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L’ Enseignement Mathématique (2) 53 (2007), 369428

UN EXEMPLE DE NON-DERIVABILITE
EN GEOMETRIE DU TRIANGLE

par Jacques DIXMIER, Jean-Pierre KAHANE et Jean-Louis NICOLAS *)

ABSTRACT. Let T be a triangle in a Euclidean plane. If (1) denotes the triangle
whose vertices are the midpoints of the sides of T, and if we iterate the function f,
the situation is simple: all triangles f"(T) are homothetic and tend to the centroid
of T. But if g(T) denotes the triangle whose vertices are the feet of the altitudes
of 7, the problem is not as casy. We shall see that ¢"(T) tends to a point L(T),
a new point geometrically linked to I and that L(T) 1s a continuous function, in fact
holderian, but is nowhere differentiable, hence the title of this paper.

In Part 1, the existence of I{T) is proved and its coordinates are calculated in
a simple system of axes tied to T. If the circle I'(T) circumscribed to T is fixed,
T depends on three angles ¢x, 3,~. By rotation, we may require that e¢ -+ -+ v =10
so that L(T) becomes a function L{¢x, 3) of two variables, and the coordinates of L(T)
become trigonometric series of lacunary type. In Part 2, some properties of regularity
and irregularity of more general series (lacunary series of imaginary exponentials
in RY) are given; from them, the behaviour of L(T) as described above follows. In
Part 4, the extreme values of the distance between the point L(T) and the centre O(T)
of T(T) are studied We show that L(T) = O(T) if and only if T is equilateral, that
LMo < 4R(T) for all triangles T, where R(T) is the radius of I'(T), and that
L{TYO(T) = 4R(T) if and only if the angles of T are % 27—‘ —. In Part 5, we shall
see that the image of the map (e, ) =+ L{cx, ) is the closure of its interior.

When T is an isosceles triangle, L(T) belongs to the symmetry axis of T, and its
abscissa on this axis is given, after normalization, by the following Weierstrass—Hardy
function:

1 1 .
x(z‘)msszEmH 2t~§~ SlIl4I 831n28t~§~...

1
cos 21 Zcos4rm gcos&%«...

W —
[

In Part 3, we give detailed information concermng this function: its mimmum, its
maximum, its local behaviour around ¢ == 0 (which ig of fractal type), etc.

*) Recherche financée par le CNRS, Institut Camille Jordan, UMR 5208,
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INTRODUCTICN

Soit T un trnangle dans un plan euclidien. S1 ’on note f(7) le triangle
formé par les milieux des cOtés, et si I’on itere, la situation est simple: les
tnangles f7(7) sont tous homothétiques et tendent vers le centre de gravité
de T. Mais si 1'on note g(7T) le triangle formé par les pieds des hauteurs,
I'itération pose des problemes plus difficiles. Les g™(T) tendent, on le verra,
vers un point L{T), un nouveau point attaché géométriquement & T et L(T)
est une fonction continue, en fait holdérienne, mais partout non différentiable ;
cela justifie le titre de cet article.

La partie 1 prouve |’existence de I({T) et calcule ses coordonnées dans
un repere lié simplement a 7. $i le cercle I'(T) circonscrit a T est fixe€,
T dépend de trois angles ¢, 3,~. Par rotation, imposons ¢ -« -~ == 0 de
sorte que [(T) devient une fonction de deux angles ¢ et 3

-
01 KT =8 = % 3 -1y (e(““z)"*'“ 4 W g DU
z20)

La partie 2 démontre des propriétés de régularité et d’irrégularité de séries plus
générales (séries d’exponentielles imaginaires lacunaires dans R%); d’oll, en
particulier, le comportement annoncé de L(T). Dans la partie 4, on étudie les
valeurs extrémes de la distance du point L(T) au centre O(T) de T'(T).
On montre que IL(T) = O(T) si et seulement si 7 est équilatéral, que
L(DHOT) < %R(T) (R(T), rayon de T'(T)) pour tout triangle T, et que
Lo = iR(T) si et seulement si les angles de T sont Z, 27'” 4% Dans
la partie 5, on montre que l'image de l'application (v, 3) = L{ex,J) est
I’adhérence de son intérieur.

Quand T est isocele, L{T) appartient a 1’axe de symétrie de T et son
abscisse sur cet axe est donnée, aprés normalisation, par la fonction de
Weierstrass—Hardy suivante:

x(f) = sin? ¢ — %sin22r ot %sin24tw %sin2 ot A S
1 1 1 1 .
ol i Ecos2tw;~ Zcos4r écos& S
Dans la partie 3, nous donnons des informations détaillées sur cette fonction:

son minimum, son maximum, son comportement local autour de ¢ = 0 (qui
est de type fractal), etc.

a

Nous avons plaisir a remercier X. Roblot et M. Deléglise pour 1’aide
apportée a 1’élaboration des figures ainsi que J. A. Bondy pour la traduction
en anglais du résumé.
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1. EXISTENCE ET CALCUL DE L(T)

1.1. Pour tout triangle 7, on notera I'(T) le cercle circonscrit a T,
O(T) et R(T) le centre et le rayon de I'(T), «(7T) le centre du cercle d’Euler,
G(T) le centre de gravité.

Rappelons que le cercle d’Euler (ou cercle des neuf points) d’un tnangle T
passe par les pieds des hauteurs, par les pieds des médianes et par les milieux
des segments joignant I’orthocentre H(T) aux trois sommets.W[;e plus,ujgs
points O, G. w et H sont alignés, w est le milieu de OH et Guw = W%GO.

1.2, On part d’un cercle I' de centre O et de rayon R. Soit A,B.C &I’
et T = (A, B.(C). Identifiant le plan a C, on peut écrire
A= O +Re™ B = 0+ R’ C =0+ R
ol e, 4,y sont des angles modulo 2% (la figure 1 a été tracée avec
= 70°% 4= 198° et v=2342%). On a
G=GT)=;A+B+0C).

Soit # 1’homothétie de centre G et de rapport w%. On a H{IT) = T,
cercle d’Euler de T, H(0) = O = u(T). Les points A= H(A, B=HB,
C = H(C) sont les milieux de BC, CA, AB. On a

0’mGw%(OwG)zw%Ow&%Gm%(A“?“B“i“cwo)

(20 + Re™ + Re'” + Re'™)

f

Q tal—

(1.1) = R{e™ + e 4+ e7).

Lal —

D’autre part, A — O = w%(A — 0) = w~«v%fi’e“<’ﬁ donc

1

12 A=0-R*, B=0-1R?’, CT=0-R".

Soient A’, B, €’ les pieds des hauteurs de 7. On dira que T’ = (A", 8. (")
est le triangle descendant de T. On a

AB.C. & B el
AA' (resp. BB ,CC") parallele 3 BC (resp. CA, AB).

Donc, si’on écrit A" = O’W%Ref";, ona -4 = J+v (mod 27) d’apres (1.2).



372 I. DIXMIER, I.-E KAHANE ET J.-L. NICOLAS

Par suite
(13) Ao — %Re"(f"’”?*”@)}
B =0 — 1R€f(~,~+~<w;3) “,
5 ;
e e %Re"(““*"f'*““?).

1.3. En particulier, si & <+ 3 -+~ = 0 (mod 27), les formules (1.3)
deviennent

(14 A =0 ~ %Rewz“‘*' B =0 -~ %Re@fﬁ C =0 - %Re“’"’z““”' '

FIGURE 1
Le cercle d’Euler du triangle (A, B,C)

1.4 On notera que le cercle d’Euler n’est défini, en principe, que si
A, B, C sont distincts. Mais les formules pour &', A’, B’,C’ gardent un sens
dans tous les cas. Si par exemple, A = B, on a & = 3, donc

A =0 = 2R =0+ R(¥ +6 +67) — 2R = 0+ Re™* = A

et de méme B = B = A.
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1.5. Passons a l'itération. T,A,B,C,0 seront notés Ty, Ao, Bo., Co, Op,
et TA B ,C'.0 seront notés Ty,A;,B.C.0;. Désignons par D =
DR, v, 3, 7v) la transformation de (O, Ag, By, Co) en (01, A1, By, C1) définie
par les formules (1.1) et (1.4). Ces formules gardent un sens lorsque R est
négatif; on peut donc poser Ry = W%R et itérer

?)R(O;A}BJ C) = (OmAm B,.C,).

On posera T, = (A,.B,.C,), n-iéme descendant de T = Ty = (Ag. Bo.Co).

1.6. LEMME. On suppose ¢ -+ 3+~ =0 (mod 27) et R = 1. Alors O,,
Ap, By, C, ont une limite commune I(T) quand n - o0 et U'on a

Eh. 3
e iyt [ (=i o (DB, A~
L(T)Mowiioj(w)z (e . .8 )
Fo

Ona Op= 0, Ro=1, A = €, By = 7 Cy = €7, puis, utilisant (1.1)
et (1.4),
1, 1 s g iy,
An o On e ERne Bﬂ, = On sk ERRE d Cn - Oﬂ, b §Rn€ f
avec
Gy 7 2] 5;: = W2‘5nw13 Yp = =21, Ry o= (Wl)nzwn s
1 e A P
Opp1 = Oy + E(Wl)nzwn (e(wz) i g =28 4 Jf-D) ;,)
d’ot1
Ons1= 0+ 2 (6% + 6 esn,-) & (e“"”z““ e 4 ngfn,-) .

4
N %(Wl)n2wn (€(w2)”s‘<x 5B e(wz)"fn,f-)

donc O, a une limite I(T). Comme R, — O, on voit que A,., B,, C, — L(T).

1.7 Soit T = (A;Big) un triangle, OﬁO(T). Soit A un axe passant
par O. La condition (A, OA) + (A, 5?) -+ (A, OC) = 0 (mod 27) défimt 3 axes
A1. Ay, A3 faisant entre eux des angles de z%"“ On les appellera les axes
ternaires de T. Nous pouvons alors reformuler le lemme 1.6 de la maniere
suivante :
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1.8. PROPOSITION. Soient T un triangle tel que R(T) = 1, et O = O(T).
On prend O pour origine, et les axes Ox, Oy tels que Ox soit I'un des axes
ternaires de T, d’oit une identification du plan a C. Posons A = ¢, B = &7

C = 7. Alors

o pes. By L ny—n [ (=i | (=2 (=2
KT = Lo, 8,7) = 5 3 (—1)"2 (e w 8 )
)
Comme ¢ + 3 -+~ = 0 (mod 27), la fonction I(e, 3,~) sera souvent

considérée comme une fonction de «, # seulement et notée Lic, ).

1.9. Ona

Lo +27,3) = Lo, 8+ 27) = L, ),
L8, 0) = Lla. D),

Lo, —3) = Lia, B),

Liev + —d + —’) =T Lia, ),

Lic, 8) = Llay, ~x — 3) = L(B, —~a —~ §).

Dans le plan des {(«,3), considérons le carré [0,2x] x [0,2x], réunion de
4 triangles fermés, suivant la figure 2.

T

12!

FIGURE 2

Tout point du plan est congru modulo 27Z x 2xZ a un point du carré.
Comme (53, a) = L{a, ), tout point L{c, ) est obtenu en faisant varier
(ex, ) dans 71U Ty, Comme

(1.5) L2r — 3,27~ a) = L(~8, ~a) = L{~a,~ ) = Lla, ).
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il suffit d’étudier Lie, 3) pour (¢, 3) parcourant 7;. Nous verrons en 4.4 et
en 4.13 une partition du triangle 77 relativement aux valeurs prises par L.

Voyons ce qui se passe sur les droites qui bordent 77. Pour ¢ = 0, on a
A=~y (mod27), A=1.Pour o+ 8 =2xr, ona ~=0 (mod 27x), C =1.
Dans les deux cas, (A,B,C) est isocele avec Ox pour axe de symétrie. On
reviendra sur ce cas aun®1.15. Pour v = 3, ona A = B, le triangle (A, B, ()
est dégénéré, I(T) = A = B d’apres le n°1.4, donc L(T) parcourt T".

1.10. La proposition 1.8 entraine 1’équation fonctionnelle suivante:

DI =8 4 B e OA 126, -20)-

1.11. REMARQUE. 81 T est équilatéral, le triangle descendant a pour
sommets les milieux des cdtés, donc L(T) = O(T). Nous verrons au n°4.12
que la réciproque est vraie.

1.12. REMARQUE. Soit H lorthocentre de (A,B,C), de sorte que
{A,B,C,H} est une «configuration orthocentrique ». Les triangles (A, B, C),
(H.B,C), (H,C,A), (H,A,B) ont méme descendant, donc

I{A,B.C) = [{H.B.C)= [L{H.C.A) = L(H,A,B).
o .o 27 5 o ar
Cela, combine avec le n°1.11, prouve que si A = 3 B oz 0 == € on a
LA,B,.C) = A.

