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L’ Enseignement Mathématique (2) 53 (2007), 347-367

APPLICATIONS HARMONIQUES
ET HYPERBOLICITE DE DOMAINES TUBES

par Jean-Jacques LOEB

ABSTRACT.  An application of the Zaleman renormalization theorem to harmonic
functions shows that the limit functions are nonconstant affine. Extensions of this
method are given for maps with values in a torus or in a complex Lie group. As an
application, we give criteria of Kobayashi hyperbolicity for tubes in G

1. INTRODUCTION

Dans leur article [3], F Berteloot et J. Duval démontrent le théoréme
suivant:

THEOREME 1. Etant donné une fonction holomorphe entiére f non
constante qui ne s'annule pas, il existe une suite A, de nombres positifs et une
suite B, de nombres complexes telles que la suite des fonctions f(A,z + B,)
tend uniformément sur tout compact vers une fonction de la forme Ce® avec
C et d non nuls.

Ils prouvent ce théoréme en ufilisant le théoréme de renormalisation de
Zalcman [13]. Un thécréme de renormalisation similaire 3 celui de Zalcman
avait été également obtenu par Brody [4] qui utilisait des homographies au
lieu de transformations affines. Comme 1’avaient remarqué Berteloot et Duval,
le petit théoreme de Picard est une conséquence immédiate de leur résultat
moyennant 1’utilisation d’un lemme classique d’Hurwitz. Dans leur article,
les auteurs donnaient une généralisation de leur théoréme a la dimension
supérieure, ce qui leur permettait d’établir ["hyperbolicité du complémentaire
de certaines courbes dans le plan projectif complexe. Ils retrouvaient aussi
avec une méthode élémentaire la généralisation du théoréme de Picard par
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Mark Green, a savoir que le complémentaire de 2n -1 hyperplans en position
générale dans P” est hyperbolique (ici ceci signifie essentiellement qu’une
application holomorphe entiere qui prend ses valeurs dans ce complémentaire
est constante).

Comme point de départ et motivation de notre étude, notons le fait suivant:

PROPOSITION 2. On a ['équivalence entre le théoréme précédent et le
résultat suivant:

Pour toute fonction harmonique g définie sur C non constante, il existe
une suite de positifs A, et une suite de complexes B, telles que la suite
g(Anz + By) tend uniformément sur tout compact vers une fonction affine non
constante.

La preuve de ce résultat est comme suit. Tout d’abord si g est harmonique
sur C, on 1’écrit comme la partie réelle d’une fonction entiere 4 et de ce fait
g = In|f], obt f = " On démontre ainsi que le théoreme de Berteloot et
Duval implique le résultat analogue sur les fonctions harmoniques. Dans "autre
direction, si f est une fonction enti¢re ne s’annulant pas, on commence par
appliquer le résultat de renormalisation & la fonction harmonique g = In|f].
On a donc une suite g(A,z + B,) qui tend vers une fonction affine non
constante. On utilise la conjuguée ! de g et les relations de Cauchy-Riemann
pour montrer que pour une détermination Inf de f, il existe une suite de
réels c, tels que Inf(A,z + B,) + ic, ait une limite qui est nécessairement
une fonction holomorphe affine non constante. On peut maintenant s’arranger
quitte & extraire, pour faire en sorte que la suite Inf(A,z + B,,) ait une limite
modulo 2izZ. Ceci permet de conclure.

Notons qu’un lemme de renormalisation est établi en dimension deux
dans [12] pour les fonctions harmoniques sans qu’il soit donné de résultat
précis sur la limite.

Nofre article s’organise comme suit:

Dans la premicre partie, nous généralisons le résultat concernant les
fonctions harmoniques a toutes les dimensions. Nous suivons la démarche
de [3] et nous utilisons les inégalités classiques de Harnack pour travailler sur
les fonctions harmoniques. Nous donnons ensuite des criteres de normalité pour
des familles de fonctions harmoniques ainsi qu'une caractérisation intrinséque
des fonctions affines parmi les fonctions harmoniques.

Dans la seconde partie, nous faisons le lien entre applications harmoniques
et tubes dans C7. Des criteres d’hyperbolicité (au sens de Kobayashi) sont
donnés. On montre ainsi qu’il existe des tubes hyperboliques dont 1’enveloppe
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d’holomorphie est tout C2?. Il nous a paru intéressant de faire quelques
remarques en complément sur les images d’applications entieres harmoniques.

Dans la dermiere partie nous montrons que les fonctions (ou applica-
tions) solutions d’opérateurs elliptiques admettent une renormalisation a con-
stante pres en des fonctions (ou applications) affines non constantes. Une
généralisation naturelle est donnée pour les groupes de Lie complexes.

Pour les propriétés élémentaires sur les fonctions harmoniques utilisées ici,
nous renvoyons le lecteur a [1].

2. RENORMAILISATION DES FONCTIONS HARMONIQUES

NOTATION 3. Dans cette partie, on désigne par {/ un domaine dans R”
et on note par H({/) 1’espace des fonctions harmomques sur ¢/. Une fonction
de H(R™) sera dite harmonique entiere.

Sur [—a0, +a0], on met la distance d définie par: d(x,y) = | S(x) — S»)|,
avec S(x) := arctan(sinhx). Cette distance définit la topologie usuelle. Elle est
inspirée par la métrique de Fubini-Study.

Pour une fonction f différentiable sur &/, on pose f(x) = [(Sof)Y(x)] =
s o fO]f/(x)] ol on a noté s la dérivée de S et f' le gradient de f.

Lol
cosh f(x)

Explicitement : f(x) =

Dans la suite, nous utiliserons un lemme de renormalisation de base donné
par plusieurs auteurs. T.a version que nous donnons, due a F. Berteloot, est
similaire & celle de Gromov (veir [7]).

