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LIOUVILLES THEOREM REVISITED

by Ruy TOJEIRO

ABSTRACT. Liouville's theorem turns out to be equivalent to a rigidity theorem for
isometric immersions of open subsets of Euclidean space of dimension # 2> 3 into the
light cone of Minkowski space of dimension (72 2). We give a short direct proof of
this theorem, thus yielding a simple new proof of Liouville’s theorem. Understanding
where things go wrong in the case » = 2 leads to an interesting characterization of
the complex exponential function

1. INTRODUCTION

A fundamental result in conformal geometry is the following well known
theorem of Liouville [Li]:

THEOREM 1. Let f: U — R" be a conformal map defined on a connected
open subset of Euclidean space R" of dimension n > 3. Then f = L|y is the
restriction to U of a similarity or the composition f = IoLly of such a map
with an inversion with respect to a sphere of unit radius.

The importance of Liouville’s theorem may be measured, if not by its
strong implications in conformal geometry, by the number of proofs available
in the literature; see e.g. [H-J], [Ja], [Ku], [Ma], [Ne], [Sp] and [Fr]. Most of
them, including the one for n = 3 known as the "classical" proof, split into
two parts, in the first of which one proves that a conformal map in dimension
n > 3 has the property that ( pieces of ) spheres and affine subspaces are carried
into (pieces of ) spheres or affine subspaces. The proof is then completed by a
lemma due to Mobius, according to which this property implies the conclusion
of the theorem; see e.g. [Sp], Vol. III, p. 310.
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In this article we use a different approach to Liouville’s theorem, based
on the fact that conformal maps on open subsets of R” are in correspondence
with isometric immersions of these subsets into the the light cone of
(n + 2)-dimensional Minkowski space. We provide an elementary account
of this correspondence and establish the equivalence of Liouville’s theorem
and a rigidity theorem for such isometric immersions (see Theorem 5 below).
Then we give a short direct proof of this theorem. Besides yielding a simple
proof of Liouville’s theorem, some of the underlying ideas have shown good
potential for generalizations; for instance, they have recently been used in
[Toi;] and [Tos] to study conformal immersions into Euclidean space of
Riemannian and warped products of Riemannian manifolds.

We have included a section where we discuss R. Nevanlinna’s proof of
Liouville’s theorem [Ne] in the light of the ideas developed in this article.

Understanding where things go wrong in the case n = 2 leads to the
following interesting characterization of the complex exponential function:

THECREM 2. Let f: U — R? be a conformal map defined on the connected
open subset U C R%. Assume that one family of coordinate curves is mapped
by f into a family of (pieces of) circles or straight lines. Then there exist
an inversion I with respect to a circle of unit radius, a similarity L and a
composition H of a dilation, a translation and reflections in the coordinate
axes and the line y = x, such that f = I oL oexpoH|y, or else f is such
a composition with possibly some of its components replaced by the identity
map.

ACKNOWLEDGEMENTS. We are grateful to the referee for his careful
reading of the manuscript as well as for several useful and appropriate
comments and remarks. We also would like to acknowledge our indebtedness
to the referee of our paper [To;], some of whose suggestions have also been
useful here.

2. CONFORMAL GEOMETRY IN THE LIGHT CONE

If R*™t? is endowed with a Lorentz scalar product
{v.wh) = —~1uwo -+ VW + .. Upp 1 Wt ]

for ¢ = (vg,....05p1) and w = (wg....,wyy1), then it becomes the
(n + 2)-dimensional Minkowski space, and is denoted by L2 A vector
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v ¢ L*? is said to be space-like, light-like or time-like according as
{o. v} >0, {w,o}) =0 or {{z. v} < 0, respectively. The same terminology
is used for a subspace V < L*? depending on whether the restriction of
{ , % to V is positive-definite, degenerate (i.e., VI1V+ # {0}) or Lorentzian,
respectively. The set of light-like vectors

vl = {p e L' (p,p) = 0}
is called the light cone of L*t?. The intersection
E* =E* = {p e V"L {(p,w) =1}

of V**! with the affine hyperplane { p. % = 1 is a model of n-dimensional
Euclidean space for any = € V**! Namely, fix po € E* and a linear isometry
A: R" = {po.w}+. Then the map ¥ = Yo ima: R~ EM C L*t? given by

x € R” v+ po -+ A(X) — % |x|2'u;
is an isometry, as follows by computing
() dPX = AX) — (X, x)w for all x,X € R”.

We call ( pg,w,A) an admissible triple. Notice that if ( pg,w:, A) and ( pg, %, A)
are admissible triples, then the linear map given by T(pg) = po, T(w) = &
and ToA = A is in Oy(n + 2), that is, is orthogonal with respect to {{, 3,
and satisfies 7 o Wy .4 = ‘I’ﬁﬂﬁj.