1.13. La fonction (e, =~ L{cx,) est une application continue de
(R/27Z) dans le plan. L'image de (R/27Z)* par L est une partie compacte K
du plan, connexe par arcs, symétrique par rapport a3 Ox, invariante par la
rotation de centre O et d’angle %’T Onal CK (cf n°19).

PROBIEME 1. La frontiére de K est elle une courbe de Jordan fermée ?

PROBLEME 2. K estdil simplement connexe ? En particulier, le disque de
bord I' est-il contenu dans K ?

On prouvera en 510 que K est 'adhérence d’un ensemble ouvert,
autrement dit, que I'intérieur de K est dense dans K.
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1.14. 11 est intéressant de savoir a quel point L(T) peut étre éloigné de O.
Il s’agit donc de calculer le nombre suivant:

1t = sup O(DIL(T/R(T),
la borne étant prise sur tous les triangles. On a
= sup|La, ).
la borne étant prise sur tous les couples (a,d). On verra au n°4.9 que
# =43,
Si un triangle T a tous ses angles aigus, 1’orthocentre H est a I'intérieur
de T, donc O(IH < R(T). Or O1(T) = w(T) est le milieu de O(T)H, donc

O(hHoT) < %R(T)- On a L(T) = L{T), donc O1(DLT) = OTDL(T) <
pR(T) = L pR(T). Ainsi, ODLT) < 11+ j0R(T) = IR(T).

1.15. CAS PARTICULIER. Supposons 7 isocele, et plus précisément
AB = AC. L'un des axes ternaires de 7 est son axe de symétrie orienté
de O vers A. Alors, «¢ = 0, 3= —~. Le point I{T) appartient & Ox et son
abscisse est

L0, ) = imy’zw (% +cos274)

)

UV SO RPN IO
=3 4 cos 3 20032‘&3 ; 4cos4,3 80038‘3 B

Nous définissons la fonction ¢~ x(¢) par

(1.6) x(f) = sin® £ — ! sin’ 2¢ + ! sin? 4 — ! sin & 4 ...
2 4 8

Alors

(1.7 LT =1L0,8) =1~ 2x(8/2).

Voir la partie 3 pour des détails concernant la fonction x(¢). Son maximum
est 1.023274 ..., son minimum est --0.1423503...; donc ’ensemble K du
n°1.13 contient le segment [—1.0465,1.2847] de Ox.

1.16. REMARQUE. On suppose que <, 3 € Qmn. Alors L(T) est un nombre
algébrigue et méme cyclotomique.

Soit ¢ un entier, g > 1. Il existe des entiers jo.r > O tels que la suite
((—2)/ mod Q> admette la période r. En effet, il existe jo.r > O tels
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que (—~2)0 = (=22 (mod ¢) et alors (—2)5*! = (—2)0+1t" (mod ¢),
(=2)0%2 g (L2302 (mod g, ..

Si @, 4 € Qnr, il existe un entier ¢ > 0 tel que a. 3 € Cx/q)Z. D apres
ce qui précede, la suite

D L J-DNB (D it )
admet la période » a partir d’'un certain rang. Alors L{ev, 7) est somme d’un

nombre fini de termes cyclotomiques (le début de la série L{e, ) et de r
sommes infinies dont chacune est de la forme

2
(W].)n (e(wz)n!@ W’m e(wz)n!’,g " ew(wz)ﬂx((}m{«rc})) (1 5 (W )P’ v (W].) t N )
2!1 b i P 2:“ i 22?’ R

donc est cyclotomique.

Soient T1,75.... les triangles descendants de 7. D’apres ce qui précede
et les formules de 1.6, pour n assez grand, 7,., se déduit de 7T, par
une homothétie #,. Soit € son centre. Comme H,(U/,) = (ML), pour
tout triangle U, on a H,(T..,) = (HT))r = Thur)r = Thpyar, donc
Hillsuoer= Tapan. 6. Done 8 = LT

2. RBEGULARITES ET IRREGULARITES LOCALES DE I(T)

2.0. La proposition 1.8 nous permet d’écrire

(21) L(T) - L((‘K.\g) - % Z(Wl)nz*wn(e(wz)nj(h mf" e("’”"z)njr"} me e“"'“("’""2)”1(&"+";3‘)>

)

avec « et g réels modulo 2w, et, si on le désire, par 1.9, on peut restreindre
’étude de L(ev, 3 au domaine 0 < o < 2 « < A < 27 — o (intersection
du triangle 77 de la figure 2 et de la bande verticale 0 < a < 2{) Nous
préférons nous en tenir & (o, A € CaT)? et & + 3+~ = 0 (mod 27).

Le spectre de L(exr, ), que nous désignerons par S (= Sp L{ecx, 3)), est
constitué des points de Z* de la forme (cf. figure 3)

(=20,0), (0.(=2%). (~(=2/.~(=2") (@®eN).

Il est «lacunaire a la Hadamard», ce qu signifie que, pour un ¢ > 0O, la
distance de tout point s € § & §\ {s} est minorée par q|s]|; ici g = %i

convient.
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Voicl les résultats que nous établirons.

2.1. PROPOSITION.

1. La fonction L{c, ), définie sur (27T, est holdérienne d’ordre 77 pour
tout 17 < 1. Plus précisément, il existe une constante absolue C telle que,
quels que soient o, 3, h,k avec |hl + k| < 1, on ait

2 . 1
(2.2) |L(er + b, 8 + k) — L{ee, )] < C(lh| + !k!)logW'

2. La fonction L(c. 3) appartient a la classe A de Zygmund. Cela signifie
qu’il existe une constante C telle que, quels que soient «, 3, h. k, on ait

(23) a+h B+ b+ La—h G~ —2La,B)| < C(h| + k).
3. Etant donné un angle ¢ € 2xT, posons
Ha, D) =R (S@L(O;,, B}

Quel que soit ¢, il existe un ensemble dense de points (., 3) € (27T)?
tels que

Q4  la+hB+—Ua.B) =00k k) (B |k = 0.

4. La fonction £(, 3) n’est différentiable nulle part, c’est-a-dire que pour
aucun choix de («, 3) et des réels a et b on n’a

(2.5) Ho+h B+ 8 —la. B —ah—bk=o(hl + k) (bl + k] — 0).

5. Sauf les exceptions signalées ci-dessous, la fonction {a,3) n'est
difféerentiable nulle part dans aucune direction, c’est-a-dire que pour aucun
choix de (c,3) et des réels 6 et a on n'a

(26)  {{a+ hcosd, 3+ hsind) — {(a, 8) — ah = o(Jh]) ([h| = 0).

Les exceptions sont, avec ~y = —¢y — [ :

a) yﬂm% er AneN: 2% =0 ou 2"3=0 ou 2"v = 0 (mod 27)

b) InEN: 2Ma—3) =0 ou 2"(F—~~) =0 ou 2"(~v—a) = 0 (mod 2x)
(o quelconque).
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FIGURE 3
L’ensemble § dans 72

2.2, REMARQUES.

1. Les résultats d’irrégularité pour £(cx, &) (points 4 et 5) sont évidemment
valables pour [, /). Par contre, le résultat du point 3, concernant £(c, ),
est nettement plus faible que sa transcription & L{c. &) que nous ne savons
pas établir.

2. Les cas d’exception du point 5 sont constitués de six familles de droites.
Sur une droite d'une des trois premicres familles (cas a)), (., ) définit un
triangle 7 dont un descendant 77 = DT a un sommet au point 1, et a
partir de 14 7™ (m > mn) est un triangle isocele de sommet 1; L{a, ) est
somme d’un polyndme trigonométrique et d’une fonction a valeurs réelles dont
I’étude fera 1’objet de la partie 3. Sur une droite de 1’une des trois dernicres
familles (cas b)), le triangle T" a deux sommets confondus pour un certain #,
et a partir de 1a les 7™ sont dégénérés; L(w, ) se réduit & un polyndme
trigonométrique.

3. Dans le cas d’exception b), il peut arriver que les peoints O, soient
confondus avec L(T) & partir d’un certain rang (si 2"(a — 3) = 2"(F — ) =
2%(v—q) = 0 (mod 27)). 1l en est de méme quand 7 est un triangle équilatéral
ou ’ancétre d’un triangle équilatéral, ¢’est-a-dire quand chacune des différences

k .
%, 3fk. Mais en un tel T la
fonction £(+) est non différentiable, sauf si 7 appartient au cas a) et si ¢ = 3.

a - 3,3~ et v a est de la forme

2.3. La proposition 2.1 découlera de propriétés générales de fonctions
presque-périodiques dans RY (d = 1,2,...) dont les fréquences sont assez
dispersées dans R? et dont les coefficients sont comparables (dans un sens
que 1’on précisera) aux inverses des distances des fréquences a 1’origine. Nous
allons désigner par (/) un systeme d’indices, par Ay les fréquences (Ay € R%)
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et par ¢y les coefficients (¢y € C), par X la variable dans RY et par A X
le produit scalaire. La fonction considérée sera

@7 FXO = 3 | crexplins - X)

Jel
et I’on supposera toujours > |es] < oco. On notera | | la norme euclidienne
dans R?.

On fera toujours ’hypothése
(2.8) Ar— Az glA] e KeW. K#D)

avec q = q(f) > 0. Dans le cas 4 = 1, c’est la condition de lacunarité
d’Hadamard.

La conditon (2.8) entralne que le nombre de points Ay tels que
r < |Asj] < 2r est majoré par une constante ne dépendant que de ¢ et
d (et non de r) d’ ol résulte

(2.9) #{J . A/ <7} € Gologr,

Co ne dépendant que de g, d et de la borne inférieure des [A;| # 0.
Observons que 'hypothése (2.8) entraine €galement

(2.10) b et
N < r
(2.11) Z I C11
Al T
A zr

avec (1 = Ci(q.d).
Nous allons énoncer en 2.4 et 2.8 les propriétés de f(X) dont nous ferons
usage pour établir la proposition 2.1.

2.4, PROPOSITION. On suppose (2.8) et

(2.12) sup |eslAs] < o0
J
On a alors
1
(2.13) |f(X + H)— fiXO] < ClH| log H

pour tout X € RY et tout H € R? tel que |H| < 1, et
(2.14) |f(X + H)+ f(X — H) - 2f(X)] < CH]|

pour tout X € R? et tout H € R?, C dépendant de f seulement.
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Pour la preuve, supposons sup; jer|l|As] < 1. Eerivons d’abord

FX+H) —fX) = > _crexpiAs - X (expiAs; - H ~ 1)
et partageons la somme en deux, S0 et S°? suivant que |A;] < ﬁ

(somme Z(D) ou |As] > ﬁ (somme Z(z)). On a

( (0 ]
ST S elladdla < 1 {0 s A < ﬁ}

1

en vertu de (2.9), et

(2)‘ (2 2 1
<2 crl <2 < 2C|H
=23 el =23 e < 2a

d’apres (2.11). Cela établit (2.13).
Berivons maintenant

FX )+ HY o~ 211
= Zc; expiA; - X(expiA; - H +exp(—iA; - H) — 2)

et partageons la somme comme précédemment. On a

(N (N (n
T = etipiae = S iasdia < e
d’apres (2.10), et
@) @
DINETS SR ELTe]

d’apres (2.11), ce qui établit (2.14).

2.5 Le spectre § de L{a, 3) est contenu dans Z* % {0}, et si on écrit
ses éléments comme Ay, il vérifie la condition (2.8) avec g = %ﬁ Posons
X = (e, ). En nous référant & 2.0 et en désignant le coefficient de expiA;-X
par ¢;, ona |cj| < ;*A—/i Dong, pour la fonction f(X) = I{c, ), les conditions
(2.8) et (2.12) sont vérifices. L.a proposition 2.4 s’applique, (2.13) se traduit

en (2.2) et (2.14) en (2.3). Cela établit les points 1 et 2 de la proposition 2.1.
Pour le point 3, nous avons besoin d'une proposition auxiliaire.
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2.6, PROPOSITION. Si f est & valeurs réelles (f: R? —» R) et vérifie
(2.14) pour tout X et tout H, il existe un ensemble dense de points X dans R¢
tel que

(2.15) X+ )~ fO0 = 0(H)  (H| - 0).

En effet, (2.15) a lieu s1 X est un minimum relatif, parce qu’alors
JX +H)+ X~ H)—2f(X) = (fX + H) ~ f(XD)+ (X~ H) -~ f(X),

ce qui, pour H assez petit, est la somme de deux quantités positives; chacune
est donc < ClH].

Si G est un ouvert de RY, il existe un polyndme trigonométrique
P: RY -5 R tel que f+ P ait un minimum relatif dans G. En appliquant a
f -+ P le résultat précédent, on voit que (2.15) a lieu pour un X € . Donc
(2.15) a lieu sur un ensemble dense dans R?.

