BG(C) with Z/n coefficients is naturally isomorphic to that of the étale
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homotopy classifying space of the: algebraic group Gp for F algebraically
closed of characteristic p > 0 :

H*(BG(C),Z/n) ~ // I (/>'(/'/. f - Z «). provided that (p,n) — 1.

Ulis enables one to construct a map H*(BG(C),Z/n) —h H*(G(F),Z/n)
relating the cohomology with mod-« coefficients of the classifying space
of G(C) with the cohomology with mod-« coefficients of the discrete

group G(F) for any field F.
The following is a generalization of Conjecture 32,1, one that appears

likely to be true if and only if Conjecture 32.1 is valid.

Conjecture 32.2. Let G(C) be a complex reductive algebraic group,
let n > 0 be a positive integer, and let p denote either 0 or a prime
which does not divide n. Then for any algebraically closed field F of
characteristic p, the comparison of the cohomology of BG(C) and G(F)
determines an isomorphism

H*(G(FfZ/n) ce H*(BG(C), Z/n).

In our first paper together [1], Guido and I began our investigation of
"locally finite approximations" of Lie groups. We also formulated the following
conjecture and proved it equivalent to Conjecture 32.2.

CONJECTURE 32.3. Let F be an algebraically closedfield ofcharacteristic

p > 0 and let « > 0 be a positive integer not divisible by p if p > 0. Then

Conjecture 32.2 is validfor G(F) ifand onlyfor every 0 x <E H*(G(F), Z/«).,
there exists some finite subgroup ir c G(F) such that x restricts non-trivially
to // (-.Z «!.

The most familiar form of the "Friedlander-Milnor Conjecture" is that

formulated by John Milnor in |2], In that paper, Milnor verifies this conjecture:
for Solvable groups.

Conjecture 32.4. Let G be a Lie group with finitely many components
and let G6 denote the same group now viewed as a discrete group. Then

for any integer n > Ö, the continuous (identity) map i: Gs -¥ G induces an

isomorphism on cohomology with mod-n coefficients:

i* : H* (BG, Z/«) ~ H* (Gs, Z/«).
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We remark that the most substantial progress to date: on these conjectures
is due to Andrei Suslin, who proves a ustable" version of Conjectures 32.1

and 32.2 in [3|.

REFERENCES

[1] FRIEDLANDER, È. and G. Mislin. Cohomology of classifying spaces of complex
Lie groups and related discrete groups. Comment. Math. Helv. 59 (1984),
347-361.

[2] MILNOR, J. On the homology of Lie groups made discrete. Comment. Math.
Helv. 58 (1983), 72-85.

[3] Si'M.IN. A. On the K-theory of local fields. J. Pure Appl. Algebra 34 (1984),
301-318.

E. Eriedlander

Department of Mathematics
Northwestern University
Evanston, IL 60208
USA
e-mail : eric@math.northwestern.edu


	The Friedlander-Milnor conjecture

