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RIGIDITY AND REALIZABILITY FOR H;(PSL(2,C)%: Z)

by Johan DUPONT and Walter ID. NEUMANN

This discussion collates work of Bloch, Bokstedt, Brun, Parry, Sah, Suslin,
Wigner, Yang, ourselves, and others. For more details and detailed references
see Dupont’s book [1] or Neumann’s survey [2].

CONJECTURE 28.1 (Rigidity Conjecture for Hy(PSL(2,C)*;Z)). The group
H3(PSL(2,C):Z) is countable (the ° means discrete topology).

This conjecture is equivalent to the conjecture that the map
Hy(PSL(2,Q)°; Z) — Hy(PSL(2,C)’; 7)

is an isomorphism. It is also equivalent to the corresponding rigidity conjecture
for Ki(C), which has been formulated in greater generality by Suslin, and
it is implied by some much more far-reaching conjectures of Ramakrishnan
in algebraic K-theory, and of Zagier in number theory.

It is thus a little drop in a big bucket. However, the latter conjectures seem
currently unapproachable, so this drop is worth pursuing. Moreover, it has
beautiful geometry attached, so it represents a combination very appropriate
to our honoree, Guido Mislin.

One aspect of the geometry is scissors congruence. The “Dehn-Sydler
theorem™ gave closure to Hilbert’s 3rd problem by showing that volume
vol(P) and Dehn invariant 0(P) determine the scissors congruence class of a
Euclidean polytope P. Here, 6(P) € R ®q R/7Q is defined as the sum of
(length) & (dihedral angle) over the edges of P.

The corresponding result for polytopes in H> or S* remains conjectural.
If, for X = H® or 8%, we denote by T(X) the kernel of Dehn invariant &
on the Grothendieck group of X-polytopes modulo scissors congruence, then
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asking if wol and & classify X-polytopes up to scissors congruence becomes
the question whether

vol: D(X)— R

is injective. This map has countable image (e.g., [1] chapters 10 and 12), so
its injectivity would imply countability of D(X). On the other hand, there is
a natural isomorphism:

(%) H;(PSL(2,C)°) = D(SY/Z © DH?).

So countability of both D(H?) and D(S*) is equivalent to Conjecture 28.1.
In fact, countability of either one suffices. (In particular truth of the “Dehn—
Sydler theorem™ for H®-scissors congruence would imply Conjecture 28.1.
But this is injectivity of wol; D(H?) — R, which seems currently no more
approachable than Zagier’s conjecture, which wildly generalized it.)

Any compact hyperbolic 3-manifold M = H?/T" has a “fundamen-
tal class” BM) € Hi(P SL(2,C)5;Z): the image of the fundamental
class [M] € Hiz(M) = H3(I') under the map induced by the inclusion
' — Isom(H?) = PSL(2,C). The image of S(M) in D(H?) for the above
splitting (=) is just the scissors congruence class of M, but the image in
D(S3)/Z is more mysterious. It is orientation sensitive and its volume gives
the Chern—Simons invariant of M.

The class S(M) is defined more generally for any finite volume M = H? /T
(using a natural spliting Hz(PSL(2,C)°,P) = Hi(PSL(2,C)) & Hy(P)
where P is the parabolic subgroup), and lies in Hsz(PSL(2, Q)%); see [3].

The validity of the following rather wild conjecture would clearly imply
Rigidity Conjecture 28.1.

CONJECTURE 28.2 (Realizability Conjecture). Hs(PSL(2,C)’) is gener-
ated by fundamental classes of hyperbolic 3-manifolds.

The torsion of Hz(PSL(2,C)?) is Q/Z (it is in the summand D(S*)/Z,
where it is generated by lens spaces), while H3(PSL(2,C)5)/ Torsion is,
amazingly, a Q-vector-space (of infinite dimension). So a slightly less wild
version of Conjecture 28.2 is

CONJECTURE 28.3 (Realizability over Q). Hs(PSL(2,C)*)/Torsion is
generated over Q by fundamental classes of hyperbolic 3-manifolds.
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Neither version is likely to be useful for Conjecture 28.1: each is
equivalent to the same conjecture restricted to Hz(P SL(2,Q)%) together with
Conjecture 28.1, which look like rather independent conjectures.

There is no strong evidence for Conjecture 28.2 or the weaker 28.3. The
only justification for going out so far on a limb is that the conjecture is enticing,
and there is some very weak experimental evidence for the Hz(P SL(2,6)5 )
version of the conjecture (and the Rigidity Conjecture is widely believed). One
could formulate the conjecture just for the first summand in (x) — scissors
congruence — but computational evidence suggests that this is no more or
less likely to be true than the full conjecture.
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