2.7 Llinégalité (2.3), que nous avons établie en 2.4 et 2.5, est valable
en remplacant L{c, 3) par (. 3). En appliquant la proposition 2.6, on a le
point 3 de la proposition 2.1.

Les points 4 et 5 nécessitent un nouvel outil.

2.8 PROPOSITICN. On suppose (2.8) et

(2.16) lim sup |es}jAs| = 0.

oo
Alors la fonction f écrite en (2.7) n’est différentiable en aucun point, c’est-
a-dire que pour aucun choix de X ¢ R? etde Ac RY on n'a

FOX 4+ HY—fOO —~A-H=0o(H)  (|H] — 0.

Fixons X et A. Quitte a remplacer ¢; par cyexpiA; X, NOUS NOUS ramenons
au cas X = 0. Quitte a ajouter un polyndme ftrigonométrique convenable, nous
nous ramenons a f(0) == 0 et A = 0. Il s’agit donc simplement de montrer
que I'hypothese f(X) = o(JX]) (X -+ 0) (ici X remplace H) mene & une
contradiction.

Soit @: R? —» R une fonction indéfiniment différentiable de support
contenu dans la boule unité {u : |u#| < 1}, telle que ®(0) = 1, et soit
©(X) sa cotransformée de Fourier:
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D) = / explin - X) o(X) dX .
Donnons-nous K € (J). Soit r = g|Ag|, et

I= / r? o(rX) exp(—iAg - X) FOO dX .

En développant f(X), on obtient

A~ A
Imzcﬂp(u)mq‘,
Ia

J

en vertu de (2.8). D’autre part, en posant |[f(X)| = |X| #(X) = o(JX])
(|X] -+ 0), on a

Y
1] < | 7 1eax0] 1X] nXD ax = L [ je)] Y] 7 dy,
r

-
ce qui, d’apres le théoréme de convergence dominée de Lebesgue, est o (1)

;
quand n - oo, D’ou cg = 0( ) ce qui contredit (2.16).

1
Ak

2.9. Pour appliquer la proposition 2.8 a f{a, &), il convient de préciser
les fréquences et les coefficients. A partir de 2.0, on peut écrire

i - 1 By 3 v il B s + e E s
Q17 He. =7 Y (=127 {cos(2er & ) + cos(2"F & ) + cos(2y £ )
)
avec a -+ 3+~ =0 (mod 27) et & = (—1)".
Les fréquences sont de la forme £(27,0), £(0,2"), £(27,2") (n € N,
¢ € {~1,1}), et les coefficients ont pour valeur absolue i2””. Les conditions

(2.8) et (2.16) sont bien réalisées, et le point 4 de la proposition 2.1 résulte
immédiatement de la proposition 2.8.

2.10. Un peu plus de travail est nécessaire pour le point 5. On est
maintenant amené a considérer la fonction

(2.18) flh) = (e - hcos#, 3 + hsin#) .
Convenons d’écrire (2.17) sous la forme

) = Z a)hﬁef(ﬁ«wnﬁ) :
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les fréquences étant de la forme indiquée en 2.9, et les coefficients correspon-
dants étant

1 - .
A0 = A0y = Aopn o = Z(Wl)RE " exp((—1)"ig),

1 - g
a .20 Q= Ag o T Ao g = z(wl)"Z o eXp(w(wl)”zy’“) !
On peut alors écrire (2.18) sous la forme
(219) f(h) - Z a Mef()t(zm%“ﬁ)efh(}. cos E-pa sin#) ]

Le spectre de (e, &) est S(£) = SU(—S) (cf. figure 4), et le spectre de f
s’obtient en projetant S(£) sur I'axe Oz tel que (Ox,0z) = & il est bien
lacunaire au sens de (2.8). Reste & examiner si la condition (2.16) est réalisée.

Lorsque tg# est irrationnel, la projection est bijective, le produit des
modules des coefficients de f par les valeurs absolues des fréquences est
minoré par un nombre strictement positif, donc (2.16) a lieu, la proposition 2.8
s applique, et il en résulte que f(h) est non dérivable en O quels que soient
e et 3. Clest dire que, pour aucun choix de (e, 3), a, et tgé irrationnel,
(2.6) n"a lieu.

Lorsque tg# est rationnel, il correspond a la fréquence v de f le coefficient

(2.20) LI (Acosé + usind = v).

Le nombre de termes figurant dans la somme (2.20) peut ére 1, 2,3 ou
infim. La condition (2.16) est réalisée quand, pour une infinité de valeurs
de v, la somme se réduit a un terme, ou qu’elle est comparable au terme
dominant (au sens que le rapport des valeurs absolues est compris entre deux
nombres positifs fixes). Lorsqu’il en est ainsi, on a la méme propriété de non-
différentiabilité de la fonction £ en («, 4) dans la direction # que lorsque
tg# est irrationnel.

Quand la somme comporte deux termes et qu’elle n’est pas comparable
au terme dominant, c’est (en dehors des petites valeurs A == 1, = 1)
que les (A, ;) concernés sont de la forme (0,2%) et (2",2"), ou (27.0) et
(2", 2%, ou (0, ~2") et (~2",2%), ou (~2%,0) et (2%, 2", ou (0,2") et
(—27,0), ou (0,~2%) et (27,0).

L'examen des valeurs correspondantes des @), montre 1°) que si la somme
n’est pas comparable au terme dominant, c¢’est qu’elle est nulle, 2% que la
condition de nullité¢ s’exprime par ¢ = 5 (mod 7) et, suivant le cas, par
2%y = 0 (mod 2%) ou 2°4 = 0 (mod 27) ou 2*(xx -+ ) = 0 (mod 27). Ce
sont les cas d’exception a).
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FIGURE 4

Les points de § sont représentés par ®, ceux de —§ par

Quand la somme comporte trois termes, ils correspondent & des valeurs
de n différentes, et la condition que la somme ne soit pas comparable au
terme dominant impose que, le terme dominant étant d’ordre n, les autres
soient d’ordre n-- 1. On vérifie alors que les (A, ;1) concernés appartiennent
tous trois 4 § ou tous trois 4 —§. De nouveau, la somme doit étre nulle
si elle n’est pas comparable au terme dominant. On distingue trois cas (voir
figure 4):

tgf =1,  exp(2™lia) — 2exp(2ti(a + 8) + exp(2™lid) = 0,
tgf = 2, exp(2”"’*”1i(o: + AN — 2exp(2id) + exp(m2”"+"11'a') sy,

tgf = — exp(Z”*li(a: 4 )~ 2exp(2liey) -+ exp(w2”+1i,§) a5,

B2 =

Dans chacun de ces cas, les trois exponentielles écrites doivent tre égales.
Cela donne respectivement 2”(¢x— #) = 0 (mod 27), 2"(Ca-+4) = 0 (mod 27)
et 2" -+ 253) = 0 (mod 27). Ce sont les cas d’exception b).

Les valeurs exceptionnelles de tgé (0,—1,20 dans le cas a), 1, w2_,,w%
dans le cas b)) apparaissent dans la démonstration. Elles sont également en
évidence dans les conclusions, lorsqu’on les écrit, comme nous venons de le
faire, sans faire intervenir - .
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3 ETUDE DETAILLEE DE LA FONCTION x(f)

3.1. Rappelons que (cf. n®1.15 et 2.1)
M'le'z @1'2 Wl'zm
x() = sin“ ¢ 2sm 2t 4sm 4t 85111 8t -+ ..,

| l l 1
= o— e — COS2E -+ — cOSdt —~ = COS8f ...
4 8

3 2
1= 10,20 1 - £(0,20)
- 5 o 5

en choisissant ¢ == O dans 2.1.3. La fonction x est paire de période = et
vérifie x(w — £) = x(¢). D’apres la proposition 2.1,

: _ 1
X+ h) — x(0)] = O([h[ log W)

x(t + B) + x(t — B) — 2x(®)] = O {JA])
x est partout non dérivable.

La non-dérivabilité en tout point est connue depuis Hardy [3], mais la preuve
de Hardy est moins facile que celle donnée ici (cf. proposition 2.8) et elle
a dissuadé Zygmund d’inclure ce résultat dans son traité Trigonometrical
Series [7].

Précisons encore ce point. On dit qu'une fonction f de variable réelle est
{isse au point ¢ si

Jfa@+m+f—h)—-2f0)=0h) (h—0)
(définition de Zygmund). Toute fonction dérivable est lisse. Montrons que
x n’est lisse nulle part.

En effet,

Xt h) 4 X(E — h) — 2x(F) = Z (=17

e |

T cos2"Hcos2"h — 1)
et, pour ¢t fixé, c’est une série lacunaire en A, avec des fréquences 2" et
des coefficients qui ne sont pas o (zl—n) ; la proposition 2.8 montre que c’est
une fonction de 2 qui n’est dérivable en aucun point, et en particulier qu’elle
n’est pas o(JA)) quand A - 0.

On connait aujourd’hui beaucoup de propriétés des fonctions de Hardy-
Weierstrass, utilisant des méthodes de théorie ergodique. Un article récent de
Ai-hua Fan et Jorg Schmeling fait le point sur leur analyse multifractale, qui
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donne la dimension de Hausdorff de ’ensemble des points ol I’accroissement
de la fonction (ici x(t + h) — x(¢)) a un comportement fixé, par exemple O(h)
(points lents) ou ahlog ﬁ(l -+ o(h)) (points e-rapides) (partie 7 de [2]). Notre
étude n’aborde pas cet aspect.

Dans cette partie, nous aurons besoin d’étudier les variations de polyndmes
trigonométriques. Nous les mettrons sous formes polynomiales de la variable

£ = 2cos(2f).

A D'aide des suites de Sturm (cf., par exemple, [6] ou [5]), on sait que 1’on peut
localiser les racines d'un polyndme avec la précision souhaitée. Les calculs
ont été faits avec le logiciel de calcul formel MAPLE (cf. [4]).

3.2, Nous poserons, pour j==1,2,...

(~17

1 :
P = Sin? £~ — SinZ 2f . .. 4 ——— sin® 27¢ ,
2 27
Par exemple, Py(t) = sin? ¢, Pit) = sin? ¢ — %Sin2 2t. On a
Pi(1) = sin2t — sindt + sin8¢ + ... + (~1)/ sin 2/t

x(t) = P 1(8) + (Wl)jzijjwl(sz) e (W1)2j2w2ijWl(22jI) P
x(t) = PJ(I) e (Wl)f+12ij1x(2j+1t)

7w

P (5 - :) — cOS(20) 4 x(7) .

3.3. On aura besoin de quelques valeurs de x(¢). Il est clair que x(0) = 0,
x(;) — 1. Utilisant 3.2, il vient

x(i)xmﬁﬁwl (z)xlwlxo
6 6 2 A3 4 4
x(f)mmﬁﬁml 227 1x(4ﬁ)
5 5 2 5 4 5
ml(lm E)Wl 1mcos4ﬁ) 1 (3)
2 5 4 5 4 5
d’ot, puisque cosim% et cos 2 Mw—ljﬁ’i,
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" 1 2 2 1 __ = 3v/5~5
7 a1 fw 1 1145  3v5-5 1
e R R e
x(i)«—*SlnzﬁwlSiIlziWEX(i)
40 49 2 20 7 4 10
mlmlc imlmlcosﬁmi
a 2 20 4 4 10 " 24
7 1 W T
Miwacosﬁwzcosﬁm0.035586...,,

19 T ay 7 1 a1 W
x(m)MCOS—wwx(—)wﬁ ; 5cosE ; Zcosmwl.OZ%TM...

34 LEMME Ona x(n)] < 2 it} pour tout t.

Observons que

. 1 . .
Pi(t) = Sin? £ - 5 sin® 2 = sin® K1l — 2 cos? 9]

donc
|P1(D)] < sin? 1 < min(/, 1)
et que
= Pi(0) + SPyA0) + Py (41) 3
X0 = Pi(D) + 7 P40 + BCTIE
donc
2 , Lo Y - U S S, 4 4 1

pour tout { entier positif. Si |ff < 1, choisissons £ de fagon que

441 < |l <« 47¢ Onaalors [x(®)] < |¢-1- g s g jt| = g || Dautre part,

[x(r)fglw—w—w&«...mg pour tout f.

35 LBEMME Ona
042 <« limsup@ < g et liminf& mwlimsup}@.

i) £eepl) ! [E(] !

Cette dernicre assertion résulte de 1’égalité

x() sinfr x(20)

¢ f 2t
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Comme x est paire, on peut désormais supposer { > 0. L'inégalité de
droite résulte du lemme 3.4. Celle de gauche équivaut a

liminf " < —042.

o)
S . s 5 x x(to)
Pour 1"établir, on choisit 7y = 280 on vérifie que = -(.4261 ... et on
0

utilise le fait que, si ¢ € (0, 7),

t4 /4 t/4 t t

/D P/ x(0 sin?(/A(L — 2c08(E/4) XD L X0

x(r)

Nous prouverons en 3.31 que liminf,.q S - (), 426940988418.. . .