We also obtain from (1) that the normal space TlIIM;_ of W at any x € R”,
as an isometric immersion into L**?, is the time-like plane spanned by ¥(x)
and . Moreover, denoting by ¥ and ¥ the usual derivatives in R” and

L™2 respectively, we obtain

2 VydPX) = d¥ VyX + { Vyd PO, wHW + { VydP(X), $hu:
= d¥VyX — (X, Vw,

hence the second fundamental form agy: TM x TM —+ TEM of W is given
by

3) au(X, 1) = VydPX) — d® TyX = — (X, V.

Here, and throughout the paper, we use the abuse of notation of also denoting
by V the pulled-back connection on the pulled-back bundle W*7L*t? that

is, ¥V will also denote the induced derivative of vector fields in L™t “along
W (that is, sections of ¥*7TL**2) with respect to vector fields in M.
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2.1 THE SPACE OF SPHERES

Hyperspheres in Euclidean space R” have a neat description in its model E*
(see e.g. [Be], Chapter 20, Vol. 2): let S ¢ R" be a hypersphere with
(constant) mean curvature 2 with respect to a unit normal vector field #.
Differentiating the map p: S — L7t2 given by p(x) = d¥(x)ax) +A¥P(x) and
using (2) we get

dpX) = d¥ Vxn + hd¥(X) = d¥(~hX) + hd¥(X) = 0,

hence g is a constant unit space-like vector z € 122 with {(¥). 7} = 0
for all x € §. It follows that P(S) = E* ™ {'U}‘L, and from now on we write
simply W(S) = S. Observe that S = E” N {v}+ is an affine hyperplane iff
0 = h = {{v,w}) . Notice that changing the unit normal vector field # by a sign,
and hence the corresponding mean curvature %, also makes the unit space-like
vector 7 to change its sign. Thus, unit space-like vectors in L**? are in
one-to-one correspondence with oriented hyperspheres or affine hyperplanes
of R*, hence the space of oriented hyperspheres and affine hyperplanes of
R” is naturally identified in this way with de Sitter space S'f“*"l of all unit
space-like vectors of L*+2.

The relative position of two hyperspheres has a simple description in this
model: given hyperspheres or affine subspaces S; = E* () {i;}+, 1 < i< 2,
then they intersect transversally, have a unique common point (or are two
parallel affine hyperplanes) or do not intersect iff the subspace spanned by
v and w2 1s space-like, degenerate or time-like, respectively. In the first
case, if ni and ni are the unit normal vectors of S7 and S, respectively,
at x € S1 NSy, then {nl. 72y = {1, 2,%. In particular, S; and S, intersect
orthogonally iff (1.2} = 0.

Let § = E® 1 {r}~ be a hypersphere with (Buclidean) center xo
and radius r, onented by its inward pointing unit normal vector field
n(x) = (xp - x)/r, with corresponding mean curvature % == 1/r. Using (1), we
obtain that # = dW(x) a(x) + AP(x), x € S, is given by

1
4) v = —W(xo) + .
F 2

In particular, if F = ($*)yes is a family of concentric hyperspheres and
§* = E*N{v*}* for unit space-like vectors v*, then the subspace Vi ¢ L2
spanned by all #* is a two-dimensional time-like subspace spanned by the
light-like vectors : and W(xp) € E*, where Xy is the common center of all g,
Conversely, 1f F 1s a family of hyperspheres whose associated subspace Vi
is a two-dimensional time-like subspace containing #:, then 7 is a family of
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concentric hyperspheres whose common center is the point xg € R” such that
W(xg) is the unique light-like vector in E? 1 V.

On the other hand, if S = E” 1 {¢}~ is an affine hyperplane oriented by
a unit normal vector #n, then # = d¥{x)n, x € S, 1s given by v = A(n) — cu,
where ¢ € R is the constant value of {(m.x), x € S. Therefore, for a
family F of parallel affine hyperplanes the corresponding subspace Vi is a
two-dimensional light-like subspace containing . Conversely, any family F
of hyperspheres or affine hyperplanes having a two-dimensional light-like
subspace containing #: as its associated subspace Vg is a family of parallel
affine hyperplanes.

2.2 CONFORMAL MAPS INTO R” AS ISOMETRIC IMMERSIONS INTO V#+1

Given a conformal immersion G: M — V! with conformal distortion
w: M- R ={t¢R:t>0} of a Riemannian manifold M, which means
that

{AG( )X, dG(p)Yy = ¢HX. V) for all pe M and X,V € TyM,
then for any smooth function z: M - RY the map
Gyt M = V' p s i p)G(P)

is also conformal with conformal distortion g @ since dG(X) = du(X)G +
#dG(X), we get

{dG (X, dG (N} = (#{dG(X), dG(Y)}

because ({G,G» = 0 whence {dG(X),Gy =0 for any X € TM.
In particular, any conformal immersion f: M -+ R” with conformal
distortion : M - RY gives rise to an isometric immersion

I(f) = Lyl f) = (Wof)—11 M AU

Conversely, if F: M — V**l is an isometric immersion whose image does
not intersect the line Ru = {tw : t € R}, define C(F) = Cp, iy a(F): M — R”
by
Col(F)=IIoF,

where II = II,,: v*tl \ R, — EZ is the projection onto E” given by
II(p) = p/{ p,w}}. Since II is easily checked to be conformal with conformal
distortion ¢n(p) = { p.wh)~!, it follows that C(F) is also conformal with
conformal distortion @ o F = ({(F, w) 1.