LEMME 4. Soit (V,d) un espace métrique complet et ¢ une fonction sur
V a valeurs positives, localement bornée. On fixe T > 1, ¢ >0 et pEV tel
que ¢&(p) > 0. Alors il existe q €V tel que:

i dipayd — T
J(p" 9 = X D
2. olq) > o(p),

3. ) < TR si dx, ) <

edg)

La preuve de ce lemme est élémentaire. Elle consiste a construire une
suite p, en partant de pg = p. Si la condition 3. est satisfaite en remplacant
q par po, on s arréte et on prend ¢ := pp. Sinon on choisit p; dans la boule

avec a(p1) > To(po). On raisonne

fermée de centre et de rayon
po YR )
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alors sur p; comme sur pg. Il est alors facile de voir en ufilisant 1’hypothese
¢ localement bornée que la condition 3. est satisfaite pour un certain p, et
que les deux autres conditions le sont également.

Le lemme suivant, conséquence du lemme précédent est celui qui nous
intéressera par la suite.

LEMME 5. Soit f, une suite de fonctions différentiables sur U. On suppose
que pour un certain point v de U, il existe une suite v, qui tend vers r
et telle que fo(r,) tend vers Uinfini. Alors il existe deux suites a, > 0
et b, € R" tendant vers O et r respectivement et telles que si on pose:
Gn(2) = fulanz + by), on a: d’une part G,(0) = 1 et d’autre part pour tout
compact K de R", il existe une suite de nombres ¢, > 0 tendant vers 0 et
telle que: g, < 1+¢, sur K.

Preuve. On particularise d’abord le lemme précédent en prenant ¢ =
@(p)”""%, 7= 1+ ¢. La condition 1. devient: d(p,q) < (1 é«»gi»(p)‘"’“%)q;»(p)“%.
On pose ensuite: p = r, et ¢ = f, et on choisit pour espace V du lemme
précédent une boule fermée non triviale de centre r contenue dans /. On
applique a cette situation le lemme particularisé. Pour chaque #, le lemme
nous donne un élément g noté g,. En utilisant la condition 1. et [’hypothese
que ﬁ(rn) tend vers 1'infini, on voit que g, tend vers r. Pour conclure, on

prendra pour suite b, la suite des ¢, et pour a, la suite des f(l 3
aldn
utilisant toujours 1'hypothese, la condition 3. nous montre que la suite des

fonctions g, construite a partir des @, et b, satisfait bien aux conditions
requises.

DEFINITION 6. On dira qu'une telle suite g, est une renormalisation de
la suite f, en r.

Conséquence du lemme: En ufilisant 1’inégalité des accroissements finis,
on voit que la famille des fonctions g, est une famille équicontinue a valeurs
dans R. Ceci implique via le théoréeme d’Ascoli que si on voit les g, a
valeurs dans le compact [—o0, +o0] on peut en extraire une sous-suite qui
converge uniformément sur tout compact vers g a valeurs dans [—o0, +o¢].

REMARQUE. Le principe de renormalisation sera utilisé plusieurs fois
dans la suite sans que nous donnions toutes les étapes, comme nous les avons
données 1ci.
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Enoncons le théordme principal :

THEOREME 7. Soit une suite f, de fonctions de H(U). On suppose
gue pour un point p, la suite des f(p) tend vers Uinfini. Alors on peut
renormaliser en p la suite des f, en une suite g, telle qu'une suite extraite
tend uniformément sur tout compact de R™ vers une fonction affine non
consiante.

COROLLAIRE 8. Soit f une fonction harmonique entiére non constante.
Alors il existe une suite de positifs A, et une suite d’éléements B, de R”
telles que f(A,z -+ B,) tend uniformément sur tout compact vers une fonction
affine non constante.

Preuve du corollaire. Comme f est non constante, on peut trouver un
point p tel que f'(p) soit non nul. On applique alors le théoréme & la suite

12(2) = f(p + n2).

REMARQUE. Dans le cas ou f est la partie réelle d'un polyndme
holomorphe, il est facile de voir directement 1’existence des A, et des B,.
On peut aussi vérifier dans le cas général qu’on peut choisir la suite des A,
bornée.

Preuve du théoreme. l.a preuve du théoreme va se faire en deux temps:
On prouve d’abord que la suite renormalisée g, tend aprés extraction vers g
a valeurs finies. L’ellipticité du laplacien permet d’en déduire immédiatement
que ¢ est harmomque avec § < 1 et §(0) = 1. Cette dermere égalité montre
que g est non constante. On exploite ensuite la condition § < 1 pour conclure.

La finitude de g se déduit immédiatement du lemme suivant:

LEMME 9. Soit g, une suite de fonctions de H(U) qui tend uniformément
sur tout compact vers g a valeurs dans [—o0,+x]. Alors si g vaut o0
ou —o0 en un point, elle va émre égale a cette valeur partout. De plus § est
alors identiqguement nulle.