3.6, Ainsi, au voisinage de ¢ = 0, x(¢)/t oscille entre deux valeurs

T:;ng, mais avec un comportement local trés

opposées a la maniere de sin
irrégulier.

3.7, Dans la suite nous mettrons en évidence des valeurs de ¢ remar-
quables, entre autres celles ol sont atteints le maximum et le minimum de
x(f). Nous distinguerons les exfrema locaux, ¢’est-a-dire les points ¢ tels que
x(f + h) — x(¢) ait un signe constant quand 0 <« || < A(r), les «points de
traverse » pour lesquels %(x(t - h) — x(£)) a un signe constant quand A est
assez petit et non nul (0 < |A] < A1), les points «lents» pour lesquels

Xt + by~ x() = Ok (h - 0)

(nous savons qu’en aucun point ¢ on n’a x(z + k) — x() = o(|h])  (h - 0)),
les points «rapides» pour lesquels

1

[x(z + h) — x(0)] > clh|log m

pour un ¢ = c(f) > 0 et tout |k assez petit et différent de O (nous savons

qu’on a partout |x(s + h) — x(1)] < Clh|log m)_

Remarquons, comme nous 1’avons déja fait dans la partie 2 (voir 2.6) qu'un
extremum local est un point lent. Moyennant 1’addition d’une fonction affine
de pente assez grande, un point lent devient un point de traverse. Un point
de traverse rapide reste un point de traverse rapide lorsqu’on modifie x(¢) en
lui ajoutant une fonction de classe C!.
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Commengons par un cas simple.

3.8. PROPOSITION. Soit t = kx /2", avec k€ £, n=0,1,2,.... Alors,
t est un point lent:

x(t - k) — x(8) = O(|h) (h - 0).
De plus

lim sup ST D iy MR =20

= 2P t
Fro3() h Fre() h HWI( )

el

t--h t
P_(H+042 < 111;1 sypx(‘—;x() <P D+
e 3

(On comvient que P.1(0) = 0. On notera que ‘Pﬁzwl(t)‘ < n.)

Pour ¥ € Zw/2, on a (sin®u) = sin2u = 0, et Py(u) = 0. Pour n = O
ou 1, la proposition résulte donc du lemme 3.5.
Soit ¢ = kn/2" avec k€ Z, n>1. On a

x() = Ppo1(u) + (—1)"27"x (2"u)

donc

Xt +h) = x()  Ppa(t+ B~ Pra(® | (Wl)nxckﬁ 2 ) X (K
h h h ‘ 2h

et la proposition résulte du lemme 3.5.

3.9. Limitons-nous aux valeurs de ¢ commensurables a # et comprises
entre O et #: t € Qn (0, 7). La suite 2’” mod 1 prend un nombre fini de
valeurs, donc 2/*7% = 2/ (mod 1) pour un couple (j,p) € N*. Excluons
le cas 2/L =0 (mod 1) qui vient d’étre considéré. Choisissons p minimum,
p=p (#) (la période) et j minimum, j == j (#) (le début). L.e développement

i

dyadique de = est de la forme

{
— = 0.dpdy .. .dj 1 apar .. .ap1 apay...ay_ 1 apay .. .ap1. ..

i S PN FIRN /S, s
e " e

"
début période
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Posons

fo

e Oapay . ..ay..1 apay ... ay..1 ...

it

i

- = 0.a142 . .. Gp.. 180 A1 . . - Cp.. 100 . . -

i

Ip—1 _
— Oap 16y ..ay_2 Ay 10pG1 .. . Gp_2 . ..

H o

:p = Q.apa1 . ..Gp..1 Q0L .+ - Qp.] oo = -

i i
et

H = sin2ty — sin2f + ... +(~1)"Lsin 2ty

PROPOSITION. Si p est pair et H # 0, t est un point de traverse rapide.
Si p est pair et H =0, t est un point lent. Si p est impair, t est un point

, c o ft
lent et n’est pas un extremum local si j (—) =0
i

Ainsi, lorsque j (i) = 0, t est soit un point de traverse rapide soit un
v
point lent, et ¢t ne peut étre un extremum local que si p est pair et H = 0.

EXEMPILES : Img,%r = & ek O
a 2% 3w A
I gegugey Hom E=0
# 27 3w 4w Sr 6w
fos e s B B SR =3 HH#£O0.
70 7 g g g g P=3 HFE

On sait que j (i) = 0 signifie que, lorsque Y est éerit sous forme de
T w
fraction irréductible, le dénominateur est impair (si ¢ est premier impair,
2971 =1 (mod ¢)).

Distinguons les différents cas pour la démonstration.
1. p pair, H # 0, j = 0. Rappelons que, pour tout entier #, et tout réel &,

-

x(6) = Pe®) + 'y

X {2“1 9) "

Choisissons £ =kp—1 et # =¢-h. On a
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Xt 4+ R) — x(0) = Pyt + k) — Py + R, IR < p¥+l
; o P; ; h2 ] .ot
Pyt + h) — Py(t) = h Py(8) + EP,g(f Wld
Pyt = sin2t — sindt + .. . -+ (—1)f sin2¢t
2SI & SIVE “Foowes SUSHLE YA {SIVE 4 SUHIEE 4 o0 SOSUTE ) o s
= k(SiNfy ~ SiNEp ...~ SiNg,) = kH

IPUO) <24+ 4+ .. + 200« 282

1 |
En prenant k = {@log m} , on a

H l
X(t 4 h) = x(E) = pnghlog Tl + O(lA) (ol —0)

donc ¢ est un point de traverse rapide.

2. p pair, H# 0, j > 0. On se ramene au cas précédent en soustrayant
de x(#) le début de son développement.

3. p pair, H =0, j= 0. Chaisissons enccre { = kp— 1. Alors, Py(1) =0

et
2 3

h h
Pt +h) = Py(t) = Py + PG+ 1.
On a PY(0) < 22+ 4% + . +2X+D < 4442 En choisissant k comme en 1,
ona 2747~ < |b] < 274, et I'on obtient

(e + by — x(0] < Klh| (K = K@)
donc ¢ est un point lent.

4. p pair, H =0, j > 0. On se rameéne au cas précédent en soustrayant
de x(#) le début de son développement.

5. p impair. En choisissant { = 2kp — 1, on a P(r) = 0 parce que
P;(r) = (sint] ~ sify ... = SiNf,) ~ (Sinfy ~ sinfy + ...~ sinf,) + ete.

et I’on conclut comme en 3. et 4 que ¢ est un point lent. Reste a montrer

que, lorsque j(i) = 0, c’est-a-dire

FE
imO.aoal...apwlaoal...apwl...; Pr=¢ (mod 1),
w

t n’est pas un extremum relatif. Supposons pour fixer les idées que ¢ est un
minimum relatif. Comme ce n’est pas un point lisse au sens de Zygmund
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(voir n°3.1), on a

fob B e x(f o DY - 2x(
limsupx( allai ) ():>0.
h—0F thl

Mais on a aussi ;
X0y = Ppi(@)~ 5;((2”9)

donc
Pyt -+ h) + Ppo (&~ h) — 2P(8) = x(¢ + h) + X(t - h) — 2x(f)
1
i = (xC + 27 h) + x(t — 2P b) — 2x(D))

et il s’ensuit que P,.1 n’est pas lisse. La contradiction établit bien que ¢
n’est pas un extremum relatif.
3.10. Dans la suite (n°®*3.10-3.20), nous étudierons les cas t == £

et = %T. Pour obtenir des résultats globaux, il nous faut préciser

numériquement certains résultats de 3.9. Jusqu’au n°3.13, on pose

f(H = Pyt) = sin’ f — % sin® 2t o i sin® 4f — % sin® &¢

5 1 ol 1 ol
2 gl icos2rw;~ zcos4r éCOSSI : Ecosl6r
~ 31_2 (68— 8¢% + 188* — 482 —8¢) (£ =2cos20).

On a (cf. n°3.2)

X0 = Fl5) + %f(lGr) da %f (16%) + ...

LEMME. 1. f (g) - 634(5 —3/5) = —0.1334534 . ..

2. f (%) ~0.
3. 1l existe des nombres o1 = 0.15093..., o3 = 037970..., &3 =
1.36633 ... ftels que f(t) soit striciement décroissante sur [0, 01], [02, %] ei

[%303] ; sirictement croissante sur [51,02], E 251] et {(733 g]
4. f(o) Ef(%) pour fout t, f(£) > f (%) pour tout 1 € [0, %], {2

5. f( gf(%) = 1 pour tout t.

Ln| =
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On a
T .o 1 . 227 1 . 2dr 1 . 2 8r
=} =sin"— — = 8in” =— 4 = 8in° — — = sin” —
f(S) 5 2 5 " 4 5 8 5
.2 1 . 2 2n 1 .2 1 . 22
= 81N = -~ — SII — =8I — = =8l —/
5 2 5 4 5 8 5

5 A 3
s é(1w~~~c —) E<1v~~~003—)

d’ol1 1. On trouve de méme

2 5 . _
f(g) = (5 +3v/5) = 0.91470. . .

Ensuite,

f’(ﬁ> sin 2= —sin 2T 1 6inST _gin 197 g
5/ 75 5 5 5

et de méme,

On a

Fln = —sin2t (¢~ 68 +98 ~¢ 1)

= —sin2t (£ + £~ 1) ( 55 ~ 48 +38 4 2L +1).
Le premier facteur a pour racines L b = 2c0s % et ml%ﬁ 222 €08
le second a trois racines réelles
1.90955 ... = 2cos271, 1.45048. .. == 2¢c0s207, —1.83510... = 2¢c08273.
D’ou les variations de f:
] 2n i
t|0 o1 o) 4 ? o3 -
FFl1o0 - 0 + 0 e 0 -+ 0 e 0 0
0 0.148 0.914 1
f h e p 2 h
-0.050 -0.133 0.888
Plus précisément trois des extréma sont
flo) = —.05022..., flo2) = 0.14834..., flo3) = 0.88835...

Le tableau de variation ci-dessus implique les points 3, 4 et 5.
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3.11. De la méme fagon, on détermine les variations de f’ et f”. On a
F7(H) =2 cos2t—4 cosdt + 8 cos8t — 16 cos 16¢
= 8% 4 6440 — 15641 £ 11082 4+ £ — 4
F7(6 = —~4sin2f -+ 16 sind ¢ — 64 sin& ¢ 4 256 sin 16 ¢
= —d sin 2t (~64£7 + 3844% — 62447 + 220€ + 1).

Les extrema de f’ et £ sont domnés dans les tableaux suivants (ot les
valeurs numériques sont données par défaut).

¢ |0 0079 0275 0500 0737 085 1063 1307 1472

v | o

0 1.391 1.124 3.505 0.870

~0.516 -~ 1.814 0.865 ~0.366 0

H 0 0182 0389 0.606 078 0962 1.182 1.387

b | o

1538 20.21 18.81 11.64

10 -22.60 ~4.002 —25.45 - 14

3.12. PROPOSITION. Sur [’intervalle [0, E], la fonction x(f) atteint

son minimum au seul point w/5. (Rappelons que x(x/5) = 3‘/1555 =
-(),1423503 .. .)

Posons encore fi(7) = %f(l@’f). On a

£z 16Jf(”;) (lemme 3.10.4)
161 (1 ) 16;?{“2€%
=5}
Donc
X0 = fol) +AO +HO + ... 2 fo (%) +h (%) +h (’_Sr) +. mx(%)

avec inégalité stricte si 7 € [0, %], t# % (lemme 3.10.4).
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3.13. PROPOSITION. Pour m;—o < h<0, on a

x(% +h) wx(%) > 0.022 |A].

Supposons —z5 < A < 0. Alors Z = 0.52..
done, d’apres 3.11,

0z (7 (5).57 (5)) = i (7,, il

pour ¥ +h<t<Z. Comme f’ (%) == 0 (lemme 3.10.2), on a

T 7 7.2
. Zoaht—fF{Z) > 2K,
1) f(S ‘h) f(5>“2h
Définissons 1’entier n par
(3.2) 16"[h] < — < 16" 14|,
30

Notons que

4 o ar
(33) 16"h] > — 16 30 = 80

Pour tout entier j > 0, on a

15 49 1(3) = 2009 +9) ()
-z 199) ()

car 16J§ iz % €Zm. S j<n ona 16/}h| < ;—0 d’apres (3.2), donc, d’apres
(34) et (3.1),

HE+e-a5) 2w

Il s’ensuit que

"o,
w(5+4) -

l\)lﬂ

(167h)" = L1671,

o~
| =
e
i

(4(5+1)-4(3))

=0
> IR (14164162 +... +16") > LK 16"
2 g B OGS e A0 g
7 T T
25[1’1 T d’aprés (3.3)
> 0.022 |h].
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314 LEMME. Pour 0< h < %,ona

x(%rw%“h) wx(‘%”') > 0.022 k.

