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L'Enseignement Mathématique (2) 53 (2007), 369-428

UN EXEMPLE DE NON-DÉRIVABILITÉ

EN GÉOMÉTRIE DU TRIANGLE

par Jacques DiXMiER, Jean-Pierre Kahxne et Jean-Louis Nicolas*)

ABSTRACT. Let T be a triangle in a Euclidean plane. If f(T) denotes the triangle
whose vertices are the midpoints of the sides of T, and if we iterate the function /,
the situation is simple: all triangles fn(T) are homothetic and tend to the centroid
of T. But if g(T) denotes the triangle whose vertices are the feet of the altitudes
of T, the problem is not as easy. We shall see that gn(T) tends to a point L(T),
a new point geometrically linked to T and that L(T) is a continuous function, in fact
hölderian, but is nowhere differentiable, hence the title of this paper.

In Part 1, the existence of L(T) is proved and its coordinates are calculated in
a simple system of axes tied to T. If the circle T(T) circumscribed to T is fixed,
T depends on three angles a, ß. 7. By rotation, we may require that a + ß + 7 — 0
so that L(T) becomes a function L(a,ß) of two variables, and the coordinates of L(T)
become trigonometric series of lacunary type. In Part 2, some properties of regularity
and irregularity of more general series (lacunary series of imaginary exponentials
in Rd) are given; from them, the behaviour of L(T) as described above follows. In
Part 4, the extreme values of the distance between the point L(T) and the centre 0(T)
of r(T) are studied. We show that L(T) 0(T) if and only if T is equilateral, that
L(T)0(T) < IR(T) for all triangles T, where R(T) is the radius of HT), and that

L(T)0(T) ^R(T) if and only if the angles of T are y., y-. In Part 5, we shall
see that the image of the map (a,ß) >-r L(a, ß) is the closure of its interior.

When T is an isosceles triangle, L(T) belongs to the symmetry axis of T, and its
abscissa on this axis is given, after normalization, by the following Weierstrass-Hardy
function :

x(t) sin2 t — - sin2 21 + - sin2 At — - sin2 8/ +
2 4 8

- — - cos 214- - cos At — - cos 8/ +
3 2 4 8

In Part 3, we give detailed information concerning this function: its minimum, its
maximum, its local behaviour around t — 0 (which is of fractal type), etc.

*) Recherche financée par le CNRS, Institut Camille Jordan, UMR 5208.
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Introduction

Soit 7 un triangle dans un plan euclidien. Si l'on note /(7) le triangle
formé par les milieux des côtés, et si l'on itère, la situation est simple : les

triangles fn(T) sont tous homothétiques et tendent vers le centre de gravité
de 7. Mais si l'on note g(T) le triangle formé par les pieds des hauteurs,

l'itération pose des problèmes plus difficiles. Les gn(T) tendent, on le verra,
vers un point L(7), un nouveau point attaché géométriquement à T et L(7)
est une fonction continue, en fait hôldérienne, mais partout non différentiable ;

cela justifie le titre de cet article.

La partie 1 prouve l'existence de L(7) et calcule ses coordonnées dans

un repère lié simplement à 7. Si le cercle r(7) circonscrit à 7 est fixé,

7 dépend de trois angles a.ß,-/. Par rotation, imposons a-tß + 7 — 0 de

sorte que L(7) devient une fonction de deux angles a et ß :

(0.1) LCD - Ua, ß) ^ J2(~iy2~~n (e(~~2)"ia -r + e"(_2)"Ka+ß)) •

n=0

La partie 2 démontre des propriétés de régularité et d'irrégularité de séries plus
générales (séries d'exponentielles imaginaires lacunaires dans Rrf); d'où, en

particulier, le comportement annoncé de L(7). Dans la partie 4, on étudie les

valeurs extrêmes de la distance du point L(7) au centre 0(7) de T(T).
On montre que L(T) — 0(7) si et seulement si 7 est équilatéral, que
L(7)0(7) < tR(T) (R(T), rayon de F(7)) pour tout triangle 7, et que

L(7)0(7) j/?(7) si et seulement si les angles de 7 sont y, y.y. Dans
la partie 5, on montre que l'image de l'application (a, ß) m- L(a,ß) est

l'adhérence de son intérieur.

Quand 7 est isocèle, L(7) appartient à l'axe de symétrie de 7 et son
abscisse sur cet axe est donnée, après normalisation, par la fonction de

Weierstrass-Hardy suivante :

x(t) sin21 — \ sin2 2t + \ sin2 41 — \ sin2 81 -t...2 4 8ii o i i
— - — - cos 2t -f - cos 4? — - cos 81 -t...3 2 4 8

Dans la partie 3, nous donnons des informations détaillées sur cette fonction:
son minimum, son maximum, son comportement local autour de t — 0 (qui
est de type fractal), etc.

Nous avons plaisir à remercier X. Roblot et M. Deléglise pour l'aide
apportée à l'élaboration des figures ainsi que J.A. Bondy pour la traduction

en anglais du résumé.
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1. Existence et calcul de L(T)

1.1. Pour tout triangle T, on notera r(T) le cercle circonscrit à T,
0(T) et R(T) le centre et le rayon de r(T), uj(T) le centre du cercle d'Euler,
G(T) le centre de gravité.

Rappelons que le cercle d'Euler (ou cercle des neuf points) d'un triangle T
passe par les pieds des hauteurs, par les pieds des médianes et par les milieux
des segments joignant l'orthocentre H(T) aux trois sommets. De plus, les

points O, G, lû et H sont alignés, a-' est le milieu de OH et Gui — ~^GO.

1.2. On part d'un cercle T de centre O et de rayon R. Soit A.B.C T
et T — (A,B,C). Identifiant le plan à C, on peut écrire

A—0Jf Reia B 0 + Reiß C — O A Re'">

où a, 8, y sont des angles modulo 2-tt (la figure 1 a été tracée avec

a - 70°? ß m 1980 et 7 - 342°). On a

G^G(T)~ |(A + Ä + C).

Soit H. l'homothétie de centre G et de rapport — On a 'H(T) — T',
cercle d'Euler de T, 1-1(0) — O' u(T). Les points A — H(A), B — H(B),
C H(C) sont les milieux de BC. CA, AB. On a

O' - G — \(0 — G) — —\o A ~ ^(A 4r B AC — O)
2 2 2 2

-\{2OA Reia + Reiß + 7e'7)

(1.1) O + X-R (eia 4- eiß 4 e'7)

D'autre part, A — O' — — \(A — O) — —\Reia, donc

(1.2) A 0'-X-Reia. B — O' — ]rRe'ß C — O' — l-Re'1.
2 2 2

Soient A', B'. C' les pieds des hauteurs de T. On dira que T' (A',B',C')
est le triangle descendant de T. On a

A,B,C,A',B',C' G T'

ÄA' (resp. BB'.CC') parallèle à BC (resp. CA, AB).

Donc, si l'on écrit A' O' —^Re'â, on a aAà ~ ßAl (mod 2it) d'après (1.2).
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Par suite

(1.3) 4' 0' -„ IO Kß+1-
2

-<*)

B' :c- 0' ~~

2
-P)

C' 0' "
1 nj(a+ß~- 2*e

-7

1.3. En particulier, si a + ß + 7 0 (mod 2tt), les formules (1.3)
deviennent

(1.4) A' 0' - )-Ret$i<x B! - Of - ^Re~2iß C' ~ O' «2 2 2

Figure 1

Le cercle d'Euler du triangle (A,B,C)

1.4. On notera que le cercle d'Euler n'est défini, en principe, que si

A.B.C sont distincts. Mais les formules pour O'.A'.B'.C' gardent un sens

dans tous les cas. Si par exemple, A — B, on a a — ß, donc

ßl — O' — \-R(fr =0+\R {eia + eia + en) - l-Ren — 0 + Reia ~ A
2 ' 2 x ' 2

et de même B' — B — A.
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1.5. Passons à l'itération. T. A, B, C, O seront notés To,Ao,Bo, Co, Oo>

et T',A',B',C',0' seront notés T\.Ai. B\. Ci, 0\. Désignons par V —

V(R, a,/?, 7) la transformation de (Oo,Aq,Bo,Co) en (0\,A\,B\, Ci) définie

par les formules (1.1) et (1.4). Ces formules gardent un sens lorsque R est

négatif; on peut donc poser Ri — ~^R et itérer

1T(0.iA,B.iC)-={OnfAnfBnXn).

On posera Tn — (An,Bn,Cn), n-ième descendant de T — To — (Aq. Bq-. Co)

1.6. LEMME. On suppose a-tß+1 0 (mod 2ix) et R — 1. Alors On,

An, Bn, Cn ont une limite commune L(T) quand n —> oo et l'on a

L(J) Ot^ (e("""'2ria + + e("""2r'^
n=0

On a Oo — O, Ro — 1, Aq e"*, Bç> ~ e'^, Co — e'7, puis, utilisant (1.1)
et (1.4),

An On a- l-Rneict" Bn — On -f" \rJ% Cn^On+ X-Rné"'"

avec

s» —2<ri'n_i, ßn — —2ßn- \, "7/t ~ 2"7u_i Rn — (—1) 2

Ort+i ^ Ort -f ^(—l)n2""n ^2)"ia 4- e(-~2>n'P -h e(~2r^

d'où

O.+I,-0*| {/• f i? ## | if21" i e-*** a •2'4 'f - - -

• I( À*» • J"*)
donc 0„ a une limite L(T). Comme Rn ~~¥ 0, on voit que An, Bn, Cn L(T).

1.7. Soit T — (A.B.C) un triangle, O — O(T). Soit A un axe passant

par O. La condition (À, ~ö\)4-(A, ÔÈ)4-(A, OC) ~ 0 (mod 2ir) définit 3 axes

Ai. A2, A3 faisant entre eux des angles de ± y-- On les appellera les axes
ternaires de T. Nous pouvons alors reformuler le lemme 1.6 de la manière
suivante :
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1.8. PROPOSITION. Soient T un triangle tel que R(T) — 1, et O - 0(7).
On prend O pour origine, et les axes Ox. Oy tels que Ox soit l'un des axes
ternaires de T, d'où une identification du plan à C. Posons A — e'a, B — e'^,
C — e'1. Alors

L(7) tr LXa.fi, y) - | ]T](-U"2"" (e(~2rhl -h + e(~2rf7)
n=0

Comme a -t fi + 7 0 (mod 2tt) la fonction L(a, fi, 7) sera souvent
considérée comme une fonction de a,/? seulement et notée Lia, fi).

1.9. On a

L(a -h 2tt, /?) - L(a, fi -h L(a, fi),
L(fi, a) — Lia, fi),
Lina, —fi) — Lia, fi),
r / 2?r y, 2?r, 2{tt

lia -r y ,fi -r y e 3 L(a, /i),
L(a-, fi) ~ L(a, —a — fi) — Lifi, —a — fi).

Dans le plan des (a,fi), considérons le carré [0.2ir] x [0,2ix], réunion de

4 triangles fermés, suivant la figure 2.

Figure 2

Tout point du plan est congru modulo 2-?rZ x 2?rZ à un point du carré.

Comme L(fi,a) — Lia, fi), tout point Lia,fi) est obtenu en faisant varier

(a, fi) dans 71 U 74 Comme

1.5) L(2tt - fi, - a) - U-fi, -ofi L(-a, -fi) - Lia, fi),
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il suffit d'étudier L(a, ß) pour (a. ß) parcourant T\. Nous verrons en 4.4 et

en 4.13 une partition du triangle T\ relativement aux valeurs prises par L.

Voyons ce qui se passe sur les droites qui bordent T\. Pour a — 0, on a

ß (mod 2tt), A — 1. Pour a -h ß ~ 2ix, on a 7 ~ 0 (mod 2-tt) C — 1.

Dans les deux cas, (A.B.C) est isocèle avec Ox pour axe de symétrie. On
reviendra sur ce cas au n° 1.15. Pour a — ß, on a A — B, le triangle (A.B.C)
est dégénéré, L(T) — A — B d'après le n°1.4, donc L(T) parcourt T.

1.10. La proposition 1.8 entraîne l'équation fonctionnelle suivante:

2 L(a, ß) e"* + eiß + - L(^2a, -2ß).

1.11. Remarque. Si T est équilatéral, le triangle descendant a pour
sommets les milieux des côtés, donc L(T) — 0(T). Nous verrons au n°4.12

que la réciproque est vraie.

1.12. Remarque. Soit H l'orthocentre de (A.B. C), de sorte que
{A. B. C.H} est une «configuration orthocentrique ». Les triangles (A.B.C),
(H.B,C), (H.C.A), (H,A,B) ont même descendant, donc

L(A, B5 C) " L(H, B5 C) ~ L(H: C?4) L(H,A, B).

Cela, combiné avec le n°l.ll, prouve que si A — B — C — on a

L(A,B:,C)=A.

1.13. La fonction (a,/?) L(a.ß) est une application continue de

(R/2-«Z)2 dans le plan. L'image de (R/2ttZ)2 par L est une partie compacte K
du plan, connexe par arcs, symétrique par rapport à Ox, invariante par la

rotation de centre O et d'angle y. Ona Tcü (cf. n°1.9).