Preuve. On utilise les inégalités de Harnack (conséquences de la formule
intégrale de Poisson) dont voici un énoncé: Ftant donné une boule ouverte
de rayon 2R et de centre p, il existe une constante A strictement positive
telle que pour toute fonction harmonique f positive dans cette boule et pour
tout x et y dans la boule de centre p et de rayon R, on ait: Af(x) < f(y)
(voir [1]).
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Revenons au lemme et supposons par exemple g(p) = +o0. Alors par
convergence uniforme, les g, seront positives dans un voisinage de p pour n
assez grand. On va donc avoir pour x dans un voisinage de p: g,(x) > Ag,(p).
Ceci implique que g, tend vers -+o0 dans un voisinage de p. Par convergence
uniforme, 1’ensemble des points x ou g,(x) tend vers -+o0 est fermé. La
connexité de U permet de conclure que g, tend partout vers --o0. Plagons
nous alors dans cette situation et fixons p dans {/. Les inégalités de Harnack
nous montrent que la suite des #,(x) = (1/¢,)g.(x) avec ¢, = g,(p) est
une suite bornée dans un voisinage de p. Par normalité, on peut donc en
extraire une sous-suite qui converge dans un voisinage vers une fonction qui
sera strictement positive toujours d’apres Harnack. Pour montrer que les §,(p)
tendent vers zéro, on écrit: §,(p) = ¢, lvi(p)|s(c,z,(p)) et on utilise le fait que
xs(x) tend vers 0 quand s(x) tend vers 1'infini.

Passons a la seconde partie de la preuve. Par passage a la limite et
ellipticité, on a maintenant une fonction limite ¢ harmonique telle que § < 1.

Cette partie est similaire a la preuve donnée dans [3]. On remarque que
g o
(cosh g(x)¥*
en déduit que clx|* — In(coshg) est sous-harmonique en prenant ¢ = 1/2m.

De ce fait si on note M(¥,r) l'intégrale d'une fonction F sur la sphere de
centre O par rapport a la mesure ;¢ standard de masse un sur la sphere,
on a d’abord M(ncoshg,r) < cr* puis en tenant compte de la relation
Ix] < dncoshx) 4+ 4 avec d = In2, on déduit: M(|gl.7) < e + d.
Il est alors classique d’en déduire que g est un polynéme de degré au
plus deux. La méthode consiste a développer g en série de polyndmes
harmoniques homogenes P;. Les relations d’orthogonalité des P, permettent
d’en déduire: M(gPy.r) = M(P%_, r). On fait alors tendre » vers 1'infini et on
conclut en tenant compte de 1’homogénéité des P, et de 1'inégalité sur les
M(g.r).

La nullité de la partie quadratique de g résulte de la normalité de la
famille des g{z2) = g(z + ¢ pour r € R™. (Pour la normalité, voir la
section suivante et la proposition 12.) En effet on écrit: g(z) = Q(z) + L(2)
avec (J partie quadratique homogene et L partie affine. S1 on suppose
harmonique non nulle, i1l existe un vecteur = isotrope qui n’est pas dans
le noyau de la forme bilinéaire B associée. On considére alors la suite des
glz--ny) = n(B(ng) wéwL('U)) +1(z). Comme B(z,#)-L(z) peut prendre toutes
les valeurs réelles, il n’existe pas de sous-suite extraite qui converge. Ceci
termine la preuve du théoreme.

pour g harmonique, le laplacien de In{coshg) vaut soit 7. On
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Esquissons une preuve directe du corollaire analogue a la premiére preuve
de [3]. Soit F harmonique entiére non constante. Supposons par exemple
F'(0) non nulle. On choisit alors une suite R, de telle sorte que pour la suite
Fo(2) = F(R,z)/n on ait: lim F(0) = oo, On renormalise alors cette suite en
une suite g, comme dans la premiere partie de la preuve du théoréeme. La
limite g de la suite extraite des g, est harmonique entiere non constante. Il est
classique qu’elle s’annule en un point p ([&]) et comme elle est harmonique,
on peut aussi supposer qu’en ce point, le gradient ne s annule pas (voir lemme
suivant). Supposons par exemple p = 0. On conclut alors en considérant la
suite des ng,(z/n) et en faisant tendre n vers 1'infini.

Montrons le lemme dont on a eu besain.

LEMME 10.  Soit f € H(U) non identiquement nulle. Alors si f s’annule
en un point p, il existe un point q on f s’annule et tel que f'(q) ne s’annule
pas.

Preuve. D’aprés le principe du maximum, f prend des valeurs strictement
positives et strictement négatives. Donc 1’ensemble des zéros de f qui est par
ailleurs un ensemble analytique réel, est une hypersurface. On se place alors
en un point lisse de cette hypersurface et on applique un lemme classique de
Hopf pour conclure [1].

2.1 CRITERES DE NORMALITE

Ces remarques sont fortement inspirées par 1’article de Zaleman [13] qui
traite le cas méromorphe a une variable.

DEFINITION 11 (voir [12] pour la dimension deux). Cn dira qu’une famille
E de fonctions de H(U) est normale s1 de toute suite de £, on peut extraire une
sous-suite convergeant uniformément sur tout compact soit vers une fonction
de H(U) soit vers -+o¢ soit vers —oo.

On a la proposition suivante qui donne un équivalent du théoreme de Marty
pour le cas harmonique (voir [13]).

PROPOSITION 12.  Une famille E est normale si et seulement si pour tout
compact K, il existe une constanie positive Mg telle que pour tout | € E,
on ait: f(x) < Mg pour x € K.
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Preuve. La condition de la proposition sur les dérivées au sens du tilde
implique que la famille est équicontinue et le théoreme d’Ascoli joint au
lemme 9 montre la normalité de la famille. Dans 1’autre direction, supposons
que la condition sur les dérivées ne soit pas remplie. Il existe alors un compact
K et une suite f, de E telle que le sup des f, tende vers I’infini sur K. Si
la suite était normale, quitte a extraire, on pourrait supposer que la suite des
fr» tende uniformément sur tout compact de U vers f &€ H(IJ) ou vers -oc
ou vers —o0. Cecl est contradictoire avec ce qui a été dit précedemment sur
les relations entre les limites de f, et de f,.