Cela résulte de la proposition 3.13 puisque x(7 —¢) = x(f) et en particulier

() =x(3)
5/ A5/

3.15. LEMME. Soif Pi(f) = sin? rw% Sin?2f (cf.3.2).8i t € [ % + ﬁ],
on a Pi(t) > 0.363.

ta| =

On a Pj(0) = sin2f—sin4s. Sur Uintervalle [% g] . la fonction £ =+ sin2¢

est croissante, la fonction ¢~ sinds est décroissante et la fonction P’1 est

croissante. Ainsi, pour ¥ << ¥+ 55 < 5, ona Pi() > P (%) > 0.363.

3.16. PROPOSITION. Pour 0 < h < 1%, on a

i )
i i — >0, .
x( ,h) x( ) 0.385h

Par 3.2, on a x(f) = Pi(f) - %x(4r). Comme 0 < 4h < 55, on a, d’apres
le lemme 3.14,

dar dar 4h
T e G — > (). — = (. :
(JC(S ‘4h) x(S))_00224 0.022 h

=

Par ailleurs,

"o W LA B RO N 1
Pl(s,h) Pl(s) hPl(S,h)_, ot 0<Hh <h
> 0363 h, dapres le lemme 3.15.

Donc

20363 h+0.022h=0385h.
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3.17. LEMME. Soit P(f) = sin®t — s111 2t + sm 4t (cf. 3.2). Si
te[4.2], ona —0.13 < Py(H < 0.

On procede comme en 3.10 et 3.11. On a, avec & = 2cos2t
Py(f) = sin2¢ — sindt -+ sin8f = —sin 2¢ {~£> + 3¢ — 1)
PY(t) =2 cos2t—4 cosdr+ 8 cos8r = 44— 1887 +- £+ 12.

La dérivée P, s’annule pour f € {9 o 9 T 1 tandis que la dérivée seconde a
quatre zéros dans l’intervalle [0,, ] : 0. 178. ..,0.538...,1.007...,1472.
le lemme résultera du tableau de variation:

¢ ‘%" = 1.396 1.472 Z = 1.570
20| 3.5 - 0 & z
0 0
Py § " P
~0.12933
3.18. LEMME. Sur [lintervalle {%%] i [% 9?50 2] la fonction

x(f) atteint son maximum au seul point 197 /40 = 1.492.

On utilise la formule de 3.2
197 | 197y 1%& B 19
x(40 ‘ ) x(40)””[P2(40 ‘h) P2(40)]
1 197 197
() ()

Silon a m;ﬁ < h < 0, par le lemme 3.17, le crochet ci-dessus est majoré

par 0.13 |A| et, en appliquant la relation x(dx — £) = x(7 ~ &) = x(¥) et la
proposition 3.16, 1’accolade de (3.5) vaut

1 T

. (x (% - Sh) i (3)) o é 0.385 (—8h) = 0.385 [h| .

Il s’ensuit que

()5
<

Si l'ona 0 < A

) < 0.13 |h| — 0.385 || = —0.255 |h| < 0.

, ’étude des variations de P’ donnée en 3.17

montre que, dans (3.5), 1

crochet est strictement négatif, tandis que, par le
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lemme 3.10.4, 1’accolade vaut

et I’on a encore

3.19. LEMME. Soif fp = % avec p € L et n € N. Pour tout t € R,

o a

X0~ x(to) < (O xtto)| < mlt o] + 5o

Par 3.2, il vient
| 2,
[x(6) — x(to)] = 77520 + Pre1() — Pro1(f0)| £ 5+ nlt — to|

car |[P/_,(O] < n pour tout ¢ et x(2"#) = x(pw) = x(0) = 0.

3.20. PROPOSITION. Swur Uintervalle [0, 3], la fonction x(t) atteint son
maximum 1.023274 ... au seul point 197 /40.

Par le lemme 3.18, il suffit de montrer que le maximum de x(f)

’] o1 i inféri 3 19, o
sur l'intervalle {O}mzi] est strictement inférieur 2 x (F7). Or {H7 <

T00 7 < 2£x. On applique le lemme 3.19 avec n = 14, 2" = 16384 et

B £90.58,5 .. 3 T765.: Gfi-oblient

1
max x(f) £  max__ x (%) e (14% & T) ’
0<i< 28 pE{13,....7765} \2 2 2

Pour p = 1.3.5.....7765, on calcule x(”z—’f‘;); la plus grande valeur est
obtenue pour p = 7765. On a ainsi

max  x(f) < x (

7786 o
Ore % s

Troyry | Vw1
Ad )T Tl

< 1.0175 - 0.0029 = 1.0204 < x (%ﬁ) .

On peut réduire considérablement les calculs a 1’aide de ['algorithme de
dichotomie suivant.
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3.21. Sot f une fonction réelle continue sur un intervalle [a,b] et
D une partie fermée de [a,b]. On veut déterminer une valeur par défaut de
max;ep f(£) et une valeur par exces. Lintervalle [a, b] a deux enfants [a, %]
et [%’ﬁpb], quatre petits-enfants [a, 3—“;@] ..... [@f—b?b], etc., 2" descendants

de degré n et de longueur 2:° o

2
Lorsque I'intervalle [c,d] est un descendant de [a,b], on suppose que

I’on sait déterminer une fonction M(e,d) telle que

Crgiagdf(r) < M(c.d).

Si la fonction f est de classe C', on peut prendre

d -
2

c - d
2

M(c?d)xf( )“?“Ml

ol M; est un majorant de |f/(n)| sur [a,b]. Si f(r) = =x(1) et [a,b] = [0, =],
lorsque [c,d] est un descendant de degré »n de [a, b], on peut écrire %" 2
2{%} avec p € Z, et, par le lemme 3.19, M(c.d) = x (%ﬁ) + (R -+ 1)‘3% e z%
est un choix convenable.

Nous désignerons par # une variable qui prendra des valeurs croissantes
au cours de I"exécution, mais vérifiera toujours 7 <X max.ep» f(¢). On initialise
m a —oo. A chaque fois que I'on considére un intervalle [c,d], si %ﬂ D
et si f{F?) > m on pose i = f{}?).

Pour chaque valeurde n == 0.1.2,...,N, 1’algorithme consiste a déterminer
un majorant m, de maX,.pf(r) et un ensemble &, = {[c1.d1].[c2,d:],
... [ce,dg]} dintervalles descendants de [a,b] de degré n tels que

maxf(f) = max f(£).
el e [end]
Au départ, on pose my = M(a,b) et & = {[a, b]}.

Supposons m, et £, déterminés. Pour chacun des 2f intervalles [c,d]
qui sont enfants d’un élément de &,, on fait les opérations suivantes:

« si 24 ¢ D, on pose m = max (i, f (<12)};

e si [c.d]| D =@ ousi M(,d) < m, Uintervalle [c.d] est éliminé;
sinon, il est placé dans &,.1.

On pose enfin

Myy1 = max  M(c,d)
[c.d]&€8, 0
etl’ona m < maxXen f() < myp1. On arréte "algorithme lorsque la différence
m,.1 — m est suffisamment petite.
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3.22. Nous donnons ci-dessous la courbe représentative de x(#) (dessinée
par MAPLE) sur l'intervalle [0, /2] et (sur la page suivante) deux grossisse-
ments au voisinage de 1’origine.

—

;IJIIII‘:?IIII‘EPIIII‘E?IIII

[=3

[ TR T N TN O |

FIGURE 5
x®, 0<1<

i

b2 | 24

3.23. PROPOSITION. (i) Soit t € R, t # 0. Alors x(1/4")/(¢/4") a une
{imite finie (t) quand 'entier n tend vers +o0. La fonction ¢ n’est dérivable
en aucun point.

1) @21 = —D), ) = (D).

(iil) Quand 1 — 0, x(t) = t(t) + OF).

On trouvera ci-dessous (figure 8) la courbe représentative de () sur
I'intervalle [#/10,2x /5], dessinée par le systeme de calcul formel MAPLE [4].

Prouvons (i). En partant de la définition de x(£), on voit que x(z)+- %x(Zr) =
sinz: il en résulte

x/2%) | x@/20h  sind/20)

e g/ " ol T gfon
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0,000 d
0,00000H

4

-0, 000005
-0, 0004 1

—0, 00003

-0, 0004

=0, 000015

mu e
x(——);nmmlg,u,uo x(——)fanJJ,”)HO

d’ou, par changements de signe et addition,

X0 sinf(r/2)  sind(r/4) | sin’(1/8)

sin?(1/4%) | x(z/4%)

37) — = ; e ;
s t /2 1/4 /8 t/4" t/4"
Posons
o in? £ - in® i s in? 1 i

(3.8) g(f) == 2sin 5 4 sin o & sin g
La série g(f) est absolument convergente et (3.7) entraine

e e XGRS
(3.9) o) = lim = 7= = 2600 = g@).

Or g(f) est la primitive nulle en O de la fonction continue

Foon . ga o ek on aees B
g (£) = sint 51112 : S1114
Comme x(¢) est non-dérivable partout sur R {0}, il en est de méme pour (1.
D’apres (3.6), on a
Sin?(7/27)
12"

x(2/2")  x(@/2" 1)

1
tjon o1 =

mzn’

Remplagons ¢ par ¢/2":

x(fA) x(2ef4m)

i
e 2
4 24

m4n’

Quand n -+ 00, on obtient () + (2 = 0, d’ou (i1).
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TR RN N WL S N S TN M. ol |

=]

[ IS TN N T N VI A N

FIGURE 8

" 2n
o), — <t < —
T

A partir de la définition (3.8) de g(#), il vient

lg(D] = Z(wl)”“z” sin? 5| & z 27 gin? 1 Z > = 2
nml nml

rrzzs ]

et (iii) découle de (3.9).

3.24. La fonction x(#) a des propriétés d’autosimilarité au voisinage
d’autres points que ¢ = 0. Donnons seulement un exemple.

PROPOSITION. (i) Soit h € R, h # 0. Alors
(5 ) -+()
i = A5 16 5
h
16"
a une limite finie ¥(h) quand n — 20. La fonction i n’est dérivable en

aucun point.
(i) w(16h) = p(h).
(i) Quand h -+ 0, x{¥ + h) —x(F) = hp(h) + OWY).

On peut voir ci-dessous les courbes représentatives de #(h) sur 'intervalle
[7/16.7] (cf. figure 9) et de -—w(h) sur lintervalle [—x,-—7/16] (cf.
figure 10), dessinées par MAPLE [4].
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T n

FIGURE 9 FIGURE 10

P, - <h<w ), —F<hE
(k) e = w(h) SHE =

Comme en 3.10, introduisons la fonction

T TT r NO
f(£) = sin” ¢ 2sm 21.,431n 4¢ 831n &1

5 1 1 1 1
MEWECOSQIW:WZCOSAI{M%COSSI; 1600316r.

On a

En particulier,

et, par différence,

x(7/5+ h/16) — x(7 /5)
hj16
_ &[5+ h]16) ~ f(7[5) B 1 x(7/5+h) —x(=/5)
- hi16 C 16 h/16 '

Posons 7, = ff5+ h;:;izz = 0ES) remplacant 4 dans 1’équation (3.10)

par h/16’*"’”1, on obtient u, = 7, -+ 1,1, ce qui entraine par addition

n
My == U -+ % i
jasz ]

(3.10)




UN EXEMPLE DE NON-DERIVABILITE EN GEOMETRIE DU TRIANGLE 405
Comme f’ (%) = 0 (cf. 3.10) et que pour tout € R,

/()] = |2 cos 2t — 4cosdt + 8cos 8 — 16cos 161] < 30,

la formule de Taylor donne |f(7/5+ 1) — fizx/5)] < 152, 11 s’ensuit que

lon| < ISW et la série > v, est convergente. On a donc limu, = (k)
avec
7 4 h T
(G0 (D) er(Eed)s(3)
o 5) 5 16 5
z,(h)wuomzinw 5 Z h ’
w=l 167

I’'on a ﬂm) (%) = 0(16™), il vient

. Comme f est analytique et que

-5 £

160D~ L mil6m—1 — 1)
M

Il en résulte que G(h) est analytique et, comme pour la fonction ¢ de la

proposition 3.23, la non-dérivabilité de x (§ + h) entraine la non-dérivabilité

de #(h) pour h € R {0}, ce qui prouve (i).

On a
. (3 . h,f16> wx(f)
57 16 5 ,_
116 W“(
16"

)

ol =

donc (%) = 1p(h), ce qui prouve (ii).

La preuve de (ii1) est analogue a celle de 3.23 (iii).