Problème 1. La frontière de K est elle une courbe de Jordan fermée?

Problème. 2. K est-il simplement connexe En particulier, le disque de

bord T est-il contenu dans K

On prouvera en 5.10 que K est l'adhérence d'un ensemble ouvert,
autrement dit, que l'intérieur de K est dense dans K.
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1.14. Il est intéressant de savoir à quel point L(T) peut être éloigné de O.

Il s'agit donc de calculer le nombre suivant:

/{ sup 0(T)L(T)IR(T)

la borne étant prise sur tous les triangles. On a

ß — sup \L(a, ß)\,

la borne étant prise sur tous les couples (a,ß). On verra au n°4.9 que

f<-4/3.
Si un triangle T a tous ses angles aigus, l'orthocentre H est à l'intérieur

de T, donc 0{T)H < R(T). Or Ox(J) ~ u(T) est le milieu de 0(T)H, donc

0(T)0i(T) < \R(T). On a L(J) - UJù, donc Oi(T)L(T) - 0(Ji)L(JO <
ßR(TO \ßR(J). Ainsi, 0{T)L(J) < i(l +/0R(J) \R{T).

1.15. Cas p,articulier. Supposons T isocèle, et plus précisément
AB — AC. L'un des axes ternaires de T est son axe de symétrie orienté
de O vers A. Alors, a — 0, ß — —7. Le point L(T) appartient à Ox et son
abscisse est

oc

L(°,ß) Yj^n2rn (\+ cos2^)
n=0

— I 4- cos Q — x cos 2Q + - cos 48 — i cos 83 +3 ' 2 J 4 ' 8

Nous définissons la fonction t m- x(f) par

(1.6) x(t) — sin21 — ^ sin2 2t 4- \ sin2 41 — 3
sin2 8t -f2 4 8

Alors

1.7) L(J) - L(0. ß) l- 2x(ß/2).

Voir la partie 3 pour des détails concernant la fonction x(t). Son maximum
est 1.023274..., son minimum est —0.1423503...; donc l'ensemble K du

n°1.13 contient le segment [—1.0465,1.2847] de Ox.

1.16. REMARQUE. On suppose que a, ß Qtt Alors L(T) est un nombre

algébrique et même cyclotomique.

Soit q un entier, q > 1. Il existe des entiers jo,r > 0 tels que la suite

((—2)J mod q)j>J0 admette la période r. En effet, il existe jo. r > 0 tels
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que (-2)à (~2)j°~ïr (mod q) et alors (-2Vb+1 (-2yo+1+r (mod q),
(_2y°+2 (_2)-/0+2+r (mod g)5...

Si a,ß Qtî il existe un entier q > 0 tel que a, ß {2ix/q)Z. D'après
ce qui précède, la suite

e{~2:)»,« + g(-2Tiß 4_ e~(.~2)ni(a+ß)

admet la période r à partir d'un certain rang. Alors L(a,ß) est somme d'un
nombre fini de termes cyclotomiques (le début de la série Lia, ß) et de r
sommes infinies dont chacune est de la forme

< Y (j-2na + e(-w + e-<rin«+fi>\ U + (zir + +..2 > ' \ 2d 2^ J

donc est cyclotomique.
Soient T\,T2, - les triangles descendants de T. D'après ce qui précède

et les formules de 1.6, pour n assez grand, Tn+r se déduit de Tn par
une homothétie ~Hn. Soit Q son centre. Comme 'Hn{Ur) — ('Hn(U))r pour
tout triangle (J, on a Hn(Tn+r) ~ (Hn(Tn))r - (Tn+r)r - Tn+2r, donc

Wn(Jn+2r) - Tn+3r, etc. Donc Q - L(T).

2. Régularités et irrégularités locales de L(J)

2.0. La proposition 1.8 nous pennet d'écrire

(2.1) L(T) L{a, ß) l- £(-1)n2-n(e{-2ri<x +
n=0

avec a et ß réels modulo 2u, et, si on le désire, par 1.9, on peut restreindre
l'étude de L(a,ß) au domaine 0 < a < a < ß < 2-n -- a (intersection
du triangle T\ de la figure 2 et de la bande verticale 0 < a < y1). Nous

préférons nous en tenir à (a, ß) (2ttT)2 et a -f ß + 7 0 (mod 2tt)
Le spectre de Lia, 8), que nous désignerons par S — Sp L(a,ß)), est

constitué des points de Z2 de la forme (cf. figure 3)

((—2)".0) j (0,(—2)") (-{-2ft^i-2)n) (béN).

Il est «lacunaire à la Hadamard», ce qui signifie que, pour un q > 0, la
distance de tout point s S à S \ {s} est minorée par # j|s|| ; ici q ~ ^
convient.
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Voici les résultats que nous établirons.

2.1. Proposition.
1. La fonction L(a,fi), définie sur (2ttT)2 est hôldérienne d'ordre ï] pour

tout r] < 1. Plus précisément, il existe une constante absolue C telle que,

quels que soient a,Q,h,k avec \h\ + \k\ <^, on ait

(2.2) I L(a + h. 8 + le)- L(a, ô)\ < C(|A| + Ifcl) log ,t,
1

\h\ -f- \k\

2. La fonction L(a, ß) appartient à la classe A de Zygmund. Cela signifie
qu'il existe une constante C telle que, quels que soient a,fi,h,k, on ait

(2.3) |L{a + h, ß + k) + L(a - h,ß - k) - 2L(a, ß)\ < C(\h\ + \k\).

3. Etant donné un angle (p 2iïT, posons

(fia,fi)^^{ekpL(a,fi)).

Quel que soit q>, il existe un ensemble dense de points (a, ß) (2-rrT)2

tels que

(2.4) (fia + h, fi 4- k) — i(a, 8) — 0(\h\ + |fc|) (\h\ -f \k\ -Y 0).

4. La fonction (fia, fi) n'est dijférentiable nulle part, c'est-à-dire que pour
aucun choix de (a, fi) et des réels a et b on n'a

(2.5) (fia + h, ß + k) m- (fia, fi) — ah — bk — o(\h\ + \k\) (|h\ + \k\ 0).

5. Sauf les exceptions signalées ci-dessous, la fonction (fia, fi) n'est

différentiable nulle part dans aucune direction, c'est-à-dire que pour aucun
choix de (a,ß) et des réels 0 et a on n'a

(2.6) (fia + hcosB.ß -r hsinß) — (fia, fi) — ah — o(\h\) (\h\ -> 0).

Les exceptions sont, avec 7 —a. — fi :

a) p> ±±- ^ ei e N: 2"a Et 0 ou 2nfi 0 ou 2"7 0 (mod 2it)
b) 3n N : 2n(a-fi) Et 0 ou T(fi--f) Et§ ou 2n(y-a) ~ 0 (mod 2tt)

(p> quelconque).
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Figure 3

L'ensemble S dans

2.2. Remarques.
1. Les résultats d'irrégularité pour £(a,ß) (points 4 et 5) sont évidemment

valables pour L(a,ß). Par contre, le résultat du point 3, concernant £(a,ß),
est nettement plus faible que sa transcription à L(a. ß) que nous ne savons

pas établir.

2. Les cas d'exception du point 5 sont constitués de six familles de droites.

Sur une droite d'une des trois premières familles (cas a)), (a,ß) définit un

triangle T dont un descendant Tn — VnT a un sommet au point 1, et à

partir de là Tm (m > n) est un triangle isocèle de sommet 1 ; L(a,ß) est

somme d'un polynôme trigonométrique et d'une fonction à valeurs réelles dont
l'étude fera l'objet de la partie 3. Sur une droite de l'une des trois dernières

familles (cas b)), le triangle Tn a deux sommets confondus pour un certain n,
et à partir de là les Tm sont dégénérés; L(a,ß) se réduit à un polynôme
trigonométrique.

3. Dans le cas d'exception b), il peut arriver que les points On soient
confondus avec L(T) à partir d'un certain rang (si 2"(a — 8) ~ 2n(ß — 7) —

2n(y—a) ~ 0 (mod 2vr) Il en est de même quand T est un triangle équilatéral
ou l'ancêtre d'un triangle équilatéral, c'est-à-dire quand chacune des différences

IC'TT

a — ß,ß — o' et 7 — a est de la forme ^——, 3 \ k. Mais en un tel T la

fonction /;(•) est non différentiable, sauf si T appartient au cas a) et si <p f.

2.3. La proposition 2.1 découlera de propriétés générales de fonctions

presque-périodiques dans R' (d — 1,2,...) dont les fréquences sont assez

dispersées dans Rrf et dont les coefficients sont comparables (dans un sens

que l'on précisera) aux inverses des distances des fréquences à l'origine. Nous
allons désigner par (J) un système d'indices, par Aj les fréquences (A/ G Rrf)
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et par cj les coefficients (cj G C), par X la variable dans et par A • X
le produit scalaire. La fonction considérée sera

(2.7) /(X)- cj exp(iA/ • X)
/£(/)

et l'on supposera toujours loi < oo. On notera | | la norme euclidienne
dans R^.

On fera toujours l'hypothèse

(2.8) |A/ -*AkI > q\Aj\ (J G (./), K G K / ./)

avec q — #(/) > 0. Dans le cas ûf — 1, c'est la condition de lacunarité
d'Hadamard.

La condition (2.8) entraîne que le nombre de points Aj tels que

r < |A/| < 2r est majoré par une constante ne dépendant que de q et
d (et non de r) d'où résulte

(2.9) #{J : |A/| < r} < C0logr,

Co ne dépendant que de q, d et de la borne inférieure des |A/| ^ 0.
Observons que l'hypothèse (2.8) entraîne également

(2-10) Y1 lA'l ^ Cir
j Ayj < r

V 1 1

(2.11) E TT-T < Cl-A/ r
|Ay! > r

1 1

avec Ci — C\{q.d).
Nous allons énoncer en 2.4 et 2.8 les propriétés de f(X) dont nous ferons

usage pour établir la proposition 2.1.

2.4. Proposition. On suppose (2.8) et

(2.12) sup |c/||A/| < oo.
j

On a alors

(2.13) | f(X 4- H) —f(X)\ < C\H\ log
\ti [

pour tout X G Rrf et tout H G Rrf tel que \H\ < et

(2.14) I f(X + H) +f(X nr H) 2f(X)\ < C|//|

pour tout X G Rrf et tout H Rd, C dépendant de f seulement.
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Pour la preuve, supposons sup7 |c/||A/| < 1. Écrivons d'abord

f(X ~b H) -- f(X) =5 cj exp iAj X (exp iAj H — 1)

et partageons la somme en deux, Y1 Yj> suivant que |A/| < ^
(somme X41^) ou |A/| > ^ (somme On a

I v—'-i(l) <r—\(1)
i n n i I, f i i l

|z_- ~ 2-- \cj\M\H\ < \H\ # y : |A/| < —
|

< c0|//|
i

177Ï

en vertu de (2.9), et

1^(2) ^(2), _^(2) 1

E <2E \KÄ-2cm

d'après (2.11). Cela établit (2.13).
Écrivons maintenant

fiX -f H) Af(X ^ H) ^ 2f(X)

— cj exp iAj • X (exp iAj • H + exp(—iAj H) — 2)

et partageons la somme comme précédemment. On a

Iv-dl) r^d), ,9, ^(D,
uL < 2_^ MIA'I lwl <2L, \&j\\H\ <Ci\H\

d'après (2.10), et

1^(2) ^(2),E -4zJ |o|<4Ci|f/|

d'après (2.11), ce qui établit (2.14).

2.5. Le spectre S de L(a,ß) est contenu dans Z2\{0}, et si on écrit
fïy

ses éléments comme A/, il vérifie la condition (2.8) avec q — Posons

X — (a, ß). En nous référant à 2.0 et en désignant le coefficient de exp iAj • X

par cj, on a \cj\ < ^. Donc, pour la fonction f(X) — L(a,ß), les conditions

(2.8) et (2.12) sont vérifiées. La proposition 2.4 s'applique, (2.13) se traduit

en (2.2) et (2.14) en (2.3). Cela établit les points 1 et 2 de la proposition 2.1.

Pour le point 3, nous avons besoin d'une proposition auxiliaire.
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2.6. PROPOSITION. Si f est à valeurs réelles (/: Rrf R) et vérifie
(2.14) pour tout X et tout H, il existe un ensemble dense de points X dans R^

tel que

(2.15) f(X -h H) - f(X) 0(\H\) (|//| 0).

En effet, (2.15) a lieu si X est un minimum relatif, parce qu'alors

f(X i~ H) +f(X — H) — 2f(X) (f(X -f H) f(X)) + (f(X « H) -/(*)),
ce qui, pour H assez petit, est la somme de deux quantités positives; chacune

est donc < C|//|.
Si G est un ouvert de Rrf, il existe un polynôme trigonométrique

P R tel que f -t P ait un minimum relatif dans G. En appliquant à

f 4_ p je résultat précédent, on voit que (2.15) a lieu pour unXeG. Donc

(2.15) a lieu sur un ensemble dense dans Rrf.