On a les deux criteres généraux de normalité suivant:

THEOREME 13.  Une famille E dans H(U) est normale si elle satisfait a
{’un des deux critéres suivants:

1. On fixe a € R. On considére la famille E des f ¢ H(U) vérifiant:
pour tout compact K, il existe Mg > O tel que |f'(x)| soit majorée par My
SUF f“’”l(a) NK.

2. On fixe une fonction { sur R a valewrs dans [0,00] finie en au moins
un point. On considére la famille E des [ € HWU) vérifiant: |f'| < Iof.

Preuve. 1. On suppose la famille non normale. II existe d’aprés la
proposition précédente, une suite f, dans H({/) et une suite p, qui tend
vers p dans U et telle que f(p,) tende vers l'infini. Le lemme de
renormalisation permet de renormaliser f, en g, au point p. Pour ce qui suit,
nous avons simplement besoin de savoir que la suite g, (modulo extraction)
converge vers g harmonique entiere et non constante. En utilisant la relation:
g2 = anfilanz + by, pour z € K0 FYa) on a: |g.(2)] € a,Mg pour n
assez grand. On en déduit que ¢’ s’annule sur ¢~ (@), ce qui est contradictoire
avec le lemme précedent.

2. On choisit b tel que /(b) soit fini et on applique le 1. avec les Mg = I(b).

2.2 TFONCTIONS DE BRODY

En s’inspirant du cas méromorphe, on dira que f entiere harmonique est
une fonction de Brody si elle vérifie f < M pour un certain M > 0. La
preuve du théoréme précédent montre qu'une fonction harmonique de Brody
est en fait une fonction affine. Nous allons donner un théoréme caractérisant
de maniere plus intrinseque les fonctions de Brody et qui a un analogue dans
le cas méromorphe.
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THEOREME 14. 1. Une fonction harmonique entiére f est de Brody (i.e.
affine) si et seulement si la famille des fonctions f,(x) .= f(x +t) indexée par
t € R” forme une famille normale.

2. Soit { une fonction de R dans [0, +00] finie en au moins un point.
Alors les fonctions harmoniques  sur R vérifiant |f'| < I(f) sont de Brody

(i.e. affines).

Preuve. 1. Supposons la famille f; normale. Alors d’apres la proposi-
tion 12, il existe M > 0 tel que pour tout ¢, on a: £(0) < M. Ce qui signifie
que f < M et donc f est affine. La réciproque est claire dans notre situation
ol on sait que les fonctions de Brody sont affines. Mais on peut aussi donner
un argument direct en remarquant simplement que si f < M, alors il en est
de méme de ses translatées qui forment une sous-famille de la famille normale
des g € H(R™) telles que § < M.

2. La famille E des f harmoniques entitres telles que |f'| < I(f) est une
famille normale d’apres le théoréme précédent. On remarque ensuite que si
f € E, il en est de méme des f;. La famille des f; est normale et done f est
affine d’apres le 1.

3. LIEN AVEC LA GEOMETRIE DES TUBES

DEFINITION 15 On dira que € est un tube (ou domaine tube) de C" il
s’écrit sous la forme w - {R" avec w domaine de R”.

Citons a propos des tubes un théoréme classique de S. Bochner [&].

THEOREME 16. L’emveloppe d’holomorphie d’un domaine tube coincide
avec son enveloppe convexe.

De ce théoreme, on déduit aisément:

COROLLAIRE 17. Pour un domaine tube £2 pseudo-convexe, on a
équivalence entre :

1. Q est biholomorphe a un domaine borne.
2. Q est hyperbolique (au sens de Kobayashi).

3. w ne contient pas de droite dffine.
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Preuve du corollaire. Par le théoréeme de Bochner, €2 est convexe. Le 3.
signifie que €2 ne contient pas de droite affine complexe. ['équivalence de 1.
et 3. est bien connue dans ce cas ([2]). Elle implique évidemment 1’équivalence
commune avec 2.

On utilise ce résultat pour montrer:

PROPOSITION 18.  Un tube € est biholomorphe a un domaine borné si et
seulement si ['enveloppe convexe de w ne contient pas de droite affine.

Preuve. La condition suffisante est évidente d’apres le corollaire précédent.
Montrons que la condition est nécessaire et supposons que | enveloppe
convexe ¢ de w contienme une droite L. Alors par chaque point de
w’ il passe une droite paralleéle & L et contenue dans o’. On peut
alors choisir x et y distincts dans w et contenus dans une droite D
de . Ceci va impliquer que pour toute fonction holomorphe bornée
f sur w, on a: f(x) = f(y), et donc £ ne peut €tre biholomorphe
a un domaine borné. [ assertion sur f s’obtient comme suit: On peut
supposer f a valeurs dans le disque unité. Cette fonction va se pro-
longer en une fonction holomorphe F de l'enveloppe d’holomorphie (qui
est aussi 1’enveloppe convexe) toujours a valeurs dans le disque unité.
Par Liouwville, cette fonction va étre constante sur la droite complexe

D+ iD', o D' est la droite vectoriclle parallele & D. En particulier
J@) = f.

REMARQUE. La preuve précédente montre en fait que pour un domaine
tube, on a l'équivalence entre: Le domaine est biholomorphe a un domaine
borné, la pseudo-métrique de Carathéodory est une métrique, 1’enveloppe
convexe de w ne contient pas de droite affine.

Notre intérét concernant 1’hyperbolicité va donc se porter sur les domaines
tubes non pseudo-convexes dont l’enveloppe convexe contient des droites
affines. On introduit les définitions suivantes :

DEFINITION 19.

1. Une application harmonique (voir par exemple [5]) d’'un domaine U
de R” 2 valeurs dans R™ est une application dont les fonctions coordonnées
sont harmoniques.