Clearly, we have Cpy uwalZpywalf ) = f and Ly o alCpy,waF)) = F for
any conformal immersion f: M -+ R" and for any isometric immersion
F: M- v with FOn ¢ v R
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23 T ¢ O1n+2) AS A CONFORMAL MAP IN R”

Throughout this subsection we assume that an admissible triple (pg. ., A)
has been fixed and omit the corresponding subscripts for simplicity of notation.
By the discussion in the preceding subsection, any T € Oq(n+-2) gives rise to
a conformal map C(7T ¢ ¥) in R* (minus the unique point in (T o )y "L Ru)
if Tw and w are not colinear). We will show that the conformal maps so
obtained are precisely the compositions [ oL of a similarity and an inversion
with respect to a hypersphere (which can always be taken with unit radius).
We start with some special cases.

PROPOSITION 3. The following holds:

() If R € O1(n+ 2) is the reflection R(p) = p — 2{p.vHv with respect
to the hyperplane in 12 orthogonal to the unit space-like vector v, with
{v,wh # 0, then

(5 C(RoW)y =1

is the inversion with respect to the hypersphere S = E" 1 {v}+.
() If G € Oy(n + 2) satisfies G(w) = dw for some A ¢ RY | then

(6) C(GoW) =L

Jor some similarity L of ratio A. Conversely, given any similarity L. of ratio
A € RY there exists G € Oy(n+ 2) satisfying G(w) = xw such that (6)
holds. In particular, isometries of R correspond in this way to the elements
of Oy(n -+ 2) that fix w.

Proof. (i) Writing » as in (4) in terms of the center xo and radius r of
S = E"{v}—, a straightforward computation yields

. — xof? 1
Ro W) = W) — 2(P), vhe = %( Po + AUI(x)) ~ EEI(x)F'w),,
where ' )
1) = % wzﬁﬂ % # X0

is the inversion with respect to S. Thus I, s R W = Wo !, which gives (5).

(i) The map L = ¥~1cII,, oTsW: R” — R” has conformal distortion A,
hence is a similarity of ratio A. Thus IL, T o ¥ = Wo L, which yields (6).
For the converse we use that any similarity 7. of R™ of ratio A is given by
L(x) = AB(x) + xp for some xp € R” and some B € O(n). Define
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o : L, 2
2o = X(PO + Axp — ifxof )
and @ = Aw. Then po,w € V™ and {p, @) = 1. Moreover, A: R* —
L*"2 given by

AX) = ABX)) — (B(x),,xo}w
is a linear isometry onto {po,#%}*, hence (pp,#,A) is an admissible triple.
Let G € Oy(n+2) be defined by G(pg) = po, Gw) = @ and Go A = A.
Then it is easily checked that

1
W(L(x) = po + ALK —~ EIL(X)EZ'H; = AG(P()),

which is equivalent to (6). []
We now consider the general case.

PROPOSITICN 4. For any T € Oq1(a + 2) there exists a composition I o L
of a similarity L. and an inversion [ with respect to a hypersphere of unit
radius ( possibly with I replaced by the identity map) such that

(7) C(ToWy=1Tol.

Conversely, given any composition 1oL of a similarity and an inversion, there
exists T € O1(n + 2) such that (7) holds.

Proof. Define (pp.%.A) by po = T(po), % = T(w) and A = T o A,
If % = Aw for some A € RY, the statement follows from Proposi-
tion 3(ii) (with I replaced by the identity map). Otherwise, consider the
reflecion R(p) = p — 2{p.v}v determined by the unit space-like vector
v = {{w,wh @ + (1/20w, and let G € O1(n +2) be given by

G(w) = R@p) = —(1 /{5, whw., G(po) = R(Pp) and GoA = RoA.

Then RoG takes w to 4%, py to po and RoGoA = A, whence RoG = T.
By Proposition 3(i), the map C(R ¢ ¥) = ] is an inversion with respect to
the hypersphere of unit radius S = E* 1\ {v}", whereas C(Go W) =L is a
similarity of ratio A = —(1/2){{(zz,w} by Proposition 3(ii). Then (7) follows
from

(B) I, s T oW =1l,0RcGoW=1Il,0RoWolL=Woslsl,

For the converse, let R and G correspond to I and L by parts (i) and (i)
of Proposition 3, respectively, and set 7 = R o . Then (7) holds, as follows
again from (8). [
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3. A RIGIDITY THEOREM

In this section we prove the following ngdity result for isometric
immersions F: U ¢ R® - V#tl > 3, and show that it is equivalent
to Liouville’s theorem.