2.7. L'inégalité (2.3), que nous avons établie en 2.4 et 2.5, est valable

en remplaçant L(a, 8) par Ucx, ß). En appliquant la proposition 2.6, on a le

point 3 de la proposition 2.1.

Les points 4 et 5 nécessitent un nouvel outil.

2.8. Proposition. On suppose (2.8) et

(2.16) lim sup |c/yA/1 > 0.
j J | OG

Alors la fonction f écrite en (2.7) n'est dijférentiable en aucun point, c'est-
à-dire que pour aucun choix de X R^ et de A Rrf on n'a

f(X -f H) -f(X) — A - H — o(|//|) |//| - 0).

Fixons X et A. Quitte à remplacer cj par cjexpiAj-X, nous nous ramenons

au cas X — 0. Quitte à ajouter un polynôme trigonométrique convenable, nous

nous ramenons à /(0) — 0 et A — 0. Il s'agit donc simplement de montrer

que l'hypothèse f(X) — o(|X() (X 0) (ici X remplace H) mène à une
contradiction.

Soit O: Rd -¥ R une fonction indéfiniment différentiable de support
contenu dans la boule unité {u : |k| < 1}, telle que <ï>(0) — 1, et soit

p(X') sa cotransformée de Fourier:
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<I>(m) — j exp(iu • X) (p(X) dX.

Donnons-nous K G (J). Soit r — q\AK\, et

/ =r J rd (f(rX) exp(—• X)/(X) dX.

En développant/(X), on obtient

en vertu de (2.8). D'autre part, en posant |/(X)| |X| :q(X) — o(|X|)
(|X| —> 0), on a

|/| < Jrd \(p(rX)\ |X[ /7(|X|) dX- ^J \tp(Y)\ |y| 77 dY,

ce qui, d'après le théorème de convergence dominée de Lebesgue, est o (*)
quand n <00. D'où ck — o > ce qui contredit (2.16).

2.9. Pour appliquer la proposition 2.8 à £(a} ß), il convient de préciser
les fréquences et les coefficients. A partir de 2.0, on peut écrire

oc

(2.17) l{a,ß)- - Yl^"r)"2^n {cos(-2"a ± r) + s(Tß ± 9?) + cos(2"q/ ± <p))

n=0

avec a + ß + 7 0 (mod 2-tt) et ± — (— 1)".
Les fréquences sont de la forme e(2n,0), e(0,2"), s(2n,2n) (n N,

s {—1,1}), et les coefficients ont pour valeur absolue ^2~n. Les conditions

(2.8) et (2.16) sont bien réalisées, et le point 4 de la proposition 2.1 résulte

immédiatement de la proposition 2.8.

2.10. Un peu plus de travail est nécessaire pour le point 5. On est

maintenant amené à considérer la fonction

(2.18) f(h) — i(a + h cos 0,ß + h sin 0).

Convenons d'écrire (2.17) sous la forme
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les fréquences étant de la forme indiquée en 2.9, et les coefficients correspondants

étant

Le spectre de t(a, ß) est S(i) — SU (—S) (cf. figure 4), et le spectre de /
s'obtient en projetant S(£) sur l'axe Oz tel que (Ox.Oz) — 0 ; il est bien
lacunaire au sens de (2.8). Reste à examiner si la condition (2.16) est réalisée.

Lorsque tg 0 est irrationnel, la projection est bijective, le produit des

modules des coefficients de / par les valeurs absolues des fréquences est

minoré par un nombre strictement positif, donc (2.16) a lieu, la proposition 2.8

s'applique, et il en résulte que f(h) est non dérivable en 0 quels que soient

a et ß. C'est dire que, pour aucun choix de (a.ß), a, et tg# irrationnel,
(2.6) n'a lieu.

Lorsque tg # est rationnel, il correspond à la fréquence v de / le coefficient

Le nombre de termes figurant dans la somme (2.20) peut être 1. 2, 3 ou
infini. La condition (2.16) est réalisée quand, pour une infinité de valeurs
de i/, la somme se réduit à un terme, ou qu'elle est comparable au terme
dominant (au sens que le rapport des valeurs absolues est compris entre deux

nombres positifs fixes). Lorsqu'il en est ainsi, on a la même propriété de non-
différentiabilité de la fonction l en (a, ß) dans la direction # que lorsque

tg# est irrationnel.

Quand la somme comporte deux termes et qu'elle n'est pas comparable
au terme dominant, c'est (en dehors des petites valeurs À — ±l./i ±1)
que les (À, /«) concernés sont de la forme (0,2") et (2", 2"), ou (2",0) et
(2", 2"), ou (0,-2") et (-2", -2"), ou (-2",0) et (-2", -2"), ou (0,2") et

(—2",0), ou (0,-2") et (2",0).
L'examen des valeurs correspondantes des a\„ tl montre 1°) que si la somme

n'est pas comparable au terme dominant, c'est qu'elle est nulle, 2°) que la
condition de nullité s'exprime par ^ | (mod tt) et, suivant le cas, par
2"a- 0 (mod 2tt) ou 2nß ~ 0 (mod 2-tt) ou 2"(a- + ß) ^ 0 (mod 2it). Ce

sont les cas d'exception a).

02",o =öo,2" a —2",—2" -(—1)"2 " exp((—1)";Q9,

a_2",o - ö0,-2" =«2",2" - ^(—1)"2~" exp(#:(— Yfitp).

On peut alors écrire (2.18) sous la forme

(2.19)

(2.20) cu - ,i(Xa+ftß) (À cos 0 -h ß sin 0 — is).
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Figure 4

Les points de S sont représentés par •, ceux de —S par X

Quand la somme comporte trois termes, ils correspondent à des valeurs

de n différentes, et la condition que la somme ne soit pas comparable au

terme dominant impose que, le terme dominant étant d'ordre n, les autres

soient d'ordre n+ 1. On vérifie alors que les (À. /0 concernés appartiennent
tous trois à S ou tous trois à —S. De nouveau, la somme doit être nulle
si elle n'est pas comparable au terme dominant. On distingue trois cas (voir
figure 4):

tg# — 1, exp(2rt+1 ia) — 2exp(2ni(a + ,3)) -h exp(2"+1i4) — 0

tg # — — 2, exp(2"+1 i(a + ß)) — 2 exp(2niß) -f- exp(—2n+1ia) — 0,

tg 0 - - i exp(2"+1 i(a -h ßj) - 2 exp(2"ia) 4- exp(p2rt+1 iß) - 0.

Dans chacun de ces cas, les trois exponentielles écrites doivent être égales.
Cela donne respectivement 2n(a~ß) ~ 0 (mod 2-tt), 2n(2a~tß) ~ 0 (mod 2-tt)

et 2"(a -h 2ß) ~ 0 (mod 2tt). Ce sont les cas d'exception b).

Les valeurs exceptionnelles de tg# (0, —l.oo dans le cas a), 1,-2,-5
dans le cas b)) apparaissent dans la démonstration. Elles sont également en
évidence dans les conclusions, lorsqu'on les écrit, comme nous venons de le

faire, sans faire intervenir 7.
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3. Étude détaillée de la fonction xit)

3.1. Rappelons que (cf. n0® 1.15 et 2.1)

x(t) ~ sin21 sin2 2t Jr\ sin2 4t — ~ sin2 8t -t...2 4 8

i i _ i i
— - — - cos 2t -f - cos4t ~i - cos 81 -t...3 2 4 8

__
1 - L(0,2t) _

1 — f.(0.2t)
2

~~
2

en choisissant 9? 0 dans 2.1.3. La fonction x est paire de période tt et
vérifie jv(-7t — t) — xit). D'après la proposition 2.1,

[x(f -h h) — x(0| — 0^\h\log J

[x(f X- h) X- x(t — h) — 2x(f)\ =s O (|/î|)

x est partout non dérivable.

La non-dérivabilité en tout point est connue depuis Hardy [3], mais la preuve
de Hardy est moins facile que celle donnée ici (cf. proposition 2.8) et elle
a dissuadé Zygmund d'inclure ce résultat dans son traité Trigonometrical
Series [7].

Précisons encore ce point. On dit qu'une fonction / de variable réelle est

lisse au point t si

+ h) î-f(t — h) — 2f(t) o(fi) ih ~¥ 0)

(définition de Zygmund). Toute fonction dérivable est lisse. Montrons que

x n'est lisse nulle part.

En effet,

f0^ âsfciy1
x(J -f h) xit — h) — 2xit) ^2 "

n 1
cos 2"t(cos 2"h — 1)

n=l
2"

et, pour t fixé, c'est une série lacunaire en h, avec des fréquences 2" et
des coefficients qui ne sont pas o (^) ; la proposition 2.8 montre que c'est
une fonction de h qui n'est dérivable en aucun point, et en particulier qu'elle
n'est pas oi\h\) quand h —> 0.

On connaît aujourd'hui beaucoup de propriétés des fonctions de Hardy-
Weierstrass, utilisant des méthodes de théorie ergodique. Un article récent de

Ai-hua Fan et Jörg Schmeling fait le point sur leur analyse multifractale, qui
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donne la dimension de Hausdorff de l'ensemble des points où l'accroissement
de la fonction (ici x(t 4~ h) ~i x(t) a un comportement fixé, par exemple 0(h)
(points lents) ou ah\og ^(1 -to(h)) (points a-rapides) (partie 7 de [2]). Notre
étude n'aborde pas cet aspect.

Dans cette partie, nous aurons besoin d'étudier les variations de polynômes
trigonométriqués. Nous les mettrons sous formes polynomials de la variable

2 cos(2?).

A l'aide des suites de Sturm (cf., par exemple, [6] ou [5]), on sait que l'on peut
localiser les racines d'un polynôme avec la précision souhaitée. Les calculs
ont été faits avec le logiciel de calcul formel MAPLE (cf. [4]).

3.2. Nous poserons, pour j — 1.2,...

.7 1 (—IV
Pj(t) — sin t — - sin 2? +..... q — sm 2Jt.

J 4 2 2J

Par exemple, Pç,(t) — sin2?, P\(t) — sin2? -- \ sin22?. On a

Pj(t) — sin 2? — sin4? + sin 8? 4- + (— l)7 sin2-/+1?

x(t) PH1(t) 4- (~~l)j2"jpj.~„\(2H) 4- (*• 1 )2j2~2jPj-1(22-/?) -h

x(j) Pj(t) 4- (_. iy+12"V- 1_x(2-/+1

x — tj — cos(2?) 4- x(t).

3.3. On aura besoin de quelques valeurs de x(t). Il est clair que x(0) — 0,

1. Utilisant 3.2, il vient

1 Od.
2 2
3 1 /TT

4 2
X

\ 3

d'où x
*

7T\ 2 TT 1 /TT"
— — sm —- - x 774) 4 2 \ 2.
7!"\ - 2 TT 1 '2TT

~ sm —- -x {

3) 3 2 \vT

\3 2

(tx\ 2 TT 1/-7T\ 1 1

x - sm — — -x { — j — - —- — 0.
\6 / 6 2 V3/ 4 4
/ ?r \ 1 2 2-n" 1 / 4?r

X\5) Sm
5 2

Sm T * 4
X \~5

-Ni cosLi- Ifï. ; bti2 \ 5/ 4 V 5 4 \ 5

2L — l±Vg «t me 27T __ -1+05d'où, puisque cos y — y et cos 3
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/ 19tt
* ("40"

1 2 2tt- — - cos —
3 3 5

1 TT

3
C0S

5

sin"

sin"

2

10

2

40

1 (TT
2

X
\ 5

1 2 TT

- sin —
2 20

1_

4

3\/5 — 5
12

1 1 + %/5

2 ^4

11 7T

_ _ _ cos — -
7 1 7T

24 2
C0&

20
TT / TT

cos — t X —
20 \40

1 TT

- COS — -f4 10 24

_o. 1423503...

3\/5 — 5 1

24
~~ 6J

1 TT

- cos —4 10
0.035586...

7
24

1 TT

- COS —•
2 20

1 TT

- COS —:4 10
1.023274.

3.4. LEMME. On a |jc(0| < ^ M Pour tout t.

Observons que

done

et que

Pi (f) ~ sin21 — ^ sin2 21 — sin2t( 1 — 2 cos2 i)

I-Pi(Ol < sin21 < minCf2,1)

x(t) Pi(t) + l-Pi(4t) + J^i (42r) +42'

done

|JC(/)| < t1 (1 t4f^ +. •• + 4*
1 1

' 4^+1 ' 4^+2
4^4 1

3
;

3 4«+i

pour tout t entier positif. Si |f| < 1, choisissons l de façon que
4~"e~1 < |f| < 4~*. On a alors \x(t)\ < |;| • 1 • - + - |;| — - |f|. D'autre part,,,11 4
\x(t)\ < 1 -f- - 4- — 4- =r - pour tOUt t.