2. Dans le cas o U/ = R”, on parlera d’application harmonique entiere.
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3. Un domaine V de R™ est dit n-Brody-hyperbolique (par rapport aux
applications harmoniques) s’il n’existe pas d’application harmonique enticre
non constante de R” a valeurs dans V. Dans la suite, nous serons surtout
intéressés par le cas n = 2.

Un domaine V de R™ est dit n-hyperbolique (par rapport aux applications
harmoniques) si pour tout ¢ dans V, il existe un voisinage W de a et une
constante M > O tels que pour toute application harmonique f de la boule
unité de R” A valeurs dans V et telle que f(0) € W, on ait: |f/(D] <M.

On rappelle les notions classiques [10] du cas holomorphe avec lesquelles
on va faire le lien:

3. Une variété complexe est dite Brody-hyperbolique $’il n’existe pas
d’application holomorphe enfi¢re non constante a valeurs dans cette variété.

Une variété complexe V est dite Kobayashi-hyperbolique (ou hyperbolique)
si pour tout ¢ dans V, il existe un voisinage W de a et une constante M > 0
tels que pour toute application holomorphe du disque unité a valeurs dans V
et telle que f(0) € W, on ait: |[f/(0)] < M. (On pourra mettre une métrique
Riemannienne sur V pour donner un sens précis a cette notion.) Comme nous
n’avons pas trouvé de référence précise dans la littérature, nous donnons en
annexe finale une preuve de 1’équivalence de cette définition de 1'hyperbolicité
avec la défimtion standard.

On remarquera que hyperbolique implique (aussi bien dans les cas har-
monique que complexe) Brody-hyperbolique. En effet si f est une application
entitre non constante a valeurs dans V' on se place en a tel que f/(a) ne soit
pas nul et on considere la suite des f{a--nx) pour montrer la non hyperbaolicité
de V.

On fait maintenant le lien entre les notions réelles et complexes. On va
supposer n = 2.

Un lien est donné par la proposition suivante:

PROPOSITION 20. Un tube Q2 est Kobayashi-hyperbolique (resp. Brody-
hyperbolique) si et seulement si w est 2-hyperbolique (vesp. 2-Brody hyper-
bolique).

Preuve. On utilise les relations classiques entre les fonctions holomorphes
et leur partie réelle harmonique.

l.e cas qui va nous intéresser est celui des domaines tubes de C? et
qui d’aprés la proposition précédente correspond aux valeurs m = n = 2.
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Toutefois certains résultats seront donnés en général et d’autres résultats pour
m quelconque et n = 2.

Pour un domaine « dans R?, on a deux cas: Celui o1 1’enveloppe convexe
n’est pas tout R? et celui ot cette enveloppe est tout R?. Nous allons d’abord
traiter le premier cas en donnant un résultat complet On remarquera qu’un
tel domaine est contenu dans un demi-plan et sans nuire a la généralité, on
supposera par la suite que w est contenu dans le demi-plan {(x.y) | y > 0}.
On dira alors quun point a = (41, a2) € w est borné s’il n’existe pas de suite
by qui tende vers ap et telle que chaque segment [—k, k] x {b;} soit contenu
dans w’.

THEOREME 21.  Soit w un domaine de R* d’enveloppe convexe différente
de R*. Alors :

1. w est n-Brody hyperbolique si et seulement s’il ne contient pas de
droite dffine.

2. w est n-hyperbolique si et seulement si tout point a de w est borné.

REMARQUE. On voit que dans ce cas, #» ne joue aucun rdle.

COROLLAIRE 22. [l existe des tubes de C? qui sont hyperboliques et dont
U"enveloppe d’holomorphie n’est pas Brody-hyperbolique.
Il existe des tubes Brody-hyperboliques et non hyperboliques.

Les exemples du corollaire sont faciles a construire a partir du théoréme.
On va donc prouver le théoreme.

Preuve. 1. 11 est clair que €2 est non n-Brody-hyperbolique si o contient
une droite. Pour la réciproque, on suppose f = (f1,f2) harmonique entiere a
valeurs dans w. D’apres le théoreme de Liouville, f> est constante. Donc si f
est non constante, son image est une droite. Par conséquent, si w ne contient
pas de droite, il est n-Brody hyperbolique.

2. On suppose que u confienne un point a = (g1,a2) non borné. Il
existe alors une suite b; tendant vers az telle que l'image de ] — 1. 1]
par les applications: # =+ (kt, b;) soit contenue dans w. De ce fait on voit
immédiatement que wr est non 1-hyperbolique et aussi non n-hyperbolique
pour tout n.

Supposons maintenant que w soit non n-hyperbolique. Il existe alors une
suite fp = (uy, 1) d’applications harmoniques de la boule umté de R* dans
w telles que f(0) tend vers a et [f/(0)] tend vers l'infini. La suite 75 de
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fonctions harmoniques positives est une suite normale. Quitte a extraire, on
peut supposer que cette suite tend vers une fonction harmonique # (elle ne
peut tendre vers I’'infini). [.a suite u; est alors nécessairement non normale et
on peut la renormaliser apres extraction en une suite Up(x) 1= wlcx +dp) qui
tend uniformément sur tout compact vers une fonction affine non constante.
La suite des fonctions w(crx -+ dy) tend vers ap car ¢ et d, tendent vers 0.
11 est alors clair que le point a est non borné.

On va maintenant fraiter le second cas plus difficile a savoir celui ou
I’enveloppe convexe de w est tout R?. Ceci permettra d’avoir des domaines
tubes hyperboliques dont 1’enveloppe d’holomorphie est tout C2. On énoncera
d’abord un lemme de renormalisation pour les applications harmoniques
proche de celui de [3] concernant les fonctions holomorphes. Etant donné
une application harmonique f, on note f la somme des f; ol on note f; les
fonctions coordonnées de f.