THECREM 5. Let F: U — V¥ be an isometric immersion of a connected
open siubset of R*, n » 3. Then F = lpﬁnm‘:fl!U Jor some admissible triple
(Po. . A).

Thus, if an admissible triple (pg.:,A) is fixed, then Theorem 5 states that
any isometric immersion F: U — V*t1 is given by F = ToW, .. a|v for some
T < O1(n -+ 2). In other words, the isometric immersion lppg,?f;A!U 1s rigid,
that is, it 1s unique up to compositions with orthogonal linear transformations
of L2,

First we prove the equivalence with Liouville’s theorem.

3.1 EQUIVALENCE BETWEEN LIOUVIILE'S THEOREM AND THEOREM 5

Let f: U — R" be a conformal map on a connected open subset
of R*, » » 3. Choose some admissible triple (pg,w.A) and set F =
LoganalL 1 U 3 L Assuming Theorem 5 we obtain that F = Tc‘PpM;,AIU
for some T & Oy(r -+ 2). Then

f e Cpu,?f}A(F) bz Cpg,?f;,A(T o IIIPU,?UA)EU 5
and the conclusion of Liouville’s theorem follows from Proposition 4.

Conversely, given an isometric immersion F: U — V*! of a connected
open subset of R* 5 > 3, set f = (5 . a(F) for some admissible triple
( po.i. A). By Liouville’s theorem, either f = L|y is the restriction to 7 of
a similarity or the composition f == I o L]y of such a map with an inversion
with respect to a sphere of unit radius. It follows from Proposition 4 that
F = Cpp AT 0 By )|y for some T € O1(n 4 2), hence

o ZW!QI;A(‘]C) B TQIIng,w,AEU'
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3.2 PROOF OF THEOREM 5

The key part of the proof is the following lemma.

LEMMA 6. F is umbilic, that is, there exists a normal vector field i
Such that

(9) ap(X, 1) = —(X, Y5, forall XY € R".
Proof. 1t suffices to prove that
ap(X,Y) =0 forall X,V € R” with (X, ¥} = 0.

First notice that the normal space of F' at any x € U 1s a time-like plane that
contains the position vector F(x), as follows by differentiating {F,F» = 0,
which gives ((dF(X),F¥ = 0 for any X ¢ R”. Differentiating once more yields

(10) §or(, 1), FY = ( FxdF(D, P = —(X. 1)

for all X.Y € R*®, where ¥ denotes the derivative of L**2, Now fix x € IJ
and X € R*, denote by # the affine hyperplane through x orthogonal to X
and define £: HNU - L*? by £ = dF(X). Then, for any ¥ € R* orthogonal
to X we have from (10) that

(11) dg(Y) = apX. ¥) = wx(D)F

for some one-form wy on # N [J. Regard ® = df as a one-form on
H N U with values in L*2. Then, its exterior derivative aey.z) =
VyO(Z) — VzO() — 8([V, 7Z]) satisfies

0= dO(Y,Z) = dux(¥, Z)F — wy(NAF(Z) — wx(Z)AF(Y) .

Taking linearly independent vectors Y,Z ¢ {X}+ (here we use n > 3 1)
and using that dF(Y), dF(Z) and F are linearly independent since F is an
immersion and the position vector F is a nonzero normal vector field, we get
wx(¥) = 0= wy(Z). Thus wy =0. [l

It 1s now an easy task to complete the proof of Theorem 5 Actually,
we argue in two different ways. The second argument is included because it
will lead us in the last section to the characterization in Theorem 2 of the
exponential function when n = 2.
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3.2.1 FIRST ARGUMENT We first show that 7 is a light-like vector field.
This follows from (9) and the Gauss equation of F,

(arX, %), ap(Y, 1)) — orl, DI = KX, 1) =0,

where K(X,Y) denotes the sectional curvature for a two-plane spanned by
vectors X and Y. Now, from (9) and (10) we get

X, Y. F) = (arX. 1), F) = ~(X. 1}

for all X,Y € R”, thus ({(%.F% = 1 everywhere. We show next that % is in
fact a constant vector field. First, ¥y has no tangent component:

{ Vxw, dF(DY = —{apX, 1), %) =0 forall ¥ € R”,

On the other hand, its normal component is {{ V&, F@ + ( V@, @ HF = 0,
as follows by differentiating {(#,#} = 0 and {&w,F) = 1. We conclude
that F(L) C EZ . Choosing any pg € EZ and any linear isometry A R -
{po.w}+, we obtain that ¥~ 1? 30F is ‘the restriction to U/ of an isometry
H: R" — R", hence by Proposmon 3(ii) there exists G £ Oy(an +2) fixing
i such that

= lp"g W AQHIUWGDTL&DHAEU pg i AIU

for po = Gpp and A =GoA. [

REMARK 7. After proving L.emma 6 and the fact that the vector field &
is a constant light-like vector, the conclusion of the theorem could also be
obtained from the Fundamental theorem of submanifolds of Minkowski space,
applied to F and W = IIIPD,H;,A[U. In fact, we have a vector bundle isometry
7 ToM*~ ~+ TeM~*, given by (W) = F and r(w) = w, that preserves
second fundamental forms, because of (3) and (9), and normal connections,
for these vanish identically. Thus F = 7 o W for some T € Oj(n + 2).