3.5. LEMME. On a

0.42 < lim sup^ |
f—>o ^

et lim inf ^
i—ïO t

x(t)lim sup —
t ~~>0

Cette dernière assertion résulte de l'égalité

x(t) sin x(21)

21
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Comme x est paire, on peut désormais supposer t > 0. L'inégalité de

droite résulte du lemme 3.4. Celle de gauche équivaut à

liminf — < -0.42.
t—>o ^

Pour l'établir, on choisit to — —, on vérifie que —— —0.4261... et on
1280 /o

utilise le fait que, si t (O.ir),

x(j/4) P\(jj4) x(t) sin2(t/4)(l — 2cos2(t/4)) x(t) ^ x(f)
tj4 tj4 ' t ~ tf4 t t

Nous prouverons en 3.31 que liminf^o ~y — —0.426940988418...

3.6. Ainsi, au voisinage de t — 0, x(t)ft oscille entre deux valeurs

opposées à la manière de sin mais avec un comportement local très

irrégulier.

3.7. Dans la suite nous mettrons en évidence des valeurs de t
remarquables, entre autres celles où sont atteints le maximum et le minimum de

x(t). Nous distinguerons les extrema locaux, c'est-à-dire les points t tels que

x(t ~i~ h) — x(t) ait un signe constant quand 0 < |/z| < h(t), les «points de

traverse » pour lesquels ^ (x(t -f h) — x(tj) a un signe constant quand h est

assez petit et non nul (0 < |/z| < les points «lents» pour lesquels

x(J -f h) — x(t) — 0(|/î|) (h —> 0)

(nous savons qu'en aucun point t on n'a x(t + h) — x(t) ~ o(\h\) (h —> 0)),
les points «rapides» pour lesquels

Lv(t -f h) — x(t)l > c\h\ log 777
l"l

pour un c — c(t) > 0 et tout \h\ assez petit et différent de 0 (nous savons

qu'on a partout |x(t + h) -m, x(t)| < C\h\ log
\̂h\

Remarquons, comme nous l'avons déjà fait dans la partie 2 (voir 2.6) qu'un
extremum local est un point lent. Moyennant l'addition d'une fonction affine
de pente assez grande, un point lent devient un point de traverse. Un point
de traverse rapide reste un point de traverse rapide lorsqu'on modifie x(t) en

lui ajoutant une fonction de classe C1.
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Commençons par un cas simple.

3.8. PROPOSITION. Soit t — knj2n, avec k Z, n — 0,1,2,... Alors,
t est un point lent :

x(t -f- /z) — x(0 — 0(|/î[) (/î » 0).

De p/ws

x(t + h)^x(t) x(^4-/î)-x(0lim sup r lim mi — 2Pn_1{t)
h—»0 ^ ^

et

x(i "î~ h) — x(i) 8
+ 0.42 < lim sup < ^(t) A z -

h—>0 "

(0« convient que ,P_i(0) — 0. On notera que |D^_j(i)| Ç n.)

Pour m e Zît/2, on a (sin2 u)' — sin2u 0, et Pq(u) — 0. Pour n 0

ou 1, la proposition résulte donc du lemme 3.5.

Soit t — kixj2n avec k Z, n > 1. On a

x(u) ~ Pn-i(u) + (-1)" 2""nx (2nu)

donc

x(t -f h) - x(0 Ah)- P„-i(t) x(k7i + 2"h) - x (kir)
h

~~
h 2nh

et la proposition résulte du lemme 3.5.

3.9. Limitons-nous aux valeurs de t commensurables à tt et comprises
entre 0 et tt : t Qtï (1 (0,tt). La suite 2"z mod 1 prend un nombre fini de

valeurs, donc 2y+pz 2J-z (mod 1) pour un couple (j,p) N2. Excluons
le cas 2'| 0 (mod 1) qui vient d'être considéré. Choisissons p minimum,

p p (a) (la période) et j minimum, j — j (z) 0e début). Le développement

dyadique de z est de la forme
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Posons

— — O.aoöi... ap-1 aoa\... ap-i...
TT

t\
— — 0.aiü2 - üp-iao a\... cip-iao...

ip.,„ i
0.ap^ia0 ap.^2 ap.,.,\a§a\ ap^2

et

ip n 40
— — O.aoöi • • • Op-i öo«I • • • ap-1... — —

H sin2to — sin2?i 4-... 4- (—1/
1

sin2tp_i.

PROPOSITION. Si p est pair et H ^ 0, t est un point de traverse rapide.
Si p est pair et H — 0, t est un point lent. Si p est impair, t est un point
lent et n'est pas un extremum local si j — 0.

Ainsi, lorsque j — j — 0, t est soit un point de traverse rapide soit un

point lent, et t ne peut être un extremum local que si p est pair et H — 0.

Exemples : t — ^ p — 2, H ^ 0

i 2f 3îr 4Ï
'"s'T'T'T H-°

7T 2TT 3TT 4TT 5TT 6TT _ r, „t—-, — — —, —, — p 3, H i= 0.7' 7 ' 7 ' 7 ' 7 ' 7 ' ' /

On sait que j - j =0 signifie que, lorsque est écrit sous forme de

fraction irréductible, le dénominateur est impair (si q est premier impair,
2'q~~l 1 (mod q)).

Distinguons les différents cas pour la démonstration.

1. p pair, H ^ 0, j — 0. Rappelons que, pour tout entier l, et tout réel $,

2^+1

Choisissons t kp — 1 et $ — t + h. On a
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x(t + h") — x(t) - Pt(t + h)^ Pt(t) +R, |/?| < 2~*+1

h2
Pt(t + h) - Pt(t) h P'ß) + -P'ßt + h1)

sin2? - sin4? + + (^l/sin2*+1?
(sin fi — sin?2 i- • • • — sin jj,) -f (sin q — sin ti + •. — sin tp) +
£(sin t\ — sin ti + • • • — sin tp) kH

\P"0)\ <2 + 4 + + 2t+1 < 2H1.

1 1

En prenant k
p log 2 ° \h\

on a

x(t + h) — x(t) — —/z log Yj-r -f- 0(\h\) (|/zl ~¥ 0)
^log2 \h\

donc t est un point de traverse rapide.

2. p pair, H ^ 0, j > 0. On se ramène au cas précédent en soustrayant
de x0) le début de son développement.

3. p pair, H — 0, j — 0. Choisissons encore i — kp— 1. Alors, P'p{t) — 0

et

#|) m - %Kfiè # '4-Wii+h'i-
2

On a P"'(0) < 22 -i-42 -j- • • • i~ 22(^+1) < 4(+2. En choisissant k comme en 1,

on a 2~4-p-i < j/j| < 2~"e, et l'on obtient

|X(t 4- /z) —• jc(0| <K\h\ (K - K(t))

donc i est un point lent.

4. p pair, H — 0, j > 0. On se ramène au cas précédent en soustrayant
de x($) le début de son développement.

5. p impair. En choisissant i — 2kp — 1, on a PUj) — 0 parce que

(sin A — sin?2 + — sin tp) — (sin A — sin?2 + — sinfp) + etc.

et l'on conclut comme en 3. et 4. que t est un point lent. Reste à montrer

que, lorsque j {— — 0, c'est-à-dire
\ 7T

*- — O.aoai a„-*-i anai an-\.... 2pt~t (modi).
TT

t n'est pas un extremum relatif. Supposons pour fixer les idées que t est un
minimum relatif. Comme ce n'est pas un point lisse au sens de Zygmund
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(voir n°3.1), on a

Mais on a aussi

x(t + h) + x(t — h) — 2x(t)
lim sup — > 0.

\h\h~^r0+

x0) Pp_m - ^x(2p0)

donc

Pp-l(t + h) + Pp-i(t — h) — 2P(f) ~x(t + h) + x(t — h) — 2x(i)
1

' [x{t -f 2f h) -t x(t —2p h) — 2x{fj)

et il s'ensuit que Pp.,.\ n'est pas lisse. La contradiction établit bien que t
n'est pas un extremum relatif.

et

3.10. Dans la suite (nos 3.10-3.20), nous étudierons les cas t
197

40
Pour obtenir des résultats globaux, il nous faut préciser

numériquement certains résultats de 3.9. Jusqu'au n°3.13, on pose

fit) P0t) — sin21 — ~ sin2 2t + \ sin2 41 sin2 :

2 4 8

16

1

o
1

„
1

- cos 21 -f t cos4£ — - cosl

32 ^ -f 18C4 - 4f - 8£)

1

cos 16^
16

(£ — 2 cos 2t).

On a (cf. n°3.2)

x(t) -f{t) + 2/(160

/(5 — 3\/5)1/(1
r 0.

4/(l62

•0.1334534.LEMME.

3. Il existe des nombres a\ 0.15093..., <72 — 0.37970..., <73

1.36633 tels que f(f) soit strictement décroissante sur [0, <7i], °2>5 et

<73 ; strictement croissante sur [<7i,<72],
TT 2 TT

55 T et <*>2
{ TV { TT

4- fit) >f(jj pour tout t, f(J) > f ~ j pour tout t [0, — ], t —

1 pour tout t.5./(*)</(§
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On a

n/ 7T - 2 71
sm —

1

"
2

sin2 2TT

~~5
4-

1 2 4tt
- sm y »

• 2 TT

sm —
1

2
sin2 2tt

~s

1 2 TT

4
&m

5
~~

\

w cos 1) - 5

16 (l : «SOS/

5; 5 2 5 ' 4 5 8Sm 5

d'où 1. On trouve de même

Ensuite,

et de même,

/ (y) - à» i 3^'5) - 0,91470..

„ / / tt \ 2tt 4tt 8tt 16?r
f - — sm —— sm — -r sin —— smJ Vo/ 5 o 5 5

/'(f)^.
On a

fit) - sin 2? (£7 - 6£5 + 9£3 - £ - l)
=r -sin 2? (£2 -f £ — l) (£5 »£4 «4£3+3£2+ 2£ + l)

T f 1 + s/5 „ tt — 1 + s/5 „ 2tt
Le premier tacteur a pour racines —-— 2 cos — et — 2 cos — ;

le second a trois racines réelles

1.90955 2 cos 2{7i 5 1.45048... — 2cos2<72, —1.83510 2cos2<73

D'où les variations de f :

0
TT 2-77 TT

t er 1 <72 — — CT3 —
5 5 2

f' 0 - 0 + 0 0 00 + 0

0 0.148 0.914 1

f \ / \ /* \
-0.050 -0.133 0.888

Plus précisément trois des extréma sont

/Oi) —.05022 ...s /O2) 0.14834... :j /O3) 0.88835...

Le tableau de variation ci-dessus implique les points 3, 4 et 5.
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3.11. De la même façon, on détermine les variations de f et f". On a

f"(f) — 2 cos2t — 4 cos4r + 8 cos8t — 16 cos 16t

- _g£8 -f 64f - 156£4 + HOC2 + £ - 4

- —4 sin 2? -f 16 sin4? — 64 sin St 4- 256 sin 16 t

- —4 sin 2t (-64g -h 384Ç5 - 624Ç3 + 22Q£ + l)
Les extrema de f et f" sont donnés dans les tableaux suivants (où les

valeurs numériques sont données par défaut).

t 0 0.079 0.275 0.500 0.737 0.835 1.063 1.307 1.472
2

0 1.391 1.124 3.505 0.870

f
—0.516 -1.814 00Ö 55 -0.36 S 0

t 0 0.182 0.389 0.60É 0.7 00 0.962 1.182 1.387
2

15.38 20.21 18.81 11.64

f"
-10 -22. 50 -4.002 -25.45 14

3.12. PROPOSITION. Sur l'intervalle [0, ~], la fonction x(t) atteint
Au

3\/5 5
son minimum au seul point -tt/5. (Rappelons que x(-nj5) ~ —— —

-0.1423503...)

Posons encore f/j) — -yy- / 16-7). On a

(lemme 3.10.4)

*(§)•
Donc

-Mi -i/iW %M> i >Ä (f -rfi (I) «S (I) :•••-S (I)
avec inégalité stricte si t G [0. t f ^ (lemme 3.10.4).
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3.13. Proposition. Pour —^-<h<0,ona
30 ~ '

JC +hj ~~ X (|) > 0.022 \h\.

Supposons —jq < h < 0. Alors | — 0.52. j + h < j — 0.62...,
donc, d'après 3.11,

f "(f) > min • // / » I f"\ min 7 5(3^5+ l)\
7

pour I + h < t < I. Comme /'(f) — 0 (lemme 3.10.2), on a

r { TT

5
(3-1) / ^

Définissons l'entier n par

(3.2)

Notons que

!L+h

I6n\h\ < 2L < 16-

> ?A2

«+1

(3.3) 16n\h\ >

Pour tout entier j > 0, on a

I«
(3.4)

1

16;'
1

16;

1 TT
__

TT

Ï6 30 ~ 4SÖ

16^(4 +h

I + 16jh

I6jl

7

car lö7^- — ^ Ztt. Si j < n, on a 16-7|/z| < ^ d'après (3.2), donc, d'après

(3.4) et (3.1),

1 7 ,2 7

Il s'ensuit que

x(| +h) -x[ 4 ---EWf-H -4|
j=0

> ^ h2 (1 + 16 + 162 + + 16") >~h2 16"

- 2 ^ 4IÖ J d'aPrès (3-3)

> 0.022 \h\.
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3.14. LEHME. Pour 0 < h < on a- ~ 30'

{ 4TX
• h) f 4TX\

» — x — J

V 5 J V 5 J > 0.022 h.