3.25. La méthode ne s’applique pas au voisinage de f = % (rappelons

que, d’apres 3.9, x(¢) a pour dérivée -+o0 en %). Toutefois, on a un résultat
concernant les différences secondes:
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PROPOSITION.  Soit h € R, h # 0. Lorsque n — o0, le rapport

T, hy T h T
x(?”’“ﬂ)‘x@ 4n) 2“(3)
14
4n

tend vers —p(h), on ¢ est la fonction de la proposition 3.23.

On a x() = ;—.w % cos2zw;~n%cos4fw é cos 8t+... D autre part, 2% = (—1)°

(mod 3), done, pour n > 1,
0F o™ L Lol nw12_7f} = {2: }
{23"23}”{2 W s (mind.2m)
g ; 42 ’E g /g 7 e
exp (2"it) - eXp(ZJ(t : 3)) : exp(2z(£ 3)) 0,
"t L G L VY o 25 T
cos (27¢) + 003(2 (r; 3)) : 003(2 (t 3)) 0,
1

. R ay 1,1 N
x(r)wyx(tkg).,x(r §)w3;3i3m1-

. 7 1 c
Comme x est paire et que x (%) = 5, onen déduit

PR WY N SIPYSL o
x(§”’“$)’x(3 4n) 2x(3)“" x(aw)

L application de la proposition 3.23 termine alors la démonstration.

W|4

3.26. LBEMME. Soit Pi(f) = sin? ©{1 - 2 cos? 5= sin? f s1n 2f.
1( )

(1) La fonction t+» ——" est décroissante pour 0 <1< 0411.
% d P1(r)) i3
— P e
(11) O”adr( i > -1 pour Omrm4
Posons fi(f) = PIT(I) On a P’(r) = sin2t — sindt, fi'(t) = @ avec

HO = tP@0) — P1(1) et
HI0 = Pl = H2cos 2 — 4cosdt) = H(—287 + £ +4)
1 4+ /33

en posant £ = 2cos2t. Le trindbme ci-dessus s’annule pour £ == 1 et

I’on a les variations:
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£ 0 0.28391 041125 %
L33

£]2 h" a T ~ O

RO 0 - 0 + 4

0 =

4

H® i F° 0 i

-0,0386

ce qui prouve le point (1).

Posons f(f) = A + £ = (A (H+1). On a
B =50+ 2t =Pl +2) = ~H£ - 2)2£ +3) > 0

pour Ogitg% et comme f3(0) = 0, ona () > 0 pour 0 < ¢ <
prouve le point (ii).

, ce qui

R

3.27. La proposition suivante améliore la proposition 3.16, mais la preuve
est plus difficile:

PROPOSITION.  Soit t vérifiant %g:g 3? On a
w "

p-x{T)>077 rW»f)
=) x(5>— ( 5

Dans un premier temps, on recherche, a 1’aide de 'algorithme 3.21, le
mimmum de la fonction fi(f) = x(f) — x (%) — 0.77 (1‘ - %) sur I'intervalle

[%} 3%] Par le lemme 3.19, lorsque ¢ et 4 vérifient ¢ < d et ng = gi:
(avec p € Z), on a

d -
2

c 1
T ol > max fi(n).
e<idld

C+d
2

Mee.d) =i (22} + o+ 077

En choisissant »n = 20, ’exécution de cet algorithme montre que le minimum

de fi(#) sur ’intervalle {3—'"653%] est compris entre fi(f) — 207;# —
0.00070626. .. et fi(f1) = 0.00077040. .., avec # = 24292%37ﬁ; 5 st doms

positif et la proposition est vraie pour % << 3{
Soit maintenant ¢ compris entre % et l

20 On pose h = {- T et on
détermine n > 1 tel que
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2ar

LI - o 3T
40 40 5"“16’%< 5 BT 8T
On pose, comme en 3.10, f() = sin? £ — sm 2rw-— sin? 4zw sin? & : f(o et
x(#) sont des fonctions périodiques de penode i de plus, f(r) est minimale

n g (cf. 3.10). En notant que 164’% = 7_; (mod ), il vient

x(t) = f(t) + %f(16 ) ]’(16"le )+ Lx(16” 9]

mf(gwémh)w}... L 16W1f(—m16”“’“1h> , %x(%%«l@“h}

zf(%)”%“”’ i 16Mf( ) i 116“( (3) “5”0'77'16%)

s .
g (g) + 0774

- " 1o |20, %]
car, par définition de =, z o 16%h ¢ [40,, 5|
3.28. La proposition suivante améliore la proposition 3.13, mais la preuve
est plus difficile:

PROPOSITION.  Soit t vérifiant z% s % On a

x(r)wx(s) > 0465 (gw:)

l.a démonstration est trés voisine de celle de la proposition 3.27. A 1’aide
de l'algorithme 3.21, on montre que le mimmum de la fonction f(f) =

o o > 37 63x -
x(1) - x(s) - 0.465 (3 e t) sur [’intervalle [Er m] est compris entre
hl2) — W = (0.00005945... et fr(rz) = 0.00012267... (avec
B = 19225385 7) et donc est positif. Puis, pour 23—25 < ¢t < I, on applique

le méme raisonnement qu’'en 3.27.

3.29. LBMME. Soif t, = Lﬂ Pour n > 0 et %rn <t<t,, onda

5.4
x(t) . -x(fn)’
t Tt
Pour n = 0 et %rom“ <t< =%, o0npose t= g —~h, etl’onaen
utilisant la valeur x (%) s S‘fz > = —0.14235. .. calculée en 3.3,



UN EXEMPLE DE NON-DERIVABILITE EN GEOMETRIE DU TRIANGLE 409

o w\  Sho g\ [\, 5-0.14235...
o =x(5) - 7x(5) =2 (5) + T
*x(s)w«022655 B < x8)

par la proposition 3.28.
Puis, par récurrence, supposons n > 1 et le lemme vrai pour 1 — 1. On
Serit £ =t¢,—h, 0 < h < %" On a 4t = t,.] —4h & {%fnwl,,znwl} et, en

posant Py(f) = sin? w% sin? 2t comme en 3.26, il vient

X0 _ P 20

T,
Pty x(de)

> T gy par 1"hypothése de récurrence
> @ . x(j“) . par le lemme 3.26 (i) car £, < 1, < 0.16
_ x(1)
= =
3.30. LEMME. Soif, comme en 329, t, = 5W4n . Pour n > 0 et
f, <t=1t,+h<3t,, ona
t I3 1 t h t
JQ 5 x(2,) wfw—(zwfn)mx(n) s x(n)’
t t, 3 t, 3 L

Raisonnons par récurrence sur n. Pour n = 0, ona f=f + h = g + h,
0<h<ZE et
(PO Y =y + 0 4 Do + )
3 Iy

0
< x(tg) — 0.22655. . . h + 13—%

ux(s)wo4017 b < X

par la proposition 3.27.
Supposons le lemme vrai pour —~1 et n > 1. On a
K _ Puo) o xd)
r 1k

% Pll(‘“) iy o }% par le lemme 3.26 (ii) car £, < f < 34 < %
> Plt(rn) ) o x(j: ) o h par I’hypothese de récurrence

x(t,)
t,

h.

| —
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3.31. PROPOSITION. Soit S la somme de la série convergente
5 Tt 5 ;.2
=x{=}+Z - 2) e
5 'frx(S) - _Zl( Y
J..W..

Eo ol
5 B{F 5o 5 %1 f . 2 2w .y
oy Wiwz 22 ( R M| )
T ( 12 e 5.4 HE 5.4

fzx]

i

et, comme en 329 er 330, ¢, = 5.5 On a
. x(t 1 ¢ 3 13
wllIIlSUpQ mhmmfﬁ = lim M) = § = —0.4269. ..
{30 t {30 t -
Pour tout n > 1 P e G LY o R
our tout n > 1, posons P2,..1(6) = » .o Tsm ( t). 1 a
1 T
xX(ts) = Py 1(8p) + 4?36 (g)
d’ ot
el B duy  Boate) Skl e ok
= w—x(i) s TERELCOH “ ) gin? 27
I a A5 tn at 2k 5-4

ka0

5.48 2n w1 2R ] 22nmj
e =1 sin? ==

T4 22ami 5-4p
=1
s 2n
- 2( ) sin Y
J'm

n
5 2'w1(- 9 2w 2w )
2 e 2 sin” —— — 2s8n° ——1 .
71"2 5.4 5.4
b

Notons que sin?2¢— 2sin? ¢ = 2sin® {2 cos? 7 — 1) est positif pour 0 < ¢ < &

La suite M) est donc décroissante et 1’on a pour tout n > 1
t t

(3.11) M) o lim ) _ g
f, [ S5 S 9

Scoit maintenant ¢ vérifiant 0 < ¢ < % On définit » par ¢, < f < f,.1. Par
les lemmes 3.29 et 3.30 et par (3.11), il vient

,@ S i (@'x(rnwﬂ _ X s

i 7 bt iy
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X(I) x(ta)

> 8§ et comme lim,.q — ; = &, on obtient

"

donc liminf,..g ;0 —

x(r)

liminf;. 0, ;~0 — = S. La proposition s’en déduit, car la fonction x est

paire et, par le lemme 3.5, limsup,_,q — () = liminf, x(;)

3.32. REMARQUES. Les nombres 11 et » cités en 3.27 et 3.28 vérifient

b5l 249037 19 1 3
Zoa T e (023750019 L By — s b T
7 20 80 5 5-16
°t 199885 61 1 3
)
Z o= T = 0.19062519., . e —— = D e ——
T 280 320 5  20-16
Posons
o x(t) — x(m /5 . , x(t) — x(w /5
£t = lminf ()—(/) t £ = liminf (0~ XA /)
trd B U WIE/S i E 4T ’;’?/SWI

I1 est possible que 1’on ait

+ x(§+53f6)mx(§)
g o o - 16" b B 1
o e Jim 30/(5- 167 ot & e lum 37/(20- 167)

ce qui est étayé par les courbes des figures 9 et 10 ol les minima semblent
atteints en 3{ et 3 . Naturellement, une relation existe entre £* et ¢~ par

la formule x(#) = Pl(t) o4 x(de).

Par ailleurs, 1a proposition 3.31 donne le maximum de la fonction (#) de
3.23, et les points 7 ol ses extrémaux sont atteints (cf. figure 8).

4. PROPRIETES GLOBALES DE L(T)
4.1. Dans cette partie, nous étudions la fonction |[L{a, 3)|.

42 LBEMME. Soit N un entier positif et h.k,«, 3 quatre nombres réels
tels que 0 < [h|,|k] < %{} & g—z et 3 = g—z avec p,q € L. Alors la
fonction L définie en 1.8 vérifie
2Nar 4 6

[Lee + b, 8+ ) — e, D] £ —

Posons A(n, a, h) = Dot . LD On g comme en 2.4,

A, @, )] = ‘e(““?)”f“ (e(wz)”fh - 1)‘ < max(2"|4], 2)
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et

\L(a + h, 8 + k) — L, 3|

- Z 1 (A(n, a, h) + A, 8. k) + A(n, —a — 8, —h — b))

-1
() <
[hl Ik[ I+ k| 6 x 6
35 D 1
nzs( stz N

43, Désignons par Qa, b:r) le carré fermé de R* de centre (a, b), de
demi-c6té r et de sommets (@ =r.b=r) et par D un fermé de Qla.b;r).
L’algorithme 3.21 peut s’étendre pour calculer le maximum d’une fonction
réelle f définie sur D.

Le carré Q(a.b;r) a quatre enfants: Qa =r/2,b = r/2;r/2), 16 petits-
enfants, etc., 4" descendants de degré » et de demi-coté T

Lorsque ((c.d, p) est un descendant de Q(a.b;r), il faut connaitre une
fonction M(c, d, p) telle que

max h.n) < Mic.d;
(11.6) & Q(Cdf)f( 1,%2) (c.d.p).
Lorsque f = x|L| et Qla, b;r) = Q(x. = [0, 27] % [0, 27], un descendant
de degré n de Q(a,b;r) est de la forme Q (m qﬂr 4 ) (avec p,qg € N).

Par le lemme 4.2, on peut prendre

progw @ progny | 2aw-+ 06
21 M T I oy (B, ) 22
il (2”' gu v o ! 24+ 24 24

Soit g une fonction de classe C! de ((a, b, r) dans C et deux constantes
M, et M, telles que pour (#1.5) € Q(a. b;r) on ait

g g
— (1,0 < M. ——{.0)| <M.
‘011(1. 2)| £ My, ‘&Z(L )| < M
Alors, pour f = =|g|, on peut prendre
(4.2) Me,d r) = flc,d) + (M1 + Ma)r.