3.2.2 SECOND ARGUMENT Applying Lemma 6 for the coordinate vector
fields we obtain

OF
12 =0 for all u« U and for all [ ith ,
(12) ()MJ()M; (1) = or i and for i,j = .n with i j
hence
OF OF
13 - Ny e 0
(13) «()Mz( u), )J(t)

for all u,» ¢ U and for all i,j= 1,...,n with i # j.
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By the connectedness of U, it clearly suffices to prove the statement for

the restriction of I to an arbitrary product C = HI C U of open intervals
Jm
I; ¢ R. Define linear subspaces W; C L2 by

W; = span{)(u) He C}

for i =1,...,n. Then (13) implies that Wy,..., W, are mutually orthogonal.
Since they Clearly have dimension at least two and 2n > n-+2 (here we use
n > 3), they can not all be non-degenerate subspaces. Thus, we can assume that
W1..... Wy are degenerate while Wyyg. ..., , Wy are non-degenerate subspaces
for some k < n. Then there exists a light- 111<:e line Ly such that W; ”‘!W* =il
for i = 1,...,k. Choose a second, distinct lightlike line Z; orthogonal to
Wigt, ..., W, and set W e Wit "Ll ., so that W = W; for i » k. Then
W; is a space-like subspace for each i = 1,...,n, whose dimension is at
least 1 for i < k and at least 2 otherwise, which implies that the subspace

ey

LW & -0 W vvvvv ¢ Ly has dimension at least 2+ k -+ 2(n - k) Since this

and corresponding projections P;: L*t? — W;. For i = 1,....,n, we have

that P; o F is constant on & = HIJ while the component of F 1n
JuEl

L1 1s constant Fix u° (ul ..... O) £ C and define F;: I; —» W by
F;=P;oFoj¥ where j‘f I — c denotes the inclusion of ; into C given
by u; +3 (u?,...pu,-p.... ). Then we may choose unit space-like vectors
71,...,¥, Spanning W1 ..... Wn, respectively, such that Fi(wy) = (u + a;)vy
forsomea,ER,1<z<n and

(14) F = po+ ZF o m; + {(F, oo,

where po 1s a lightlike constant vector in L; and @@ € Lo is chosen
so that {po,wy = 1. From (14) and {F,F} = 0 we get 2(F.po) =
- me {F;om; Fiom)y. Let A be the linear isometry of R” onto (Lo L)+
that takes e; to 73, where {e1,...,e,} is the canonical basis of R*, and let 1
denote the translation in R” by the vector (a;.....a,). Then it follows from
(14) that F = ¥_ i o Hly. By Proposition 3(i), there exists G € Oy(n + 2)

Bn.ap
fixing # such that

e Gglp"u?zAEU pn?z AEU
for po = Gpo and A = GoA. [
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4. COMMENTS ON NEVANLINA’S PROCF

One of the most elementary proofs of Liouville’s theorem available in the
literature is the one by R. Nevanlina [Ne], which also appears with some
modifications in several textbooks [Be], [dC], [DEN], [Bl]. It goes roughly as
follows. First, it 1s shown that for any pair of orthogonal vectors e¢;.¢; € R?
it holds that

(15) pdflej.en) + dpledfie) + dplepdfie;) = 0.
where s = ¢! is the inverse of the conformal distortion ¢ of f, and d*f
denotes the R”-valued symmetric bilinear map such that

g a Pf

Jui” it Oy

&

We do not go into details on how (15) is derived, as we shall soon indicate
an alternate way of proving it. We just mention that it follows from a tricky
computation relying on a useful (but mysterious!) fact known as the Braid
Lemma (cf. [Be], p. 224), which states that a trilinear map that is symmetric
on the first two variables and skew-symmetric on the last two must vanish.
The next step is to differentiate (15) to obtain

d? pleg. e)df (e, + dple)dPflex, e)) + & pleg, e)df(e)
+dplep)dfieg. e) + dplep)d fles, ep) + pdflex. e ep) = 0

for all pairwise orthogonal vectors ¢;,e;, ¢; € R, where now dsf denotes the
R”-valued symmetric trilinear map such that

00 0, oy
S’ wy” dux” Awduduy

&f

Then, observing that the sum of the last five terms is symmetric in k& and j
one concludes that the same must hold for the first term :

& plex, endf(e)) = d* pley, endf(ey) .