Cela résulte de la proposition 3.13 puisque x(jï — î) — x(t) et en particulier

(I
3.15. LEMME. Soit P\(f) — sin21— ]- sin2 21 (cf. 3.2). Si t G

on a P'ft) > 0.363.
5J 5 ' 120

7X IX

S5 4
la fonction t m- sin 21On a P\(t) — sin2t — sin4t. Sur l'intervalle

est croissante, la fonction t m- sm4/ est décroissante et la fonction P[ est

croissante. Ainsi, pour + J, on a P[(t) > P\ (f > 0.363.

3.16. Proposition. Pour 0 < h < on a- - 120'

{ 7X
•- h) f 7X\

- — X { —

\ 5 J V 5 /

Par 3.2, on a x(t) — P\(f) -h \x(4f). Comme 0 < 4h < 55, on a, d'après
le lemme 3.14,

ï (x (t 4'4Ä) ~ (y)) - °-022 y - °-022 h

Par ailleurs,

px + h) «• Pi (|) - h P[ (| + h') où 0 < h' < h

> 0.363 h, d'après le lemme 3.15.

Donc

> 0.363 h + 0.022 h - 0.385 h.
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3.17. LEMME. Soit Piit) — sin21 ~~ |sin22?i- jsin24t (cf. 3.2). Si
t [^Sf], on aimO.13 < P'2(t) < °.

On procède comme en 3.10 et 3.11. On a, avec £ — 2 cos 2t

P2(t) sin2t — sin4t + sin8t — — sin2t (L£3 ~j~3£ — 1^

P'{(t) =r 2 cos2t «4 cos4t + 8 cos8t - 4£4 - 18£3 +.-£ + 12.

La dérivée P'2 s'annule pour t {|?tandis que la dérivée seconde a

quatre zéros dans l'intervalle [0, |] : 0.178..., 0.538.... 1.007..., 1.472... ;

le lemme résultera du tableau de variation:

t — 1.396
9

1.472 - 1.570
2

P'iif) -3.554 0 2

0 0

P'iit) \
-0.12933

A

3.18. LEMME. Sur l'intervalle Iqçf:§] — ~ 9§ö>§]' fonc^on
x(t) atteint son maximum au seul point 19-^/40 — 1.492...

On utilise la formule de 3.2

Si l'on a ~-^r- < h <0, par le lemme 3.17, le crochet ci-dessus est majoré
960

par 0.13 |/z| et, en appliquant la relation x(4tt — t) — x(tï — t) =s x(t) et la

proposition 3.16, l'accolade de (3.5) vaut

I (x (| _ shj - x j | 0.385 (-8h) ~ 0.385 \h\

Il s'ensuit que

x(}^+h)wx(^f)< 0.13 |fc| -0.385 |/z| —0.255 \h\ < 0.
\ TV / \ ^4U /

Si l'on a 0 < h < l'étude des variations de PU donnée en 3.17
40 1

montre que, dans (3.5), le crochet est strictement négatif, tandis que, par le
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lemme 3.10.4, l'accolade vaut

1 (x %T 8 h) -m X % Il >0

et l'on a encore

V 5 V 5

/ 1 9tt \ /1 9TT \ „

3.19. LEMME. Soit to — ^ avec p Z et n N. Pour tout t R,
on a

x(t) — x(to) < |x(t) — x(to)| < n\t — to| -h ~^~ï

Par 3.2, il vient

|x(t) - x(to)|

car \P'n_i(t)| < n pour tout t et x(2nto) x(p7r) — x(0) — 0

^xCrO+Pn-iCty^Pn-M ^ 2< —î: -f n\t- 2n
1

3.20. PROPOSITION. Sur l'intervalle [0, y], la fonction x(t) atteint son
maximum 1.023274... au seul point 19tt/40.

Par le lemme 3.18, il suffit de montrer que le maximum de x(t)
sur l'intervalle 10,^-tt] est strictement inférieur à Or <
ïggfj'T < Jj-tt. On applique le lemme 3.19 avec n — 14. 2n — 16384 et

p — 1.3,5,... .7765. On obtient

max x(t) < max x (^r) + 14-^r +
0<t<$frV p{13,-7765} \2"J \ 2>4 2»;

Pour p — 1,3,5,... ,7765, on calcule x($pc) ; la plus grande valeur est

obtenue pour p — 1165. On a ainsi

7765rr \ 7tt + 1

0<t<

/7765tt\
max x(t) < x n,. -t
/< 22$tL TT

W - V 214 213

< 1.0175 + 0.0029 - 1.0204 < x \40

On peut réduire considérablement les calculs à l'aide de l'algorithme de

dichotomie suivant.
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3.21. Soit / une fonction réelle continue sur un intervalle [ci, b] et
V une partie fermée de [a, &]. On veut déterminer une valeur par défaut de

maXi<=t>f(t) et une valeur par excès. L'intervalle [a, b] a deux enfants [a, Ap]
et [^jp, b], quatre petits-enfants [a, ; [^±^5 &]

_ etc., 2" descendants

de degré n et de longueur

Lorsque l'intervalle [c,d] est im descendant de [a, b], on suppose que
l'on sait déterminer une fonction M(c,d) telle que

max fit) < M(c,ct).
c<t<d

Si la fonction / est de classe C1, on peut prendre

où Mi est un majorant de \f'(t)\ sur [a,b]. Si fit) ±x(0 et [a,b~\ — [0.vr],
lorsque [c, d ] est un descendant de degré n de [a, b], on peut écrire Ajp

avec p Z, et, par le lemme 3.19, Mic,ct) x (Ajp) + in + l)pp + ^
est un choix convenable.

Nous désignerons par m une variable qui prendra des valeurs croissantes

au cours de l'exécution, mais vérifiera toujours m < maxlt>f(t)- On initialise
m à —oo. A chaque fois que l'on considère un intervalle [c,d], si Ap V
et si / (-^jp) > m on pose m — f (^jp)

Pour chaque valeur âe n — 0,1,2,... .N, l'algorithme consiste à déterminer

un majorant mn de maxtpff) et un ensemble Bn — {[ci,ö?i], [c2*.di\,

[ct,d{]} d'intervalles descendants de [a,b] de degré n tels que

maxff) — max fit).'e® ^eULiLA]

Au départ, on pose mç, — Mia,b) et £q — {[a, &]}.
Supposons mn et £n déterminés. Pour chacun des 21 intervalles [c,cl]

qui sont enfants d'un élément de £n, on fait les opérations suivantes :

« si Ajp e V, on pose m — max (m./(£|^)) ;

• si [c,d~\ÛV — 0 ou si Mic,d) < m, l'intervalle [c,d~\ est éliminé;
sinon, il est placé dans £n+\.

On pose enfin

mn+1 — max Mic,d)
[c,d]Sn+1

et l'on a m < maxïr>/(0 A mn+i On arrête l'algorithme lorsque la différence

mn+1 — m est suffisamment petite.
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3.22. Nous donnons ci-dessous la courbe représentative de x(t) (dessinée

par Maple) sur l'intervalle [0, tt/2] et (sur la page suivante) deux grossissements

au voisinage de l'origine.

Figure 5

x(t), 0 <t<-_ _ 2

3.23. Proposition, (i) Soit t e Rf l ^ 0. Alors x{t/4n)/{t /4n) a une
limite finie pit) quand, l'entier n tend vers +oo. La fonction p n'est dérivable

en aucun point.

(ii) p(21) - -pif), p(4t) p(t).
(iii) Quand t —y 0, x(t)tpif) + 0(t2).

On trouvera ci-dessous (figure 8) la courbe représentative de p(t) sur
l'intervalle [vr/10,2vr/5], dessinée parle système de calcul formel Maple [4],

Prouvons (i). En partant de la définition de x(t), on voit que x(t)4~ fx(2t) —

sin2 N il en résulte

x(tf2")
;

x(j!2*"1)
__

sin2(tf2")

tj2n ' tj2n~~l tj2n
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d'où, par changements de signe et addition,

q -r, __
sin2C^/2) sin2(r/4) sin2(?/8) sin2(?/4") x(tf4n)

(3.7) __ _ __ _ __ _ _ __ r
Posons

(3.8) g(f) — 2 sin2 l- — 4 sin2
7- + 8 sin2

2 4 8

La série #(0 est absolument convergente et (3.7) entraîne

r(V M"-) 1

(3.9) ip{t) - lim —4— -WO - <?(0) •

«~>oc t 4"

Or #(0 est la primitive nulle en 0 de la fonction continue

i î
g (0 sinl- sin - t sm - —

Comme x(t) est non-dérivable partout sur R\{0}, il en est de même pour -<p(f)

D'après (3.6), on a

x(tf2n) x(tf2nx)
t/2n "r r/2"1

Remplaçons t par tj2n :

x(//4") x(2t}4n)
îj4n r 2tj4n

Quand n —> oo, on obtient ç?(0 +y(20 0, d'où (ii).

_ sinz(*/2") h
<

tj2n - 2«
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Figure 8

^(0, — < t < —
10 - - 5

A partir de la définition (3.8) de g(t), il vient

\g(0\ -
n= 1

et (iii) découle de (3.9)

^T(-l)n+l2n sm2
2n

< sin — <
2n - 2n

n=1 n=l
£

t2
t1

3.24. La fonction x(t) a des propriétés d'autosimilarité au voisinage
d'autres points que t — 0. Donnons seulement un exemple.

Proposition, (i) Soit /ieR.i/0. Alors

{^ h \ / TO
x { — i- —— — X —

\ 5 16"/ V 5 /
_h_
16"

a une limite finie îp(Ji) quand n —> oo. La fonction ip n'est dérivable en

aucun point.
(ii) %b(16h) — ïpŒ).

(iii) Quand h —> 0, x(j + fi) — x(f) hip(h) + 0(/i2).

On peut voir ci-dessous les courbes représentatives de ip(h) sur l'intervalle
[7t/16,-7t] (cf. figure 9) et de —îp(Ji) sur l'intervalle [—tt, <—tt/16] (cf.

figure 10), dessinées par Maple [4],
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Figure 9 Figure 10

16 - m m iß

Comme en 3.10, introduisons la fonction

fit) — sin21 \ sin2 2t + \ sin2 4t — 3
sin2 81

2 4 8

5 1 „ 1

„
1

O
1

— _ cos 2t -f - cos 4? — - cos 8/ -r — cos I6t.
16 2 4 8 16

On a

En particulier,

et, par différence,

xitï/5 + hj 16) — x(ir/5)
(3.10)

Ä/16

/(tt/5 -j- fc/16) —/(tt/5) _
1 x(tt/5 -f A) — x(tt/5)

/î/16 ' 16 /2/I6

/Qr/5 + yi6l,)-/Q
h/\6n

par hjl6n"'"1, on obtient vn ~t~ un....... \, ce qui entraîne par addition

Posons
;

En remplaçant h dans l'équation (3.10)
h}16"

un — UQ
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Comme f('Ç) =0 (cf. 3.10) et que pour tout t R,
5.

— |2cos2t — 4cos4t + 8cos8t — 16cosl6t| <30.

la formule de Taylor donne |/(-tt/5 -h t) — /(-tt/5)| < 15/2. Il s'ensuit que

|x'„| < -jjrp ef la série i vn est convergente. On a donc lim un — iß(fi)
avec

h
n= 1 if------1 ~77Z

16"

/(" + ~n) -/(-)
Posons G(h) — YjkLi ^ l/'l6" Comme / est analytique et que

l'on a ^j 0(16m), il vient

oc oc f(m)««-E^E'-^.n\ 16mn
n= 1 m=2

•oc M) (l\ hm~1 » 1 » fm) (-) hm~~x

EJ V 5 / y- 1

_ y*J V 5 /
m! ^ m\(\6m~l - 1) '

m=2 n= 1 oi=2

Il en résulte que G(h) est analytique et, comme pour la fonction (p de la

proposition 3.23, la non-dérivabilité de x | ^ -h hj entraîne la non-dérivabilité

de il)(Ji) pour h R\ {0}, ce qui prouve (i).
On a

.xiUt-TUV x(-_
5

~r
16" h

h/16 ' V16
16"

donc ip (yp} P(h), ce qui prouve (ii)
V16.

La preuve de (iii) est analogue à celle de 3.23 (iii).

3.25. La méthode ne s'applique pas au voisinage de t ^ (rappelons

que, d'après 3.9, x(t) a pour dérivée ~foo en ~ Toutefois, on a un résultat

concernant les différences secondes :
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PROPOSITION. Soit h & R, h f 0. Lorsque n —y 00, le rapport

41 «

h

4"

tend vers ~~(p(h), où <p est la fonction de la proposition 3.23.

On a x(0 — j | cos2i + P cos4i~ g- cosSt+... D'autre part, 2n ~ (—14
(mod 3), donc, pour n > 1,

2"|,-2<mod 2^>

exp (2"it) -h exp (Vi ('+§)) + exP (2** (' - § - 0
>

COS (2"t) -h cos (r [t 4~ + COS 2" (^ "" 3")) — 0s

1.1.1x(0 tr(rt I) -fx (/- 3 ' 3 ' 3
L

Comme x est paire et que x (^"j ~, on en déduit

4î-ï)^ï^) m)—(i
L'application de la proposition 3.23 termine alors la démonstration.