Une fois la fonction M connue, 1’algorithme fonctionne comme en 3.21 en
remplacant “intervalle” par “carré”.
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151
27
/;"’ﬁ rrm
’,«T
27 (??
E3
7
76 >
i
Py
i %
: .
! 47
& i 27 7
3 3
FIGURE 11

Partition du triangle 71 de la figure 2

44 LBEMME. Soit Ts le triangle du plan «. 3 défini par
43) 0<a<d< T <atd,

Soit T un triangle dont le rayon du cercle circonscrit est égal a 1.
Alors il existe (. 3) € T5 tel que le wriangle (A,B.C) (A = ¢, B = &7,
C = 7D ) soit égal au triangle T .

Soit (e, NETR et vy=2n~a—~F.0na 0<a<id<y < 2x. Dans
le triangle (A,B,C) (cf. figure 1), on a
(4.4) 2W=A—a 2A=~—F8 2B=aq+QCx— =2a+5.
Appelons Ar, Br, Cr les sommets du tnangle T de fagon que ses trois angles
vérifient

(4.5) 0<Cr<Ar<Br<n.

Posons «a = %(ﬁr e 67) g g = %(261 »»iwﬁr); la relation (4.5) implique
(4.3), cest-a-dire (a.3) € T5s et, par (4.4), les angles du triangle (A, B.C)
sont égaux a ceux du triangle T = (ET_., §T:, 67). Ces deux triangles sont donc
semblables et, comme ils ont méme rayon de cercle circonscrit, ils sont égaux.
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45 LEMME. Soit ah® + bhk + ck? une forme quadratique a coefficients
réels et trois nombres o', b, ¢’ vérifiant @’ < a, \b'| > |b|. ¢ < c. Alors, si
la forme quadratique o h* + b hk + k> est définie positive, la forme initiale
I’est aussi et

- b}2

ah® + bhk +ck? > ——
4max(" 3

(max((h], k)Y .

Les hypothéses entrainent 5* — 4ac < b2 — 4a’¢’ < 0. 1l vient ensuite
ah? + bhk + cl? > d h* — | hk] + ¢
V|, \ . 4dc b2
— (1= B + 2252

44
4ot — b2 Ag'd — "
> 2>
5 4’ T dmax(a’, )
4afcf - b?Z

Par symétrie, on obtient de méme ak?® + bhk + ck* > B, dou le

dmax(a’, c')
lemme.

46, LEMME. Posons

5
“"””"1 i P Fio o e £
“46) D, ) = Z (2}”")1 (e(wz) o D8 (=2) :(ww,.,s)) ’
sz

Soit deux nombres réels h et k vérifiant k], k] < % et (h,k) # (0,0). Alors

ORn
2 dar 21
o (5 +4 T +8) <o (F.5)| = 55

Les calculs sont un peu techniques; ils ont €té faits a la main et contrdlés
par MAPLE. Nous ne donnons que les résultats principaux. Nous exprimerons
les résultats en fonction de

(7)
pEs expy— | »
P 7
6 _ 5 4 4

Rappelons que 2% — 22 +z* =2 + 722 —z+1 =0 et notons que la fonction
®(cx, 3) est périodique de période 27 en « et J.
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On calcule successivement

= 2rodry 2l 43234 2
@n  s=o(L.T)=Za-3+37 +3Y, I5|= 13,

@@(2_% 4_”1“)“3‘1’(2_"’“ ) =0

da N T T g \7°7

PO (2w 4x 5 4 .3 579, 45

gaz L7 7) =158 =30d 38 = F2 4+ T - 20
PO 2w 4n 5 4 3 9
aaaﬁ(??)mk 6t~ 122~ 122 + 22— 4
PO 2 4x s 154 3 o
@(7;7)ww12z — 5z - 15z w15z2»~:~«7zw5.

Quels que soient A et k, posons

1 ((‘32(13 (2_%4_@) a2 P (2_»,:4_»,:) oy Fo (271* 4’:‘[‘)1(2)’

23 32 \N7° 7 " THadsNT T OB NT T
On a
H 165 44 413, 6 2 17 253) 9
i | e v S T O el L | ]
s (7Z CE O, AR
/825 524 . 503 6, .32 328)
'(7Z g T R T 5T STy

25 5 1 4 163322Wgw205)
‘(7Z BE TR W T e
= e (931 ... K +16.09..  hk+14.22 .. k)
+ H8.66.. h* + 10.19. .. hk +0.40. .. k).

On doit ensuite majorer les modules des dérivées troisicmes. 11 vient

g 5
re 2013 { (=i _ (DK x~ 3
"D = 3 (D )
00;3( ) Z
=)
d’oll
] 3
Fo
}3(@5)‘ €23 22" =144+ 16+ 64+ 256 + 1024 = 1365,
I s
On trouve de méme
47 (I) i i
‘()3 P | 1365 ‘()3‘@/ 1365 ({ﬁ/(I) e
Do 3| — 2 da 032 2 oF |~

Il est commode de poser A = max(|h|.|k)). Par la formule de Taylor, pour
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tout (ex, ) € R?, sz%’rwﬁwh, ,ﬁm%’riwk, on a

D, H =S+ H+R

avec
13657, . 3 3. N4 DBy
i <— e b b s | W
(4.8) R| < = (1,2,2,1)A A
et
49) e < s+ 2 B s+ 28
: Gl = ST s sl s )

Maintenant, on applique le lemme 4.5 a la forme quadratique —R (%) en
choisissant & = 9.3, ¥ = 162 et ¢ = 14.2. 1l vient

H 93 % 142~ @B1F , 9.,
SElE s ol
R (S) - 14.2 ATz A
On a aussi
H ’ ; 2 2
R )| 2044161+ 14DN 40N,
] : . 2 2
35 )| £®7+102+0.54 <20
d’ot

2
< (40?7 + 209 = 2000 X*.

f
h)

H H
=14+ 2R =1+ |—=
(5)+5

et, en utilisant I'inégalité /1 ¢ < 1 4 ¢/2 valable pour tout ¢ > —1, on
obtient

On en déduit
2

1 2
T < 1 —9A% 4+ 2000 At

H Gxd 4
e — | ] e S AT e :
14 S‘”‘“l QA - 1000 A
En tenant compte de (4.9), (4.8) et (4.7), on a

. 21 9.2 . 4 . 2600 3)
L <: = o — b b
| @, D] < = (1 2)\ - 1000 A 4 3 A
et la parenthese est inférieure & 1 pour 0 < A < M e 0.00516. ..

300
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47  LBEMME. Soit & défini par (4.6); quels que soient v, 3 € R, on a

21 4 .
< 15 De plus, si (o, 5) # ( 1 ;) et (. ) € T5 (cf. 44), on a
5 21

Avec les notations de 4.4, posons

" 2 drr i
= {1 - L > .
{((1,,5)557‘, max(‘a 5 - )m 630}
A partir du lemme 4.6, il nous suffit de montrer que
21
Mp = max
B AHen 16

Cela se vérifie a partir de ’algorithme 4.3: on majore M(c.d;r) par (4.2)
avec My = M, = 6 et I’on obtient pour r = 20,

-

13023,

150620 299119
13123534, = |0 (=527, 222 ) | < Mo
301257 598237 \| , 12=

< |@ (5w o )| + oy = 1312389,

4.8, PROPOSITION. Soit L{(c, ) défini par 1.8. Pour tout (o, ) € R?,
On

(4.10) e, )] < ‘L(% 4”’)‘ w2

En outre, si (c,3) € T5 (défini en 4.4) et (a,3) # (2%? 4;), Uinégalité
(4.10) est stricte.

A 1'aide de (4.6), on a

1 : :
i FY e T s A £
Lo, D) = Z = (40, 6478).
Jz0)
i
On a 64f7 e 2; B 2’??64 L € 2 car 64 = 1 (mod 7). De méme,
J_W_ i j_’) o (2_’{ 4_W)
64 7 ¢ 2nZ. Don, @(647”647 o (2,1 o

Za dw 1 2a 4w o4 2m A
Bl v (Z@>‘I’(7>7) =g W)
=0
Il s’ensuit, par la formule (4.7), que
‘L(}r 4#)‘ _ 64 21 4

777 6316 3"
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D’autre part, par le lemme 4.7,

. o G i i 1 . j,/ 2 - L e
411 |La, B < | e, D] + p_ 5|64, 64/8)] < 16(2 . 64;> =
J'm

4
3
j=1

Lorsque (a, &) € 75 ¢t (., ) # (?47%
21

|Pex, )| < = et (4.11) implique |L(a, B)] < g

), encore par le lemme 4.7, on a

49 COROLLAIRE. Soit T un triangle, O = O(T) le centre, R = R(T)
le rayon de son cercle circonscrit et L = I(T) le point défini en 1.6. Alors

on a OL < %R et Uégalité a lieu si et seulement si les angles de T sont
a 2w dw

7707
Par le lemme 4.4, il existe (a, @) € T5 tel que O(THLT) = R|L{a, 3)], et
I’on applique la proposition 4.8.

Le
A

FIGURE 12
Le triangle d’angles 4% /7, 2%x/7, %/7 et son point L

4.10. LEMME. Soient deux nombres réels h et k vérifiant 0 < |h|, [k| <
2% et L la fonction définie en 1.8. Alors on a

L(mz;wfmk) %L(OS?> ~0.

La fonction

(4.12) A(@{/))) - (ex'(x e 61’;’3 = ewi((;w%ﬁ)) . i {ew2i<x . ew2i;’3 + €2£(<x~+~;’3))

b2 —
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est périodique de période 27 en « et 3. Comme pour la démonstration du
lemme 4.6 nous ne donnons que les résultats principaux.

D’aprés 1.8, pour tout n positif, on a

"
2 . 1 j if 27 ))
L(n3 A ”“)“‘Z_ 04%‘(4’“*4 (S

_"m
gt (e (5 £1)

4n~+~1
(4.13) - Z A (T k) o (e, 2 )
: e 4_} * 3 P P 4nm+w1 B 3 +
=
orce 2ar 4 1
VN ~
& 3 3 27 3 & 2rL
On a
2w
A (03 ?) -0,
A 23 (‘EA( 2
ws, OB (o2 3.
da ( ) V3e a3\ 3 V3
A (O 271') | A (O 271') oA (O 27;) 1
002 \" 3| [0a05 \" 3/ |7 [0 \7 3|7 2
Comme en 4.6, on majore les dérivées troisiemes:
PA PA 5 FA - PA o5
g | = datdF| — 2 A DR 20 |aBd| =
Pour h et k réels vérifiant A, [k] < % on en déduit les majorations
PA D 9 PA 3
h, 2 m:mk)<— —,(—?k)<—.
Ja 08 ( ‘ 87 a2 ‘ -~ 16

Par la formule de Taylor, il vient pour |A], [k| <

A(h_%‘" wewfc) xv?(e”%hwk) +R

avece
2
Rl < zﬁﬂhkzw&’ifz 37 (230" +36|hk] + 234°)
2
= 35 (I = [hk] + & )w—(ihiwiki) < 3 (1~ |hk| + ©)
2
§32( +hk+ 1) = ﬂhwk‘
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Il s’ensuit
(4.14) A(h_%rw%mk) =3 (e”?”hwk) (1 +7)
avec
& 41 3 41
wk‘ RN W - )
\/5 ~ 16v3 8 128"

Posons A = max(ja].|kD < =. On a

OO \

2
(4.15) 5 h— k‘ L S ( g) &

Défimissons ’entier n > 0 par
(4.16) dh < é L™

Par (4.14), on a pour j< n

(4fh o 4fk) gl B (ez‘%hm k) (1 + )

47

avee gl € — +l et, par (4.16),

128"

n

ZL (4fh e 4fk) > v3|e

j=0
87v3
™ 128log4

2:'1'
- k‘ @(nw 1)

(logg w10g8> ‘e SR k‘ .
Par la proposition 48 (4.16) et (4.15), on a

4
L4ty 2T L grtly, w O o &
= Sl =3 =

4n+ 1

et (4.13) enfraine

2 2 873 1 64
k) 2 - = ——
L (b5 k)| 2 [ h-k {12810g4 (10 5 —1togs) 3\@}

Or, ’accolade ci-dessus est positive pour

> log8 4 64 128log4 18733
"33 873 783

log !

< log?2 = (23.92.. )log?2.
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4.11. PROPOSITION. La fonction L et le triangle Ts ont été définis
respectivement en 1.8 et 4.4. On a

=0 o BeT e .g=b o a‘ng

Soit

D= {(a;_.,,{i)@T; max (iﬁri: g 23—PT

kit
) = 226} '
Compte tenu du lemme 4.10, il suffit de montrer que

Mp = min |Lic. | > 0.
v (a,;’i)&”‘l’-[ (e, B)

Cela se vérifie en appliquant [’algorithme 4.3 2 la fonction —|L]: on majore
M(c.d;r) par (4.1) et on obtient pour n = 30,

7|, (15_ 715827875 \| 607 +6
6.679...1077 = |1 (s5m, S0 ) | - S0 < M
17 _ 715827873 »

< L{ggm =) | = 9.637...1077,

s
-06 0.4 0.2 0 0.2 0.4 0.6
X
FIGURE 13

Image par L du triangle 75
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4.12. CORCLLAIRE. Soit T un triangie tel que le point L(T) défini en 1.6
soit égal au centre O(T) de son cercle circonscrit. Alors, le triangle T est
équilatéral.