Since df(e;) and df(ey) are linearly independent vectors for j # k, it follows
that

(16) dzp(e,-,ej) =0, for all ¢;, ¢; with {e;,¢;) = 0.
This implies that there exists a smooth function & such that

(17) & p(x)u, v) = o), v} for all .z € R”,
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and one further differentiation then shows that & 1s constant. The second part
of the proof proceeds by determining g explicitly through integration of (17),
which leads to the conclusion of the theorem after some more work.

In spite of its simplicity, in that nothing "from outside" is used in the
proof but clever computations, it 1s hard to grasp the geometry behind it. The
following discussion may help to shed some light on the geometrical meaning
of some of those computations. First, we have

Pfer, e) = Vodflen = dfVee:,

where ¥ is the Levi-Civita connection of the metric induced by f and e; is
also regarded as a constant vector field along V. Then (15) follows from the
relation between the Levi-Civita connections of conformal metrics (recalling
that {(e;, e;) = 0):

Ui Vgiy = p‘\?ejei + dpleye; + dpleje; .
Now let F = T, ., a(f) = gf be as in Subsection 2.2, with f = Wof. Then
dFlei,e)) = d* plei. e))f + dplepdfie)) + dplepdfie)) + pdflei.e).
On the other hand, using (2) we get d*f(e;.e)) = ‘;“,U?gjdf(e;-) = dW(d* f(e;, ),
hence
Flei, ¢) = p & pleg, epF + AW (dplendfie)) + dplejdfien) + pdflei. )
= p 1 ple;, eF .
This gives an explicit expression for the one-form wy in (11):
(18) wy(P) = p~ld?p(X,Y) for all ¥ € R* orthogonal to X,

hence (16) is equivalent to the vanishing of wy for every X € R”.

Anocther important remark for us concerns the geometrical meaning of (15):
if #; denotes an affine hyperplane orthogonal to e;, then (15) amounts to
saying that S; = f(H; " U) is a piece of a hypersphere or affine hyperplane
in R”. Namely, assuming e; of unit length, a unit normal vector field to S;
is N; = pdf(e;), thus (15) is equivalent to

(19) Vo, N; = dplepdfien) + pd*fle;, ep) = —dpledfie;) .

which just says that all principal curvatures of S; are equal to dp(e;). In
particular, (16) expresses the fact that such principal curvatures are constant
along S;.

Applying this observation for e; = &/du;, 1 < i < n, we see that the
geometric content of (12) (for F = Z, ., a(f)) 1s that f maps the pieces in UJ
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of all coordinate hyperplanes u; = a; € R, 1 < i <{ n, to pieces of hyperspheres
or affine hyperplanes. This suggests an alternate, more geometrical argument to
conclude the proof of Liouville’s theorem after obtaining (16). It relies on the
following characterization of # mutually orthogonal families of hyperspheres
or affine hyperplanes in R*, n > 3:

PROPOSITION 8. Let n jamilies of hyperspheres or affine hyperplanes
in R*, n >3, each with at least two elements, have the property that every
member of one family be orthogonal to every member of all of the others.
Then either they are orthogonal families of parallel affine hyperplanes, or
there exists an inversion that maps them into such families.

Assuming Proposition 8 for a while, the proof of Liouville’s theorem is
then completed as follows: composing f with an inversion as in Proposition 8
we end up, possibly after a further composition with an orthogonal linear
map, with a conformal map that takes coordinate hyperplanes into coordinate
hyperplanes with respect to the same coordinate. But a map g: U — R” that
takes coordinate hyperplanes into coordinate hyperplanes with respect to the
same coordinate must clearly be of the form

for some smooth functions of one variable gi,. .., g,. If, in addition, g is a
conformal map, then we get from |Jg/dx;| = |dg/0x;| at any point of U that
gi(x;) = £Ax; +a; for some A, a; € R, 1 < i< 5, that is, up to a translation
and reflections in the coordinate hyperplanes the map g is a dilation by A.

The conclusion follows.

4.1 PROOF OF PROPOSITION 8

The following simple proof of Proposition 8 is a good illustration of the
usefulness of the model of Euclidean space of Section 2 to study problems of
a conformal nature. Let F; = (S;“)AQA, 1 < i < n, be families of hyperspheres
or affine hyperplanes in R” as in the statement. Write S} = E* 1 {7 }+ for
SI’-“ € F; and unit space-like vectors 'zsf‘, 1<i<n Foreachi=1,...,n,
let V; ¢ ™2 be the subspace spanned by the vectors 7, A € A. Then the
assumption on the families 7;, 1 < i < n, amounts to saying that V; VJ*
for i,j=1,....n with i # j. On the other hand, the fact that F; has more
than one element implies that the dimension of V; is at least two. As in
Subsection 3.2.2, it follows that there exists a lightlike line £ such that