3.26. LEMME. Soit P\(f) — sin2 i(l — 2 cos21) — sin21 — \ sin2 2t.

(i La fonction t —îV est décroissante pour 0<i<0.411.

(ii) On a ^ f j > — 1 pour 0 < t < ~.

Posons fi(t) — —On a P[(t) — sin2i — sin4i, fi'(t) — aVec

flit) tP\(t) - Pi(t) et

/2'(0 - tF'/CO - t(2 cos 2i - 4cos4i) f-2Ç2 -f £ -f 4)

1 \/33
en posant £ — 2cos2i. Le trinôme ci-dessus s'annule pour £ ——— et

l'on a les variations:
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t 0 0.28391 0.41125
4

i 2
1 + v/33

N 4 \ \ 0

h'it) 0 0 7Î

0
4

fiit) \S.' /
—0.0386

* 0 A

ce qui prouve le point (i).
Posons fit) —fiit) + f — t2(fi'(t) + 1). On a

h '(f) =flit) 21 tiP'(it) 4- 2) - 2)(2£ + 3) > 0

pour 0 < t < ^ et comme fiQ) 0, on a fit) > 0 pour 0 < t < ~, ce qui

prouve le point (ii).

3.27. La proposition suivante améliore la proposition 3.16, mais la preuve
est plus difficile :

PROPOSITION. Soit t vérifiant —</<—. On aJ 5 _ _ 5

X(J)^X^ >0-77 (*-j).

Dans un premier temps, on recherche, à l'aide de l'algorithme 3.21, le
/ 7r \ __ / 7T

*

minimum de la fonction f\(f) — xft) — x — J — 0.77 (f — — J sur l'intervalle
C d P7t

Par le lemme 3.19, lorsque c et d vérifient c < d et —
9tr 3tt
40 ' T 2 2"

(avec p Z), on a

M(c.m -M ; (« «0.T7)L> ; 3J. raax7i(r).
V 2 7 II C<t<d

En choisissant n — 20, l'exécution de cet algorithme montre que le minimum
-q__ s 1 20 WTT 4- 2

de fit) sur l'intervalle |jj. 1 est compris entre f\it\) ^20
-— —

249037
0.00070626... et fin) 0.00077040..., avec h - ^ -tt ; il est donc

positif et la proposition est vraie pour ^ < t <
Soit maintenant t compris entre f et ^. On pose h ~ t — | et on

détermine n > 1 tel que
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IX

40

9tx

40 I < 16^ < y
2?r

T
On pose, comme en 3.10, fit) — sin21 — \ sin2 2t~t\ sin2 4t — | sin2 St ; f(t) et

x(t) sont des fonctions périodiques de période it ; de plus, f(t) est minimale

en - (cf. 3.10). En notant que 16-'— — - (mod-n), il vient

x(t)

-/(
>:/(

{ 7T

5

{ 7X

5

IX
x i -

!L+h { ^
16"" no16n-1;

!6"~in(?r
5

1

Î6" xil
+ 0.77 h

car, par définition de n, — + 16"h
Shx 3-tt

.40' T.

16"
x(l6"t)

-4-x -f 16"h
16" V 5

0.77 16"h

3.28. La proposition suivante améliore la proposition 3.13, mais la preuve
est plus difficile :

Proposition. Soit t vérifiant y < / < ~ On a

"TT

x (t) *- x — } > 0.465 — — t

La démonstration est très voisine de celle de la proposition 3.27. A l'aide
de l'algorithme 3.21, on montre que le minimum de la fonction f2it) —

x(t) — 0.465 sur l'intervalle [ î,§. est compris entre
Of) 4(SS TT 4~ J

fiitf) ^ 220—^ - 0.00005945... et f2(t2) ~ 0.00012267... (avec

199885 _ g3~ _
t2 — —y—tr) et donc est positif. Puis, pour ^ < t < j, on applique
le même raisonnement qu'en 3.27.

3.29. LEMME. Soit tn — T-y- • n > 0 et ^tn < t < tn, on a

xjt) xjtn)
t - tn

Pour n — 0 et |to — < t < to — j, on pose t ~ | — h, et l'on a en

utilisant la valeur xfj) — —
5

— —0.14235... calculée en 3.3,\5/ 12
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jtM »Agi 5 0.14235

/o \ 5 / 7T \ 5 / \ 5 / 7T

- X -h 0.22655 .../»< x(0

par la proposition 3.28.

Puis, par récurrence, supposons n > 1 et le lemme vrai pour n — 1. On

écrit t — tn — h, 0 < h < ~. On a 4t — £„_i — 4/î G et, en

posant P\(t) — sin2 — \ sin2 2t comme en 3.26, il vient

t

> LLL _|_ 5LLL
5 pgj. l'hypothèse de récurrence

> Pl^n^
4- par le lemme 3.26 (i) car tn<h< 0.16

3.30. LEMME. Soit, comme en 3.29, tn — — ^ Pour n > 0 et

p1(0 x(4t)
t 41

Pl(t) X(4tn)

t 4ta
'

Pl(tn) X(4tn)

tn
' 4tn

X(tn)

tn < t — tn + h < 3t„, on a

x(t) x(tn) 1 x(t„) h x(tn)
p» — r/ — / — — ,>

t t„ 3 t„ 3

Raisonnons par récurrence sur n. Pour n — 0, on a t — to -h h — j -f h,

0 < h < et

f(x(to) t-to\ x(?o) 1

t / + __ - x(Jo) i- h i- - h(to -r h)
\ fo 3 / fo 3

< x(to) — 0.22655... /ï t
-x(^) -h 0.4017... /Î<X(0

par la proposition 3.27.

Supposons le lemme vrai pour n — 1 et n > 1. On a

x(Q
__

Pi(?) x(41)

t t ' 4t

> — h 4- ^7-^ • par le lemme 3.26 (ii) car L < t < 3fr < ^— tn 4t ' 1 — 4
Pi On) x(4/„) .4. V> —- -h -r — r - «, par 1 hypothèse de recurrence

_ x(tn)
t

1
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3.31. PROPOSITION. Soit S la somme de la série convergente

j= i

i 2 ^1 sin

5/ 3^5-5 (r,:J2 2?r 2 *]T 22'"1 (sin2 -Y~ - 2 sin2
Tv \ 12 t-* V 5 4' 5-4'\ i= 1 /

et, comme en 3.29 et 3.30, tn — —^ On a

x(t) „ x(t) x(A)
— lim sup — — lim mf — — lim — S — —0.4269...

i i n—*oc tn

Pour tout n > 1, posons P2n~i(t) — Y^t=o ~SiT~
sin-2 (2*0 • On a

x(tn) P2n-l0n) f|
d'où

—x { - —1 > —-— sirn
x(tn) 5

_ {tv\ Pin^iuO _ 5 -4" v- (-1)*

2n

E7r 15/ ta TV ^ 2k 5 • 4"
*=0

.<4" i 2 22"~-/7T

-E-2-^sin
j= i

2«

„B 5,2.
j= 1

3 x ^n\i ' 2 ^v sm —

5 V-^ ~2/ 1 / - 2 2?r r, - 2 ^> 2 1 f smz —— - 2 smz
TT ^ V 5 4' 5 4'

i= i

Notons que sin2 2t — 2 sin21 — 2 sin2 /(2 cos21 — 1) est positif pour 0 < t < f.
La suite est donc décroissante et l'on a pour tout n > 1

x(L) x(tn)
(3.11) -^>S et lim ~ S.

t„ n~¥oc tn

Soit maintenant t vérifiant 0 < t < Jj. On définit n par tn < t < tn-\. Par

les lemmes 3.29 et 3.30 et par (3.11), il vient

-*(0 (x(tn) x(tn*i)\ x(tn)
> mm { ——, } — > S

n in— 1
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S, on obtientdonc liminf^o, t>o — > 5 et comme lim^-^
x(î)

liminf^o, ?>o — S. La proposition s'en déduit, car la fonction x est

paire et, par le lemme 3.5, lim sup^0 ^ — — lim inf

3.32. Remarques. Les nombres t\ et to cités en 3.27 et 3.28 vérifient

et

Posons

£~\~

249037
220

199885

lim inf
t ~~~'f t "F"

220

x(t) — x(7ïj5)

0.23750019..

0.19062519... ;

19

61

320

3

5- 16

3

ß
Il est possible que l'on ait

3tî

lim
n >oo 3?r/(5- 16")

et t

et t

lim inf

lim
fl >f 00

20- 16

x(f) — x(iï/5)
n/5 — t

3?r

3tt/(2Ö- 16")

ce qui est étayé par les courbes des figures 9 et 10 où les minima semblent
3" 3" Naturellement, une relation existe entre l'A et i par

la formule x(t) P\{t) +x(4t).
atteints en ^ et 20

Par ailleurs, la proposition 3.31 donne le maximum de la fonction ïp(t) de

3.23, et les points t où ses extrémaux sont atteints (cf. figure 8).

4. Propriétés globales de L(T)

4.1. Dans cette partie, nous étudions la fonction \L(a,ß)\.

4.2. LEMME. Soit N un entier positif et h.k,a,ß quatre nombres réels
tels que 0 < |ù|,|fc| < ^, a — ^ et ß — ^ avec p.,q Z. Alors laJL fy - P71 -* a - ^

2N

fonction L définie en 1.8 vérifie

\L(a + htß + k) - L{a, fi)\ <
2A% +

2N

Posons A(n, a, h) —
2)"'(«+/0 __ e( 2)"«*

_ Qn ^ comme en 2.4,

|A(«, a, h)\ e(.-2Thx /e(-2)nih m\\ < max(2rt|/z|,2)
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et

IL(a + h,ß + k) m L(a, 8)

(-1)E
n=0

N—l

2«+i
(A(re, a, h) + A(n, ß, k) -f A(n, —a — ß, —h — k))

Y'--\ I/zI -f* |fc| "t" |/z "t" y--\ 6
— / <t 9 ' / << 9«+l

n=0 n=N

< N
2N~1 ' '

4.3. Désignons par Q(a,b,r) le carré fermé de R2 de centre (a.b), de

demi-côté r et de sommets (a ± r, b ± r) et par V un fermé de Q(a,b,r).
L'algorithme 3.21 peut s'étendre pour calculer le maximum d'une fonction
réelle / définie sur V.

Le carré Q(a,b; r) a quatre enfants: Q(a ± r/2,6 ± rj2; r/2), 16 petits-
r

enfants, etc., 4" descendants de degré n et de demi-côté —.

Lorsque Q(c, d\ p) est un descendant de Q(a. b; r), il faut connaître une
fonction M(c,d\p) telle que

max f(t\, t2) < M(c, d\ p).
U\-.h)Q{c,d\t>)

Lorsque f — ±|L| et Q(a, b; r) — <20 r) [0, 2tt] x [0, 2-tt] un descendant

de degré n de Q(a, b; r) est de la forme Q

Par le lemme 4.2, on peut prendre

(4.1) M(p1 q*.^
\ 2n 2n ' 2" f

pir qir 7C

2" 5 2" ' 2"

/J7T qiT \ 2mr + 6

(avec p. q N).

Soit g une fonction de classe C1 de Q(a. b: r) dans C et deux constantes

Mi et M2 telles que pour (Ji, t2) Q(a,b,r) on ait

dt\
< Mi 7T~(fls h)

at2
< M2-

Alors, pour /
(4.2)

on peut prendre

M(c, d\ r) f(c, d) (Mi -h M2)r.

Une fois la fonction M connue, l'algorithme fonctionne comme en 3.21 en

remplaçant "intervalle" par "carré".
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Figure 11

Partition du triangle T\ de la figure 2

4.4. LEMME. Soit Ts le triangle du plan a, ß défini par

(4.3) 0 < a < ß < y < a + ß

Soit T un triangle dont le rayon du cercle circonscrit est égal à 1.

Alors il existe (a.ß) G Ts tel que le triangle (A, B, C) (A — e'a, B — e'^,
Ç — e>(^~"a""T soit égal au triangle T.

Soit (a.ß) % et 7 — 2-tt — a- — ß. On a 0 < a < ß < 7 < 2tt. Dans
le triangle (A,B-.C) (cf. figure 1), on a

(4.4) 2C-ß-a, 2Ä y-ßi 2B - a -h (2tt ^ 7) 2a -h ß.