Soit R le rayon du cercle circonscrit & 7. Par le lemme 4.4, il existe
(ev, ) € Ts tel que T soit égal au triangle (Re'*, Re'® Re'7) avec ~ =
2% —~ a — F. Mais on a R[L(x,5)| = OMLT) = 0, et 'on applique

Zar dar

la proposition 4.11: on a a = 0, 3 = Y et = B 3 et le triangle
(Re'* Re'® Re'7) est équilatéral.

4.13. Dans le plan (o, 3), soit 77 le triangle de sommets (0,0), (0, 7)),
(2? 2—) - avec les notations de la figure 11, ona 77 = 75 U T LU T7. Soit 7"
et 7" les triangles de sommets (0,7), (0,27, (&, &) et (z,7), (0,27),

20 2w
(5.5
Lapplication (&, 3 = (4,27 — a — ) transforme 77 en 77 et
(e, 3) = (@, 27 — o — 3) transforme 77 en 77 . Par les formules de 1.9, on
obtient

LTy = LT") = L(T") = L(T).

On passe du triangle 7s au triangle 7s par la symétrie d’axe o+ 4 = 2{

Pour (e, 3) € T5, (2—"“ sugfd 21 wa;) ¢ Tg et, par 1.9, on a
2 2w 5 2w —————
@11 Y E 8T —a) =Fu-p—a) = Fha,B.
On passe de 75 2 77 par Daffinité oblique d’axe 3 = 2 qui transforme le

point {(¥,%) en (0.7): (o, d)w(awdwz—*& 3) on a, par 1.9,

(4.18) L(a . 2i_ e a’) (‘3 g 2 a,) = ¢ L, B).

3 3 3
La figure 10 donne I'image par L dutriangle 75. Pour chaque point (e, ) € 75
de la forme o = g; 4= 1= (avec p.q € N), l'ordinateur a tracé le point
L, ).

On constate que, pour (a, ) € Ts, % < arg(l{a, 8) < %‘T ce que nous
espérons démontrer. 1l résulterait alors de (4.17) et (4.18) que (&, 3') € Tg ==
0 < argler’,8) £ § et (&, 8) € T7 = 2{ < arg(L(a’, 3) < m. Ainsi,
L(T"y = L(T7) serait contenu dans le demi-plan supérieur, et, par (1.5), L(73)
serait contenu dans le demi-plan inférieur.
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5. UNE PROPRIETE DE L'ENSEMBLE DES VALEURS DE I(T)

5.1. Solent 7, 7" des espaces topologiques, F: T -+ 77 une application,
et fo € T. On dit que F est localement surjective en # si 1’image par F de
tout voisinage de #p est un voisinage de F(#).

52, On fixe jusqu’au n°5.4 une fonction continue u: 10, a[—+]0, +o0[
telle que rw(t) — O quand f —» O.

53. Soient I un cercle de centre O et de rayon strictement compris
entre 0 et a dans R%, et A le disque fermé de bord I'. Soit &: A — R?
une application continue telle que |e(x)] < [x| pour tout x € A\ {O} (et donc
&(0) == 0). On choisit partout la norme euclidienne.

Considérons I’application x = F(x) = w(jx])(x+&(x)) de A\{O} dans R?.
On a Fi(x) # O pour tout x € A\ {0}. Posons F(O) = O. Alors F est une
application continue de A dans R?.

LEMME. F est localemeni surjective en O.

On va imiter une des démonstrations du théoréme de Brouwer dans le plan
(cf. [1], p.279, probleme 3). Soit ~ la restriction de F a T'; c’est un lacet
dans R%\ {0} (T étant orienté de la manitre habituelle).

Pour ¢ € [0,1] et x € T, soit v(x) = w(|xP(x + t=(x)). Notons que w(|x|)
est égal & une constante A > 0 sur T'. Les v sont des lacets dans R*\ {0}
et définissent une homotopie de ~ == ~; au lacet ~p: x ++ Ax. Donc l’indice
JO,~) est égal a O, ) = 1.

Comme () < R*Y {0}, il existe un disque ouvert A’ de centre O qui
ne rencontre pas ~(I"). Comme A’ est connexe, 'indice j(x,~) est constant
quand x parcourt A’, donc égal & f(O,~) == 1. Nous allons montrer que
F(A) » A Raisonnons par 1’absurde, supposons qu’il existe xo € A’ tel que
X & F(A). Evidemment, xo # O.

Pour r ¢ [0,1] et x € T", posons ~"(x) = F(rx). On définit ainsi une
homotopie de ~ sur le lacet réduit & O. Puisque x¢ ¢ F(A), 'indice f(xp, ")
est défini pour tout » € [0, 1]. Il dépend continliment de r, donc est constant,
donc égal a j(xo,~) = 1. Mais j(xg, "}’0) est évidemment €gal a O, contradiction.

Done F(A) O A Appliquons ce résultat en remplagant A par un disque
de centre O arbitrairement petit: on obtient le lemme.
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54 LEMME. On conserve les notations de 53. On suppose de plus que

L. w(f) — o0 quand t — 0 ;

2. il existe 1 > O tel que || < (1 — x| pour x # 0.

Soit H: R? —» R? une application telle que H(O) = O et que H soit
difféerentiable en O. Alors, F + H est localement surjective en O.

Il existe une constante ¢ > 0 telle que |H(x)| < cjx| pour |x] assez petit.
On a, pour x # 0,

H(x)
(F -+ H)(x) = w(x] (xw’:ws(x) 4 ) .
w(tx!)

S1 x est assez petit, on a

@+ < (1-g+ =)l <
g(x) + il o X X
ST D T o2
et il suffit d’appliquer 5.3.
5.5, On utilisera ’application u: (h, k) + e h—k de R? dans C = R?

et on la considérera comme une application R-linéaire de R* dans R%. On a

2 2
wth P = |~2h ki3 = (LY 230 = e 2
2 2 2 4

Lorsque 2 + k> = 1, h* + hk + k> est maximum pour h = k = % et vaut
alors % et est minimum pour 4 = % k= wé, et vaut alors % D’ou

lujl = /3/2, HMWIH = /2,
5.6. On pose, comme dans 4.10,

Ale, B) = %(em +ef s €w£(<>~+~,:’5)) B i(ewzm s €2£(<z~+~;’5)) _

Pour A,k € R, [h] < %, k| < %, on a
/\(h_«,z?)—?T wéwk) = vf’a_’(ez‘%hwk)(uﬁﬁ)

avec || < % Cela est prouvé au début de la preuve du lemme 4.10.
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57 LEMME. Pour t >0, on pose w(f) = (—log8 —log#)/log4. Alors,
pour (h, k) € R? \ {0}, la fonction L définie en (0.1) vérifie

2w o - ™
L(h T+ k) = V3] w(|(h, DR, B + oh. k) |
avec |o(h, k)| < 0.6|(h. k)| pour |(h.k)| assez petit (| | est, on le rappelle,

la norme euclidienne).

A Taide de la fonction A introduite en 5.6, on a
2 Y o al(n 2 s ) A fan 2 ak) 5
L(h;?w;mk)mz\(h,, s k) ‘ 4A(4h, g .,4;() -
1 np 20 a\
+ 4—nA(4h,,? ;4k> -
Définissons 1’entier n par
h, 0] < 5 < 4, b)].
Alors, si 0 <j< n,
1 o 2ar ; 2w
AG, T4 40k = /3 (Fh—k)a+x
avec |A;| < 41/128 d’aprés 5.6. Par ailleurs,

1
e = ; = W[(h, 4 1
n < 1084( log 8 — log(|(h. K)])) (Jh. DD < n+ 1,
n+ 1= w(|th, O + . &
avec [((h, k)] <1.0On a
2 . . 1 ” Wori n
A(h_.,? w;mk) b |, 4?1\(4 h;?wél- k)
= '\/g(ezt%hwk)(némlmé«%«%«...%%n)
= V3 (Fh k) @t 0D + )+
avec |A] < ﬂ(m + 1), done
128

J169 41 169 4l

[€Ch )+ Al £ 5 +175e = e+ 15

w{|(h, ]

) -~ o 9
D’autre part, comme |[Ale. #)] est trivialement majoré par 7

1 o 2ar ; 3
o b 2L - . res
‘ng@ A k)‘ < or < 3| = 24k, |
j=n
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done

1 ; 2iw

S A(4h, L 40k} = V3 h— k) oth. )
f=n
avec
1 242
h o] < 24i(h, k
Rl B e o
Donc,
L(n, T ik)=v3 (¢ b — &) wllh 0D + o 0, )

avec

169 24v2 ;

|7 (b, )] < o + 128.;,(;(;1 o + 5 <+ 128,,:,(E(h Sy
Qu encore
2 2w 7
L(h 2 k) = V3ulith 0D (¢ h— k) (L + 7'th, )
avec
y 4 2
i o
7701 = 138 + S, D

2imw

Or (eTh - k) (P, k) = uloh, k), avec

21
[oth. bl V243 2 b (128 Ak k)i))

< 0.6 |(h,k)]. pour |(h k)| assez petit.
. o s .
5.8, PROPOSITION. Soient g = 2 ”?, By mg = o, kK eZ,
k = 0 (mod 3), ¥ = 1 (mod 3). Alors la fonction (a, 3) > Lia,3) est

localement surjective en (op, 3). En particulier, L est localement surjective
en (0,27/3).

On a

Lic, ) = Ple, B) + ——L(2" g, 271

n+1

ol P est différentiable, et

2kx ) T w
27t g = 3‘ em?, 2Hlg=""¢ 5t
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donc
- s 1 o
Lioo + h.fo + k) = Plao +h, fo + 0 + L (274, T + 27k
= Plao +h, o +

+ V3 2 W@ 2T O A, 27 ) + o2 e, 27 )]

= V3 u[(V31) Plag + b, Bo -+ k) + w(@" h, 2P, k) + o' (b, )]

avec

1
St 1

o2, 20| < %{(zﬂ“hj 2" = (0.6)|(h, b))

|/ (h, k)| =

pour |(h, k)| assez petit. On applique alors le lemme 5.4.

59 REMARQUE. L n’est pas un homéomorphisme local aux points
(e, ) de 5.8. Par exemple, ¢~ x(¢) n’est injectif dans aucun voisinage
de 7= x/3, & cause des oscillations fines de x(7).

5.10. PROPOSITION. L’image K de Dapplication L est 'adhérence de
son interieur.

Les points (g, ) de 5.8 sont denses dans R?, donc leurs images par L
sont denses dans K. Or tout point L{ag,J) est, d’aprés 5.8, centre d’un
disque ouvert non vide contenu dans K. D’ou la proposition.

6. NOTE SUR LES SECTIONS 2.8 BT 3.1

La méthode employée en 2.8 fait partie du folklore de I'analyse harmonique.
A notre connaissance, 1'idée d évaluer un coefficient de Fourier situé en un point isolé
du spectre en tenant compte des lacunes a gauche et a droite a été utilisée pour la
premiére fois par Mark Edward Noble dans son article de Mathematische Annalen
128 (1954), 5562, “Coefficient properties of Fourier series with a gap condition”;
les formules de Fourier avec poids sont clairement exposées au début de article,
et permettent 1'évaluation des coefficients 2 partir de la donnée de la fonction sur
un petit intervalle. I'idée de partir du voisinage d'un point au lieu d'un intervalle
revient 4 Masako Sakd (plus tard Izumi) dans ses articles des Proceedings of the
Japan Academy 31 (19506), 402-405 et 508-510, “Lacunary Fourier Series I, 117, Une
exploitation systématique en a ¢été faite par Shin-ichi et Masako Izumi et Jean-Pierre
Kahane pour 1'étude du comportement local des fonctions dont la série de Fourier
est lacunaire 4 la Hadamard dans l'article “Théorgmes élémentaires sur les séries
de Fourier lacunaires™ du Journal d’Analvse Mathématique 14 (1965), 235-246. Un
abrégé du contenu se trouve dans le rapport de J.-P. Kahane au congres de I’ American
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Mathematical Society & New York en 1963, “Lacunary Taylor and Fourier Series”,
publié dans le Bullerin de I’ American Mathematical Society 70 (1964), 199-213. Depuis
lors, 1a méthode et son exploitation sont devenues banales.

[1]
[2]

[3]

[4]
[3]

(6]
[71]
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