ViVt = £ for i = 1,..., n. Choose a distinct light-like line ¢ and set
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?,— = V;{+ . Then each 17,- 1s a one-dimensional space-like subspace and we
obtain a decomposition

Now we consider two possible cases, according as « belongs to £ or not. In
the former case, each F; 1s a family of affine hyperplanes parallel to the affe
hyperplane E* "V, , 1 < i< n. If w & ¢, choose ¢ € { with {C,w) =1
and let I be the inversion in R" determined by the reflection R € Oy(n -+ 2)
with respect to the hyperplane in L*? orthogonal to the unit space-like vector
v o= {4+ (120, so that w = —27T(). Arguing as before with ?,- replaced
by T(?I—), 1 < i< n, we obtain that [ takes the families JF; into mutually
orthogonal families of parallel affine hyperplanes as in the preceding case.

i

4.2 REMARKS ON THE REGULARITY

One final remark on Liouville’s theorem concerns the amount of regularity
that the map f must have in order for its conclusion to be true. The existing
proofs in the literature usually hold for ¢* maps. The result is known for
¢! maps, but the proof is much harder [Ha]. Nevanlinna’s proof requires f
to be of class C*: this is needed for the conclusion that the map o in (17)
be constant. Our proof also needs the C* assumption: the argument used in
Lemma 6 to prove that the one-form wux in (11) vanishes depends on the
map ¢ being C?: this is equivalent to F being C*, which in turn amounts
to f being C*. However, our proof can be made into a € proof if we
replace this argument by the one just explained in Nevanlinna’s proof which
derives (16) from (15), and take into account that (16) is equivalent to the
vanishing of wy for every X € R”, as pointed out after (18). Notice that also
Nevanlinna’s proof becomes valid for ¢ maps if we replace its second part
(after having (16)) by the geometrical argument proposed in this section.

5. THE CASE A =2

In our proof of Theorem 5 in Subsection 3.2 we have indicated that the
assumption that # > 3 is essential to prove that the oneform wy in (11)
vanishes for all X € R”. As a consequence, this assumption 1s also needed to
derive (12), which is equivalent to the vanishing of wy,s, for all coordinate
vector fields &/du;, 1 < i< n. Our discussion in the'previous section then
makes clear the additional condition that f must satisfy in order for this to
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hold when # = 2: it must map each coordinate curve of one family (and
hence of both) to a piece of a straight line or circle. This follows from (19),
which for s = 2 shows that the curvature of a coordinate curve x = xp 1s (up
to sign) dp/dx, and hence the vanishing of wy s, that is, of & p/dxdy, is
precisely the condition for this curvature to be constant.

5.1 PROCF OF THEOREM 2

Set F= L s s ). U 4 V3 for some admissible triple (pg.w.A). By the
discussion in the preceding paragraph, under the assumptions of Theorem 2
we may proceed exactly as in Subsection 3.2.2: define linear subspaces
Wi. W ¢ L* by
JF _

a(x_«,y) DY) € C}_«,

where € = [ x J 1s a product of intervals contained in &J. Then we have
as before that W, C Wf which now leads to two possibilities: either there
exists a lightlike line 7. such that Wp 0 Wf =, = W ij or one of
Wy and W>, say Wi, 1s a time-like two-dimensional subspace and W> is its
space-like two-dimensional orthogonal complement. In the former case, we
are exactly in the situation of Subsection 3.2.2, so we arrive at the conclusion
of Liouville’s theorem: f is either the restriction f = L|y of a similarity or
the composition f = I o L|y of such map with an inversion with respect to a
circle of unit radius.

W = span{g—i(x;y) (XL Y) € C} and Wp = span{

Now assume that W; 1s a time-like two-dimensional subspace. Writing
= (F1.F,) according to the decomposition L' = W, & Wh, we obtain
(by looking at the definitions of W; and W) that F; and F» depend only
on x and v, respectively, and thus they define unit speed curves in Wy and

W, respectively. Moreover, from
0= (F.F} = (F1, F1}} + {(F2. F2}}

it follows that there exists ¢ > O such that {(F1, F1} = —¢? and {F, F} =
¢?. Choosing orthonormal bases {z1.2} of Wi, with {{z;.z1} = -1, and
{73,274} of W, we obtain

F = c(cosh((£x -+ xp)/c)zy -+ sinh((x + Xp)/ )2
4+ coS((£Y + y0)/O)z3 + Sin((£Y + yo)/c)zy)

for some xp,vo ¢ R. Hence F = ¢(G o H|), where H is a composition
of a dilation by 1/c¢, reflections in the coordinate axis and a translation by
(X0, yo) € R?, and
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G(x,y) = cosh(x)z1 + sinh(x)z; + cos(y)z -+ sin(y)zy .