Appelons Aj, Bj, Ct les sommets du triangle T de façon que ses trois angles
vérifient

(4.5) 0 < CT < ÂT < Bt < IT

2 -*• ^ 2 ^ ^Posons a — -(Bt — Cr) et ß — ^C2Cj + Bt)', la relation (4.5) implique

(4.3), c'est-à-dire (a,ß) Ts et, par (4.4), les angles du triangle {A, B, C)
sont égaux à ceux du triangle T — (AT. ÈT, Cj). Ces deux triangles sont donc

semblables et, comme ils ont même rayon de cercle circonscrit, ils sont égaux.
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4.5. LEMME. Soit ah2 -f- bhk + ck2 une forme quadratique à coefficients
réels et trois nombres a', b'. c' vérifiant a! < a, \b'| > \b\, c' < c. Alors, si
la forme quadratique cih2 + b'hk c'k2 est définie positive, la forme initiale
l'est aussi et

4a'c' — b'2
ah2 ~j~ bhk -f ck2 > (max(l/ï|. \k\)')2

4max(ö,c0 '

Les hypothèses entraînent b2 — 4ac < b'2 — 4a'c' < 0. Il vient ensuite

ah2 -f* -f ck2 "> a'h2 — \b'hk\ -f c'k2

d w l2 i4flV y2c
2a" 7 4a'

4a'd — b'2 2 4a'd ^ b'2 |2> ^ > if _

4a; ~ 4max(ß',c0

Par symétrie, on obtient de même ah2 -f bhk -f c/c2 > ——-/î2, d'où le
~~ 4max(a c

lemme.

4.6. LEMME. Posons

5

n=0

öfei«; nombres réels h et k vérifiant \h\, \k\ < ^ «1 (h,k) f (0,0). Alors

(4.6) œtfcfe - T*7r (L2re' 6 " 1

$(f HÏi-t < $ / 2-?r 4tt
VT'T 16

Les calculs sont un peu techniques; ils ont été faits à la main et contrôlés

par Maple. Nous ne donnons que les résultats principaux. Nous exprimerons
les résultats en fonction de

î — exp s 7

Rappelons que z6 — z5 4- z4 — z3 -f z2 — z -f 1 — 0 et notons que la fonction
<J>(a, ß) est périodique de période 2it en a et ß.
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(4.7)

On calcule successivement

2?r 4tt
1 7 * TF

d® / 2?r 4tt

öa V 7 5 7

a24> / 2tt 4TT

aa2 iT'T
a20 / 2-tt 4TT

^(1 « 3z -h 3^2 -f- 3z4),
21

Ï6
d<5> / 2?r 4tt
ÔÔ V 7 5 7

15z — 30z 4-3z3
57 .2 45

dadß \ 7 ; 7

a20 / 2tt 4TT

W IT'T
Quels que soient h et k, posons

3z5 - 6z4 - 12z3 - 12z2 4~ —z — 4.

12z
15 4

2
15z3 — 15z2 -f — 5.

„ 1 /a20 /2tt 4TT" ils? V 7 " 7
,2 „ <72<ï> / 2?r 4ttr i~27dad3 \ 7 ' 7

hk +4
d2® /2tt 4TT

tM2 V 7 ' 7
Ä2).

On a

// /16 5 4 4 41 3 6 2 17

5 7
Z 7Z ^ 7

Z ' 7Z ' 7
2

/" 25^5 1_^4 16^3 12 2
_

22
yZ • y

253H21

328
z —

21

205
z — ~2f

hk

iß
1 \ 7 7 7

- - (9.31... /z2 + 16.09 ...Mt 14.22 /t2)

4- i(8.66... h2 -f 10.19... hk -f 0.40 ...iß).

On doit ensuite majorer les modules des dérivées troisièmes. Il vient

5d3®

da3 (a,ß) yi2n 1i3 (é
n=0

jï-2n* e(2)"/(^«-,4)

d'où

a3d>

da3 (a, ß~) 22n'~1 1 + 4 + 16 4- 64 4- 256 4- 1024 1365.
n=0

On trouve de même

a3o
da2 aa

<
1365 a3®

a« d32
<

1365 a3^
aa3

< 1365.

Il est commode de poser À — max(|&|, |£|). Par la formule de Taylor, pour
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tout (a, ß) R2, a + h, ß — ^ + k, on a

0(a5/?) =S+H +R

avec

(4.8)

et

(4.9)

lÄl <
1365

1 2 L 1 j A3 — 33 3

2 ~r 2

\®(a,ß)\ < 151
H R

«
H R \< m 1 + _ 4_"T ~S ' ~S 5 ~S

Maintenant, on applique le lemme 4.5 à la forme quadratique —$l(j) en

choisissant ci — 9.3. tf — 16.2 et d 14.2. Il vient

9.3x14.2dl >
14.2

On a aussi

<n (H\S - <\s)
~ {H\
vî { — j <\sj

d'où

On en déduit

1

< (402 + 202)À4 - 2000 A4

1+2& < 1 - 9A2 + 2000 A4

et, en utilisant l'inégalité yT+7 < l+t/2 valable pour tout t > — 1, on

obtient
H

1 +
S

< 1 - ?A2 + 1000A4.
_ 2

En tenant compte de (4.9), (4.8) et (4.7), on a

WsxM < ^ 1 - ?A2 + 1000 A4 + ~A321

16

y' 17305 130
et la parenthèse est inférieure à 1 pour 0 < A < ^qq — 0-00516...



UN EXEMPLE DE NON-DÉRIVABILITÉ EN GÉOMÉTRIE DU TRIANGLE 417

4.7. LENINE. Soit O défini par (4.6); quels que soient a, ß G R, on a

et (a, fi) Ts (cf. 4.4), on a
21

|0(a5 fi)\ <—. De plus, si (a, fi) f- / 2ix 4ix

\T'-1
IO(a, fi)I <

21

16

Avec les notations de 4.4, posons

V — |(o% A) G Ts ; max

nous su

max IO(a5/?)l <

8 4tt
T > — 1

•
630 J

1.3125.

A partir du lemme 4.6, il nous suffit de montrer que

21

(«,d)eî> ' ' ' ' ' 16

Cela se vérifie à partir de l'algorithme 4.3: on majore M(c,d\ r) par (4.2)
avec Mi A?2 6 et l'on obtient pour n — 20,

150629 299119
1.3123534...

<

219 ' 219 '

301257 598237
220 220

< M'D

12?r
T 220

1.3123896...

4.8. PROPOSITION. Soit L(a,fi) défini par 1.8. Pour tout (a, fi) G R

on a

(4.10) \L(a,fi)\ < M
/ 2TT 4TT

lT! T
En outre, si (a, fi) G Ts (défini en 4.4) et (a, fi)
(4.10) est stricte.

A l'aide de (4.6), on a

oc

L(a, 8) Y" —0(64ja, 64j8).
tC—d f.AI

2TT 4TT

\T! t l'inégalité

On a 64J
2tx 2TX

T

j=o

647 - 1

7 7 7
s-.;4tx 4TT „ „ _ _ 2TV ; 4lï
64J— —G 2-ttZ. Donc, O \ 64J — .64J —

7 7 V 7 " 7

G 2ttZ car 64 ~ 1 (mod 7). De même,

(27T 4?r '

w ' To ' et

/ 2?r 4?r \ sr~^ 1 \ / 2?r 4tx \ 64 _ / 2tï 4ix \
L\~> T) " T) " ~)

j>0

Il s'ensuit, par la formule (4.7), que
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D'autre part, par le lemme 4.7,

0O / 0O \
(4.1.11 lUnM i 4 £ £[««'«, 6444)1 < I £gL =|.

7=1 V=0 '
Lorsque (a,ß) & Ts et (a,ß) ß ^7^,7^, encore par le lemme 4.7, on a

|<E>(a, '3)\ < 77 et (4.11) implique \L(a,3)\ < 7'16 '5
4.9. COROLLAIRE. Soit T un triangle, O — 0(T) le centre, R ~ R(T)

le rayon de son cercle circonscrit et L — L(T) le point défini en 1.6. Alors

on a OL < et l'égalité a lieu si et seulement si les angles de T sont
TV lix 47T

75 T5 T'
Par le lemme 4.4, il existe (a, ß) % tel que 0(T)L(T) — R\L(a, ß)\, et

l'on applique la proposition 4.8.

Figure 12

Le triangle d'angles 4tt(1, 2tr/7, rr/7 et son point L

4.10. LEMME. Soient deux nombres réels h et k vérifiant 0 < \h\, |â:| <
2~24 ^ [a fonction définie en 1.8. Alors on a

La fonction

(4.12) A(aj) ^ (eia + eip + e^+ß)) - ± [e"2ia + + e2,'(<ï+^)
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est périodique de période 2tt en a et ß. Comme pour la démonstration du

lemme 4.6 nous ne donnons que les résultats principaux.

D'après 1.8, pour tout n positif, on a

2TT
-4- le) ~ > —A ^4J/î,4J v 34>.f

7=0

1

(4.13)

car 4J

q.rt+1

Èèdmf I*
rt+l I /)«-)-1 /2ttL 4 r h. 4'

\ 3
i~ k

7=0

1

q/i+1

1

Z, (V+1/py 4*+1&

2?r 2ir 47 - 1

3
On a:

3

0A
da

ô2a
da2

G 2TTZ.

AO
2?r

2tt

2tt

T

\/3e2i7r/3

d2A

0,

0A
/M

0a 00
2?r

T

2?r

02A /„ 2tt

V3.

002 V°5 3

Comme en 4.6, on majore les dérivées troisièmes:

03A

003
< 5.

03A

da2 00
<s
_ 2

03A

da 002
<1- 2

03A

003 <5.

Pour h et k réels vérifiant |/z|, \k\ < - on en déduit les majorations
o

02A / 2TT

02A / 2tt

0a 00 \ : 3 '*) < -

1

2 ^ 5\h\ - §N s
23

16

02A
002 (,.f. t) <

16

Par la formule de Taylor, il vient pour \h\.\k\ < ^

A { h., y -h k v/3 h — k } + /?

avec

l/?l <
k2 23 ,..,9 23

ft«: - -r2 16 • -8 2.16 3VP»U 3.6.|Â«

JJff • j/äl-r#} ||A
82 44 2

16
< (Ä2 -h ÄÄ: -J- A2)

k\f < g (/î2 - |M| 4- A2)

h — k
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Il s'ensuit

(4.14)

avec

M<

A [h^+k] -y/3 e 3 h — k (1 -f rj)

41

16V3
e 3 h — k - ar* £.16\/3 16\/3 8 128

1

Posons À — max(|/î|, |fc|) < -. On a
o

2

(4.15) e i h — k h2 + hk + k? ~ h + 4-^fc2

2 3,7 3À2
Ic + A + ^ >

Définissons l'entier n > 0 par

(4.16) 4"X<l-<4n+1X.
O

Par (4.14), on a pour j < n

*
A (^h, ^ + 4-ik — s/3 (e^ & — fc] (1 + 'Hj

4^

41
avec |-77y[ < —, et, par (4.16),

j=0
> a/3 e 3 ft — k

87
128(nt 1)

>
87\/3 1

128 log 4 V À

Par la proposition 4.8, (4.16) et (4.15), on a

g 3 h — k

1

4«+1

et (4.13) entraîne

Lih^+k

L {4nfih}?E +4"+lk

> e 3 h — k

<
4

<
32A < 64

- 3 4«+l - 3 - 3x/3

f 87V5 1

128 log 4 V ° A

Or, l'accolade ci-dessus est positive pour

64 1281og4 18733

e 3 h — k

3\/3 J
'

1

'

3%/3 87-\/3 783
2 (23.92...)log2.
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4.11. PROPOSITION. La fonction L et le triangle Ts ont été définis
respectivement en 1.8 et 4.4. On a

27T

L(a, ß) 0 et (a, ß) Ts a — 0 et 5
3

Soit
2tt
3~V — | (a, ß) Ts ; max | |aj,

Compte tenu du lemme 4.10, il suffit de montrer que

Mv

- 220 } '

min |L(a-, $)| > 0.

Cela se vérifie en appliquant l'algorithme 4.3 à la fonction —\L\ : on majore
M{c,d\ r) par (4.1) et l'on obtient pour n — 30,

10*

<

15 715827875
230 "' 230

17 715827873
23o7r' 230

'

60?r + 6
230

9.637... 10

< %
7

Figure 13

Image par Z, du triangle 7g
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4.12. COROLLAIRE. Soit T un triangle tel que le point L(T) défini en 1.6

soit égal au centre 0(T) de son cercle circonscrit. Alors, le triangle T est

équilatéral.

Soit R le rayon du cercle circonscrit à T. Par le lemme 4.4, il existe

(a, ß) & Ts tel que T soit égal au triangle (Re'a, Re'P, Re'1) avec 7 —

2-j; — a — ßm Mais on a R\L(a,ß)\ — 0(T)L(T) 0, et l'on applique

la proposition 4.11: on a a 0, ß — -T et 7 — -T et le triangle

(Re'a,Re'P,Re'"0 est équilatéral.

4.13. Dans le plan (a,ß), soit T' le triangle de sommets (0,0), (0, vr),

(t?t) : avec ^es n°tations de la figure 11, on a T' — Ts U % U T Soit T"
et T'" les triangles de sommets (O.tt), (0.2tt), (x-lf) et (0. 2vr),

(¥:¥)
L'application (a,ß) m- (ß,2tr — a — ß) transforme T en T'" et

(a, ß) •-> (a-, 2-tt — a — ß) transforme T en T". Par les formules de 1.9, on
obtient

L{T') L{T") L(T") L(TO.