PROPOSITION 23. Soit fy une suite d’applications harmoniques définies
sur un domaine U de R* a valeurs dans R". On suppose qu’il existe p € U
et une suite pi qui tend vers p telle que la suite des f(py) tende vers Uinfini,
Alors on peut renormaliser la suite des f;, en une suile F (x) = fi{cx + dy)
avec des cy > 0 et tendant vers 0 et des dy tendant vers p telle que:

La suite des F, (aprés extraction) tend uniformément sur tout compaci
de R" vers une application F dont les coordonnées sont des fonctions affines
ou des fonctions identiquement égales a 00 ou —o0. De plus une au moins
des coordonnées est une fonction affine non constante.

Preuve. On raisonne a partir du lemme général de renormalisation comme
pour les fonctions harmoniques. On utilise Ascoli pour montrer qu’on peut
extraire des Fp une sous-suite encore notée F; qui tend uniformément sur
tout compact vers une fonction F i valeurs dans [—a0, +o0]™. De plus la
limite les F3(0) vaut 1 et la limite supérieure des Fi(a) est plus petite que 1
pour tout @. On déduit le résultat en raisonnant composante par composante.
On notera que quitte a extraire, on peut supposer que pour une des fonctions
coordonnées g; de Fj, on aura une limite §(0) strictement positive, ce qui
fournira une fonction limite affine non constante.

On donne un corollaire de la proposition 23 concernant les domaines w
de dimension deux.
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COROLLAIRE 24 A. Un domaine w dans R* non n-hyperbolique a au
moins une des deux propriétés suivanie :

1. Son adhérence contient une droite affine.

2. Pour tout t € R il existe une suite (xp,yp) telle que x; tend vers o
et yy vers t ou une propriété analogue en remplacant 00 par —o0 oU en
permutant les coordonnées.

B. Il existe des tubes de C? hyperboliques dont Ienveloppe d’holomorphie
est tout C2.

Preuve. A. 81 w est non n-hyperbolique, alors on peut trouver une suite
d’applications f; vérifiant les hypothéses de la proposition 23 a [origine de
la boule unité et a valeurs dans u. On renormalise alors cette suite f; et on
obtient une des propriétés 1. ou 2.

B. Il est clair qu’il existe des domaines dans R? dont 1’enveloppe convexe
est tout R? et qui ne satisfont 3 aucune des propriétés 1. et 2. (prendre
par exemple un voisinage effilé de trois demi-droites convenablement choisies
partant de ['origine). L.e théoréme de Bochner permet de conclure.

REMARQUE. Un domaine de R? peut avoir la propriété 1. et toutefois
étre n-hyperbolique. Un exemple de tel domaine est donné par

{3 0<y < exp(—[xD}.

11 est hyperbolique en vertu du théoreme 21 et clairement la droite d’équation
vy = 0 est adhérente au domaine.

3.1 REMARQUES SUR LES DOMAINES NON #-BRODY-HYPERBOLIQUES

Nous nous plagons dans R%. On fait ici quelques remarques sur les images
dans R? des applications harmoniques entieres. Le cas dégénéré fait 1’objet
de la proposifion suivante (on se place dans un cadre local).

PROPOSITION 25. Soit F umne application harmonique d’un domaine U
de R a valeurs dans R*. On suppose F de rang au plus un en chaque point
(si n =2, ceci signifie que le jacobien est identiquement nul). Alors F(U)
est contenue dans une droite.

Preuve. 81 F est de rang nul partout, alors F(I/) est un point. On suppose
donc F de rang un en un point a et donc de rang un dans un voisinage
de a. Le théoreme du rang implique alors qu’il existe une fonction réguliere
M définie sur un ouvert non vide de R et telle qu’on ait une équation locale :
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u=Mowv avec u et » fonctions coordonnées de ¥. Un calcul direct montre
que: Au = M" ov[’]? 4+ (M’ sv)Av. En tenant compte de I’harmonicité de u
et © et du fait que = est non constante, on en déduit que M” est localement
nulle. Donc il existe deux réels ¢ et d tels que: u = cv + d au voisinage
de a. ['analycité de u et v permet d’étendre cette relation a tout /.

On est donc amené & étudier le cas des applications harmoniques enticres
non dégénérées dont 1'image est alors d’intérieur non vide. Nous nous
contentercns de quelques remarques.

1. Pour une fonction entiere holomorphe non dégénérée (c’est a dire non
constante) le théoreme de Picard nous dit que 1'image est le plan ou le
plan privé d'un point. Ceci est loin d’&tre vrai pour les applications entieres
harmoniques. Dans [5] un exemple d’une application entiere harmonique non
dégénérée de R? dans lui-méme est donné telles que les boules contenues
dans 1'image aient un rayon borné. Cet exemple servait & montrer ['inexistence
d’une constante de Bloch. Nous donnons ici un exemple similaire: On vérifie
aisément que l’ensemble W = {(x,y) | 0 < xy < 1} LU {(0,0)} est I'image
de C par I'application harmonique: z = ($ef, Re ).

Pour cet exemple, outre l'inexistence de boule de rayon arbitrairement
grand qui y soit contenue, on notera qu’il ne contient pas de droite mais que
deux droites y sont adhérentes. A partir de 13, il est facile de construire des
exemples de domaines non 2-Brody hyperboliques qui ne contiennent pas de
droite et qui sont de ce fait 1-Brody hyperboliques.

[.a proposition suivante caractérise, a fransformation affine pres, les
applications harmoniques entieres qui sont holomorphes.