Set @ = —71 — 22, Po = (71 — 2)/2 and let A R? -5 W, be the linear
isometry that takes e; to z3 and ez to z4. Then we can write G as

G(x.y) = e™ "W, . 2(exp(x.y)),

where exp denotes the complex exponential function. Now let T € O1(4) be
given by T(w) =&, T(po) = Ppo, and ToA = A. By Proposition 4,

Cpg,w;A(TpD,gﬁﬂ) = Cpgm;A(T 2 lppg apA)=Tol

for some similarity L and some inversion I with respect to a circle of unit
radius. Thus,

f = Cpg,wa(F) = CPD,?DA(C G OHI 7)
= Cpy,0.4A(Wp, 5 1) @ €xp oy = I o L o expoH|y .

Had we assumed instead W> to be time-like, we would get the same
conclusion with x and y interchanged, thus f would be given as before after
a reflection in the line y = x.

5.2 REMARKS ON THEOREM 2

Although we have not been able to find Theorem 2 explicitly stated in
the literature, it is very likely that it is not new. In fact, browsing through
the monumental treatise by Darboux [Da], we found some interesting related
results that lead to an alternate proof, which we briefly sketch below.

First we recall that one-parameter families of curves that are the images
by a conformal map in the plane of the family of coordinate curves x = Xy
or y == yy are referred to in the classical literature as isothermal jfamilies
of plane curves. Isothermal families and their orthogonal trajectories admit a
neat characterization in terms of their curvatures (cf. [Da], Vol. III, p. 154,
Eq.(36)), which implies that orthogonal trajectories of isothermal families all
of whose members are ( pieces of ) straight lines or circles must also have the
same property. Thus, starting with a map f as in Theorem 2 and taking the
images by f of the families of coordinate lines, we end up with two one-
parameter families of straight lines and circles, every member of one family
being orthogonal to every member of the other. Then we also find in [Da] (cf.
Vol. I, p. 228) the following two-dimensional version of Proposition 8 asking
to come into play:
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PROPOSITION 9. Let two jfamilies of straight lines and circles, each with
at least two elements, have the property that every member of one family
be orthogonal to every member of the other. Then either they are orthogonal
Jamilies of parallel lines, or one of them is a family of concentric circles and
the other a family of straight lines through the common center, or there exists
an inversion that maps them into families of one of those two types.

Using this, a proof of Theorem 2 readily follows: composing our conformal
map f with an inversion ! given by Proposition 9, and then (working locally)
with the complex log function in case / of maps the the coordinate curves
into families of straight lines and circles of the second type, we end up,
possibly after a further composition with a reflection in the line v = x, with
a conformal map that takes coordinate curves into coordinate curves with
respect to the same coordinate. Then we can argue exactly as in the paragraph
preceding Subsection 4.1 to conclude that such a map is, up to a translation
and reflections in the coordinate axes, a dilation by a nonzero constant.

5.2.1 PROOF OF PROPOSITION 9

The proof of Proposition 9 serves as a final illustration of the ideas in
Section 2. Let F; = (S;-“)AQA, 1 << 2, be families of straight lines and
circles as in Proposition 9. Write S} = EZ N {»#}~ for S} € F and unit
space-like vectors ¢, 1< i< 2. Let V; C L' be the subspace spanned by
the vectors 'v;-)‘, 1 < i< 2. Then the assumption on F; and /, amounts to
saying that Vy C Vf‘ On the other hand, the fact that #; has more than one
element implies the dimension of V; to be at least two. Then either there exists
a light-like line L. such that V1M Vf = L= Vol Vf or one of V1 or V,, say
V1, is a time-like plane and V3 is its (space-like) orthogonal complement. In
the former case, arguing exactly as in the proof of Proposition 8 we conclude
that, up to an inversion in R, F, and 5 are orthogonal families of parallel
straight lines. Now assume that Vj is a time-like plane. If « ¢ Vy, then 7
1s a family of concentric circles, as discussed in Subsection 2.1. Otherwise,
choose one of the two vectors in E? N Vi, say (. Notice that these two
vectors represent precisely the two common points of all the elements of 7.
Now consider the inversion 7 in R? determined by the reflection T € O1(4)
with respect to the hyperplane in L* orthogonal to the unit space-like vector
v = { -+ (1/2xe. In other words, I is the inversion with respect to the sphere
of unit radius centered at the point z € R? such that W(z) = ¢. Then T(Wp)
is a time-like plane containing w = —27((), thus the family I(/7) of images
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by I of elements of 77 1s a family of concentric circles, since it has 7(Wy) as
associated subspace. It follows that I(F;) is a family of straight lines through
the common center of the circles of 7. L]

53 A TFINAL REMARK ON THE CASE # = 2.

To conclude, we observe that if a conformal map f: U/ — R? as in
Theorem 2 has the property that every segment of straight line contained in J
1s mapped by f to a piece of circle or straight line, then it is given as in the
statement of Liouville’s theorem. For, by the discussion in the previous section,
under this assumption Lemma 6 holds for F = 2, ., a(f): U - V3 o L4,
and hence the remaining part of the proof of Theorem 5 also applies.
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