On passe du triangle 7s au triangle % par la symétrie d'axe a-t ß — x •

Pour (a,ß) Ts, — ß, — a) % et, par 1.9, on a

(4.17) Z,(y a) & e^TII—ß, —ex) e^U<x,ß).

On passe de Ts à T par l'affinité oblique d'axe ß — T- qui transforme le

point (f s f en (O.tt) : (a,ß) m- (a + ß — y, 31 — 0) ; on a, par 1.9,

/, i~.\ > 2-?r 4t M / 4tx ~ 4?r \ 4»i -t-,(4.18) L\a t ß —-x/ij - L( y - ß, — - a) ~ e 3 L(a,ß).

La figure 10 donne l'image par L du triangle Ts. Pour chaque point (a, ß) %
de la forme a — o^-.ß ~ 77 (avec p,q N), l'ordinateur a tracé le point
L(a, ß).

On constate que, pour (a, ß) I5, ^ < arg(L(a, ß) < ce que nous

espérons démontrer. Il résulterait alors de (4.17) et (4.18) que (a', & % =4
0 < arg(L(a' ,ß') < f et (a',ß') 7? =4- 31 < arg(L(o:',o'j < -t. Ainsi,
L(T') L(7i) serait contenu dans le demi-plan supérieur, et, par (1.5), L(%)
serait contenu dans le demi-plan inférieur.
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5. Une propriété de l'ensemble des valeurs de L(T)

5.1. Soient T,T' des espaces topologiques, F: T -» T' une application,
et to G T. On dit que F est localement surjective en to si l'image par F de

tout voisinage de to est un voisinage de F(Jo).

5.2. On fixe jusqu'au n°5.4 une fonction continue u: ]0, a[—É|0, +oo[
telle que tu(t) 0 quand t 0.

5.3. Soient T un cercle de centre O et de rayon strictement compris
entre 0 et a dans R2, et A le disque fermé de bord T. Soit s: A -_ R2

une application continue telle que |c(x)[ < |x| pour tout x G A \ {0} (et donc

e(0) — O). On choisit partout la norme euclidienne.

Considérons l'application x > F(x) — L'(|x|)Cv-fc(x)) de A\{0} dans R2.

On a F(x) / O pour tout x G A \ {O) Posons F(O) — O. Alors F est une

application continue de A dans R2.

LEHME. F est localement surjective en O.

On va imiter une des démonstrations du théorème de Brouwer dans le plan
(cf. [1], p. 279, problème 3). Soit 7 la restriction de F à T ; c'est un lacet
dans R2 \ {0} (T étant orienté de la manière habituelle).

Pour t G [0,1] et x G T, soit xt(x) — a.'(|x|)(x + te(x)). Notons que L'(|x|)
est égal à une constante À > 0 sur T. Les 7, sont des lacets dans R2 \ {O]
et définissent une homotopie de 7 — 71 au lacet 70: x Xx. Donc l'indice

j(0,7) est égal à j(0. x0) - 1.

Comme 7CO c R2\{0}, il existe un disque ouvert A' de centre O qui
ne rencontre pas 7(13). Comme A' est connexe, l'indice j(x, 7) est constant

quand x parcourt A', donc égal à j(0,7) — 1. Nous allons montrer que
F(A) D AL Raisonnons par l'absurde, supposons qu'il existe xo G A; tel que

xq F(A). Évidemment, x.q ^ O.

Pour r G [0,1] et x G T, posons Y(x) F(rx). On définit ainsi une

homotopie de 7 sur le lacet réduit à O. Puisque xo $ F(A), l'indice j(xo,Y)
est défini pour tout r G [0,1]. Il dépend continûment de r, donc est constant,
donc égal à j(x0,7) — 1. Mais j(xo, 70) est évidemment égal à 0, contradiction.

Donc F{A) D AL Appliquons ce résultat en remplaçant A par un disque
de centre O arbitrairement petit: on obtient le lemme.
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5.4. LEMME. On conserve les notations de 5.3. On suppose de plus que
1. uj(t) —¥ oo quand I->0;
2. il existe q > 0 tel que |c(x)| < (1 — q)\x\ pour i^O.
Soit H : R2 -4 R2 une application telle que H(0) — O et que H soit

différentiable en O. Alors, F -f H est localement surjective en O.

Il existe une constante c > 0 telle que \H(x)\ < c\x\ pour |x| assez petit.
On a, pour x ß 0,

(f 4- H){x) - uK\x\) x + s(x) 4
H(x)
a-'(lxl)

Si x est assez petit, on a

'(x) +
H(x)
'(1*1)

< l-*7 +
>(W)

\x\ < \x\

et il suffit d'appliquer 5.3.

5.5. On utilisera l'application u\ (h,k) '<-> e^h — k de R2 dans C R2,

et on la considérera comme une application R-linéaire de R2 dans R2. On a

Iu(h, k) lh»k + i^h2
2 2

\h 4~ 4- ^/î2 — h2 ~t hk~r k22/4
Lorsque h2 + k2 — 1, h2 4- hk + k2 est maximum pour h — k — -L et vaut

V £
o ii 1

alors | et est minimum pour h — -7= k — —7?, et vaut alors k. D'où
— \ L \ L -

5.6. On pose, comme dans 4.10,

A(a, ß) - l- (eia F eiß F e~K<x+^

Pour h, k R, \h\ < ^, \k\ < on a

I ^e~2ia e~2iß e2i(a+ß)

\{h, ^ 4- — \/3^e2h — k^( 1 4- q)

41
avec M < teô - Cela est prouvé au début de la preuve du lemme 4.10.

12o
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5.7. LEMMIE. Pour t > 0, on pose u(t) (— log 8 — logt)/ log4. Alors,

pour (h,k) R2 \ {O}, la fonction L définie en (0.1) vérifie

2TT
Li h

3 + k) - y/3i

avec \o(h.k')\ < 0.6\(h,k')\ pour \(h,k)\ assez petit
la norme euclidienne).

uj(\(h, k)\)((h, k) + a{h, k~)~)

est, on le rappelle,

A l'aide de la fonction À introduite en 5.6, on a

Li h
2tt 2-sr

tk A A, +k -h±A \4h
3

1 2TT

4 \
4k

i-4"k

Définissons l'entier n par

4n\(h, k)\ < 4 < 4n+i\(h,k)\.

Alors, si 0 <j < n,

1

A(4Jh.
2?r

f- 4jk) — V3 (eh — k)(l r À/)
4y 3

avec |A/1 <41/128 d'après 5.6. Par ailleurs,

« <
1

log 4
; 8 — log(|(/î, k)\)) — uj(\(h, fc)|) < n + 1

ntl - u-'(\(h, k) |) +- Ç(h, k)

avec \Ç(h,k)\ < 1. On a

A(A!|^ +

— s/3 h — A:j (n + 1 + Ào + • • • + A„)

— V3 /î — kj (oj(\(h, k)|) -h £(&, fc) -f- A)

avec IAI < —(n -h 1), donci i _ 12gv

| ,y, \| ^ 169 41 169 41mit* « 8 jg «
9

D'autre part, comme |A(a,/?)| est trivialement majoré par -,

j>n
<

4*1+1
< 3 • 8|(/î, k)\ - 24\(h. k')\
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done

avec

Done,

avec

—.A^h, y 4-4!kj — \/3(e23 h — k)p(h,k)
j>n

zf A, y -f fc) — s/3 h — k) (u?(|(h, k)|) -f- //(A. &))

I //! J~I ^ 169 41 24\/2 41I*®! IJ| ; >-^-<21
ou encore

L (h, y + kj a/3 w(|(A, Jfc)|) (e^A - /c] (1 + /(A, £))

avec
I //y i -, i ». 41 21

I» r SpSp '

Or A — kj (p"(h, A)) u(a(h, k)), avec

3" 41 21
|(7(A, A)I < a/2 • -1/ - |(A, k)I

2 |V 5 71 \ 128 '

u;(|(M)l),

< 0.6 |(A.&)|, pour \(h, k)\ assez petit

jçjÇ k?TT

5.8. Proposition. Soient ao — 2~~n —, ßo ~ 2"'n — où n,k,kf e Z,
A ~ 0 (mod 3), k? ~ 1 (mod 3). Alors la fonction (a,ß) M- L(a,ß) est

localement surjective en (ao,ßo). En particulier, L est localement surjective
en (0, 2tt/3).

On a

L(a, 3) - P(a,ß) -f ^jTL(2n+1a,2n+14)

où P est différentiable, et

„ 11 2far „i 1 „ 2k!i\ 2ix
2 + ao - — 2ttZ 2"+1,âo - -y- Éyt 2ttZ
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donc

L(a0 + h, ß0 + k)- P(a0 +h,ßo + lc)+ (2n+1h, ^ 4- 2n+1k^

- P(a0 + h, ßo -h k)

-h —11 MI(2n+ lh,2n+lk)|)((2"+1h, 2n+1k) 4- a(2n+lh, 2n+1k))]

V3 u[{s/3uTlP(ao 4- Kßo + le) 4- u(\(2n+1hr2n+1k)\)((h,k) 4- a'(h, k))]

avec

W(h,k)I \a(2n+1h,2n+1k)\ < ^|(2w+1/2?2"+1/c)| (0.6)\(h, k)\

pour \(h,k)\ assez petit On applique alors le lemme 5.4.

5.9. Remarque. L n'est pas un homéomorphisme local aux points
(a-Ojpb) de 5.8. Par exemple, t x(t) n'est injectif dans aucun voisinage
de t — tt/3, à cause des oscillations fines de x(t).

5.10. PROPOSITION. L'image K de l'application L est l'adhérence de

son intérieur.

Les points (ao,pb) de 5.8 sont denses dans R2, donc leurs images par L
sont denses dans K. Or tout point L(ao,ßo) est, d'après 5.8, centre d'un

disque ouvert non vide contenu dans K. D'où la proposition.

6. Note sur les sections 2.8 et 3.1

La méthode employée en 2.8 fait partie du folklore de l'analyse harmonique.
A notre connaissance, l'idée d'évaluer un coefficient de Fourier situé en un point isolé
du spectre en tenant compte des lacunes à gauche et à droite a été utilisée pour la

première fois par Mark Edward Noble dans son article de Mathematische Annalen
128 (1954), 55-62, "Coefficient properties of Fourier series with a gap condition";
les formules de Fourier avec poids sont clairement exposées au début de l'article,
et permettent l'évaluation des coefficients à partir de la donnée de la fonction sur
un petit intervalle. L'idée de partir du voisinage d'un point au lieu d'un intervalle
revient à Masako Sakô (plus tard Izumi) dans ses articles des Proceedings of the

Japan Academy 31 (1956), 402-405 et 508-510, "Lacunary Fourier Series I, II". Une

exploitation systématique en a été faite par Shin-ichi et Masako Izumi et Jean-Pierre
Kahane pour l'étude du comportement local des fonctions dont la série de Fourier
est lacunaire à la Hadamard dans l'article "Théorèmes élémentaires sur les séries
de Fourier lacunaires" du Journal d'Analyse Mathématique 14 (1965), 235-246. Un
abrégé du contenu se trouve dans le rapport de J.-P Kahane au congrès de l'American
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Mathematical Society à New York en 1963, "Lacunary Taylor and Fourier Series",
publié dans le Bulletin de I'American Mathematical Society 70 (1964), 199—213. Depuis
lors, la méthode et son exploitation sont devenues banales.

RÉFÉRENCES

[1] DlEUDONNÉ, J. Éléments d'analyse, t. Gauthier-Villars, Paris, 1968.

[2] FAN, A. and J. SCHMELING. On fast Birkhoff averaging. Math. Proc. Cambridge
Phil. Soc. 135 (2003), 443-467.

[3] HARDY, G. H. Weierstrass's non-differentiable function Trans. Amer. Math. Soc.
17 (1916), 301-325.

[4] Le système MAPLE de calcul formel : http://www.maplesoft.com/
[5] MARDEN, M. Geometry of Polynomials. Amer. Math. Soc., Survey 6, 2nd ed.,

1966.

[6] STOER, J. and R. BULIRSCH. Introduction to Numerical Analysis. Springer, 1980.

[7] ZYGMUND, A. Trigonometrical Series. Monografje Matematyczne V, Varsovie,
1935. 2nd ed., Chelsea, New-York, 1952. 3rd ed. (with a foreword by
R. F. Fefferman), Cambridge Univ. Press, 2002.

(Reçu le 4 septembre 2006; version révisée reçue le 15 juin 2007)

Jacques Dixmier
11 bis, rue du Val-de-Grâce
F-75005 Paris
France

Jean-Pierre Kahane
11, rue du Val-de-Grâce
F-75005 Paris
France
e-mail : jean-pierre.kahane@math.u-psud.fr

Jean-Louis Nicolas
Institut Camille Jordan, UMR 5208
Bâtiment Doyen Jean Braconnier
Université Claude Bernard (Lyon 1)
21, avenue Claude-Bernard
F-69622 Villeurbanne Cedex
France
e-mail: jlnicola@in2p3.fr


	Un exemple de non-dérivabilité en géométrie du triangle
	...