PROPOSITION 26. Une application harmonique H entiére de R® dans
{ui-méme domt le jacobien est positif ou nul en tout point esi a transformation
affine pres (sur I"ensemble image) une fonction holomorphe entiere.

On a alors le corollaire:

COROLLAIRE 27. Une application harmonigue H entiére de R* dans
{ui-méme dont le jacobien ne s’annule pas, est a transformation affine prés
(sur 'ensemble image) une fonction holomorphe entiére.

Preuve de la proposition. Soient u et v les coordonnées de H. On pourra
écrire: u = Rf et v = Hg avec f et g des fonctions entieres. Un calcul direct
montre que le jacobien de H est donné par S$(f' ¢/). En éliminant le cas g
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i
constant qui est trivial, la positivité de ce jacobien signifie que i‘s’(’;) est positif

4
12 ol la fonction méromorphe “% est définie. Par une forme du théoréme de

i
Liouville, ceci implique que r est constant. Des considérations élémentaires
i

permettent de conclure.

4. APPLICATIONS A VALEURS DANS UN TORE
OU UN GROUPE DE LIE

Dans ce chapitre, on considére des applications solutions d’une équation
aux dérivées partielles elliptique a valeurs dans un tore. Les résultats de
renormalisation dans le cas elliptique sont plus généraux mais ne permettent
pas d’obtenir un résultat aussi fort que pour le laplacien. Pour les opérateurs
elliptiques, on renvoie au livre de Hormander [9].

Dans la suite, on considere un polyndéme homogene réel P sur R™ auquel
on associe naturellement un opérateur différentiel P(¢}). On va supposer que P
ne s’annule qu’en 0 sur R™. L’opérateur P(JJ) est alors elliptique. Rappelons
une propriété essentielle:

Soit U un domaine de R™. Toute fonction f suffisamment réguliére sur
U et solution de P(Hf = 0 est analytique réelle. On appellera P-fonction
une telle fonction

On a la propriété suivante: Si une suite de P-fonctions définies sur ¥/
converge uniformément sur tout compact vers une fonction f, alors f aussi
est une P-fonction. De plus les dérivées convergent aussi uniformément sur
tout compact.

Introduisons les défimtions suivantes:

1. Une application de U dans R” est une P-application si ses coordonnées
sont des P-fonctions.

2. Une application ¥ de & dans T, := R"/Z" est une P-application si
elle s’écrit sous la forme: p o G ou on note p la projection canonique de
R" sur T, et G une P-application. Remarquons que G est définie a une
constante additive pres. De ce fait G/, qu’on notera F” dans la suite, est bien
défime. C’est aussi une P-application.

On a le théoréeme suivant de renormalisation.
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THEOREME 28. Soit fi une suite de P-applications de U a valeurs
dans T,. On suppose que pour un point p de U, il existe une suite py tendant
vers p et telle que |f(pi)| tend vers Uinfini. Alors on a une renormalisation
d’une sous-suite des f, en une fonction dffine non constante (notons que cette
derniere notion a un sens). La renormalisation signifie qu’il existe une suite
de nombres positifs a; tendant vers O et une suite de vecteurs by tendant
vers p el telles qu’une suite extraite des fi(apx-+by) converge sur iout compaci
de R™ vers une fonction affine.

Le théoreme i1mplique un corollaire analogue a celui des fonctions har-
moniques concernant les P-applications entieres. Le corollaire suivant qui
se déduit immédiatement du théoreme, fait le lien avec la renormalisation a
constante pres.

COROLLAIRE 29. Soit fi une suite de P-applications de U a valeurs
dans R". On suppose les mémes hypoihéses que dans le théoréeme pour un
point p. Alors il existe une suite de vecteurs ¢, de R”, telle qu’on puisse
renormaliser une sous-suite des fi ¢y en une application affine non constante.

REMARQUES. Avant de démontrer le théoreme, faisons quelques remarques:

1. Le théoreme similaire de M. Green concernant les applications holo-
morphes prenant leurs valeurs dans un tore complexe est bien connu. En fait,
il est facile de retrouver ce résultat a partir de notre théoréme en considérant
une fonction holomorphe comme un couple de fonctions harmonmques vérfiant
les relations de Cauchy-Riemann.

2. La notion de renormalisation a constante prés concernant le cas holo-
morphe a une variable est a 1a base du formalisme de Minda (voir le livre [12]
et 1’article [11]). Cette renormalisation est essentiellement équivalente a la
renormalisation des fonctions holomorphes & valeurs dans un tore complexe.

Il nous semble important de remarquer que dans le cas particulier des
fonctions harmomques les résultats de renormalisation obtenus par cette
méthode sont plus faibles que ceux démontrés avant pour le laplacien. En
général une P fonction entiere a valeurs dans R n’est pas renormalisable
en une fonction affine non constante comme le montre 1’exemple simple des
P-fonctions que sont les polyndmes a une variable.

Preuve du théoréme. Pour une P-application F, on considere [F’'| qui
joue le méme rdle joué avant par f .
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Le lemme de renormalisation nous dit qu’il existe deux suites comme dans
le théoreme telles que pour la suite des sp(x) 1= filax-+by), on a: la suite des
sp(x) tend uniformément sur tout compact vers une limite plus petite que 1
en norme et telle que les 5 (0) valent 1 en norme. Un argument de normalité
valable dans le cas elliptique permet d’affirmer qu’une sous-suite de s} a une
limite. Cette limite ¢ est une P-application bornée. Le théoréme de Liouville
(voir lemme suivant) nous dit que ¢ est constante. Pour conclure, on peut
utiliser le théoréme classique d’intégration des limites de suites de fonctions
jointe a la compacité de 7,,.

LEMME 30. Une P-fonction f bornée est constante.

Preuve. Par ellipticité de P(&), 1a transformée de Fourier de la distribution
tempérée f est a support en 1'origine, donc combinaison de masse de Dirac
a I'origine et de ses dérivées en 1’origine. Par conséquent f est un polyndme
et comme f est bormée, ¢’est une constante.

4.1 LE CAS DES GROUPES DE LIE COMPLEXES

Les idées précédentes peuvent aussi s’appliquer aux groupes de Lie
complexes. Nous ne traiterons pas ce sujet dans toute sa généralité. On fait
d’abord quelques rappels:

Soit ¢ un groupe de Lie complexe (le lecteur peu familier avec cette
notion pourra se placer dans la situation G = Gi(n, C)). Pour une application
holomorphe f d’un domaine &/ de C a valeurs dans G, on pose: Df(z) =
F@~ ¥ (2. Lapplication Df est holomorphe 2 valeurs dans 1’espace tangent
en l'identité (algtbre de Lie), qui est isomorphe a un C”. Si Df(z) est
constante, alors f(z) est de la forme gexp(zX) pour un certain g € G et un
certain X dans 1’algebre de Lie de . Ces dernieres applications généralisent
les applications affines.

On a le théoréme suivant:

THEOREME 31. Soit fi une suite d’applications holomorphes de U
dans G. On suppose qu’il existe p € U tel que la norme de Dfi(p) tende
vers l'infini. Alors il existe une renormalisation des f, a constante pres (au
sens des groupes) en une fonction entiére de la forme gexp(zX) avec X
non nul. De maniére explicite : Il existe une suite g, dans G, une suite de
nombres positifs ay tendant vers O et une suite by d’éléments de U tendant
vers p telles que la suite de fonctions g fi{ayz-+by) tende uniformément vers
gexp(zX) sur tout compact de C.
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Preuve. La preuve utilise les idées précédentes. On applique le lemme
général de renormalisation aux |Df;l. Ceci permet d’obtenir une suite renor-
malisée de fonctions i (z) = filarz -+ br). On remplace ensuite la suite des u;
par une suite U(z) 1= qu4.(z) avec les g; choisis de telle sorte que Uy(p) = id.
On a DUy = Du;. La suite des U, est alors normale et elle tend apres ex-
traction vers une application holomorphe entidre non constante F 2 valeurs
dans G. La fonction F est de Brody, c’est a dire qu’elle vérifie |DF(z)] < 1.
Le théoreme de Liouville classique nous dit alors que DF est constante. Le
théoréme se déduit des remarques de début concernant les groupes de Lie.

REMARQUES.

1. Comme cas particulier du théoréme, on a la renormalisation a constante
pres d’applications holomorphes entieres non constantes.

2. On a le méme type de résultats si on considere des applications
holomorphes a valeurs dans un quotient de G par un groupe discret cocompact.
Toutefois la situation C* = C/Z étudiée par Berteloot et Duval est en relation
avec la renormalisation a constante réelle prés. Dans le cas d’un groupe de
Lie complexe, ceci signifie une renormalisation a une constante prés variant
dans une forme réelle. Une telle renormalisation pourrait €tre utilisée pour
I’étude de tubes généralisés, i.e. des domaines invariants par 1’action de la
forme réelle (voir [6]).

3. On peut généraliser la notion de P-application pour un groupe de Lie
réel G de la manere suivante: Une application f d’un domaine {/ de R” a
valeurs dans G est une P-application si P(Df) = 0. On peut alors développer
une théorie similaire a celle du cas Fuclidien. Nous ignorons toutefois la portée
que peut avoir cette notion.

5. ANNEXE SUR L’HYPERBOLICITE
On note D, le disque ouvert centré a 1’origine de rayon r > 0.

PROPOSITION 32.  Seit X une variété complexe qu’on munit d’une métrique
Riemannienne. Alors X est hyperbolique au sens de Kobayashi si et seulement
5i on a la propriété (P) suivante :

Pour tout point a de X, il existe un voisinage V et une constante M > 0
tels que pour toute applicaiion holomorphe f: D1 —» X, vérifiant f(0) € V,
on ait: [ f/(O] <M.
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Preuve. On suppose d’abord X hyperbolique. Pour @ dans X on chasit
une boule fermée B pour la métrique de Kobayashi centrée en a et de
rayon 2r > O choisi assez petit pour que cette boule soit compacte. (Ceci est
possible car la métrique de Kobayashi induit 1a topologie [10].) On peut alors
choisir pour V la boule fermée de cenfre a et de rayon r pour la métrique
de Kobayashi. En effet d’aprés la propriété de contraction de la métrique
de Kobayashi, il existe ' > 0 tel que pour toute application holomorphe
F: Dy — X vérifiant f(0) € V, on ait: f(D~) € B. Comme B est compact,
un argument de normalité permet de montrer 1’existence de M.

La réciproque est plus difficile. On suppose la propriété (P) vérifiée pour X .
En chaque point p, on définit 'indicatrice K, de Kobayashi comme étant
le sous-ensemble de l’espace tangent 7, formé des éléments »f'(0) avec
0 < r< 1 avec f application holomorphe de D; dans X vérifiant f(0) = p.
A cette indicatrice, on associe de maniere classique une jauge j, définie sur 7T,
par: jy(v) =inf{t > 0| v/f € K,}. La propriété (P) signifie alors simplement
que pour tout point «, 1l existe un voisinage V de a et ¢ > 0 tel que pour
tout p€ Vet x €T, ona: j,(x) > cjx|. On conclut en utilisant le fait que la
métrique de Kobayashi est la métrique intégrée par rapport aux j, (voir [10]
pour une preuve de ce théoréme assez difficile).
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