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APPLICATIONS HARMONIQUES
ET HYPERBOLICITÉ DE DOMAINES TUBES

par Jean-Jacques Loeb

ABSTRACT. An application of the Zalcman renormalization theorem to harmonie
functions shows that the limit functions are nonconstant affine. Extensions of this
method are given for maps with values in a torus or in a complex Lie group. As an
application, we give criteria of Kobayashi hyperbolicity for tubes in C2.

1. Introduction

Dans leur article [3], F. Berteloot et J. Duval démontrent le théorème

suivant :

THÉORÈME 1. Etant donné une fonction holomorphe entière f non

constante qui ne s'annule pas, il existe une suite An de nombres positifs et une
suite Bn de nombres complexes telles que la suite des fonctions f(Anz ~!~ Bn)
tend uniformément sur tout compact vers une fonction de la forme Cedz avec
C et d non nuls.

Ils prouvent ce théorème en utilisant le théorème de renormalisation de

Zalcman [13]. Un théorème de renormalisation similaire à celui de Zalcman

avait été également obtenu par Brody [4] qui utilisait des homographies au
lieu de transformations affines. Comme l'avaient remarqué Berteloot et Duval,
le petit théorème de Picard est une conséquence immédiate de leur résultat

moyennant l'utilisation d'un lemme classique d'Hurwitz. Dans leur article,
les auteurs donnaient une généralisation de leur théorème à la dimension

supérieure, ce qui leur permettait d'établir l'hyperbolicité du complémentaire
de certaines courbes dans le plan projectif complexe. Ils retrouvaient aussi

avec une méthode élémentaire la généralisation du théorème de Picard par
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Mark Green, à savoir que le complémentaire de 2n+l hyperplans en position
générale dans P" est hyperbolique (ici ceci signifie essentiellement qu'une
application holomorphe entière qui prend ses valeurs dans ce complémentaire
est constante).

Comme point de départ et motivation de notre étude, notons le fait suivant:

PROPOSITION 2. On a l'équivalence entre le théorème précédent et le
résultat suivant:

Pour toute fonction harmonique g définie sur C non constante, il existe

une suite de positifs An et une suite de complexes Bn telles que la suite

g(Anz + Bn) tend uniformément sur tout compact vers une fonction affine non
constante.

La preuve de ce résultat est comme suit. Tout d'abord si g est harmonique

sur C, on l'écrit comme la partie réelle d'une fonction entière h et de ce fait

g — ln|/|, où / — eh. On démontre ainsi que le théorème de Berteloot et
Duval implique le résultat analogue sur les fonctions harmoniques. Dans l'autre
direction, si / est une fonction entière ne s'annulant pas, on commence par
appliquer le résultat de renormalisation à la fonction harmonique g — ln |/|.
On a donc une suite g(Anz + Bn) qui tend vers une fonction affine non
constante. On utilise la conjuguée / de g et les relations de Cauchy-Riemann

pour montrer que pour une détermination ln/ de /, il existe une suite de

réels cn tels que hif(Anz + Bn) + icn ait une limite qui est nécessairement

une fonction holomorphe affine non constante. On peut maintenant s'arranger
quitte à extraire, pour faire en sorte que la suite lnf(A.nz + Bn) ait une limite
modulo 2iixZ. Ceci permet de conclure.

Notons qu'un lemme de renormalisation est établi en dimension deux

dans [12] pour les fonctions harmoniques sans qu'il soit donné de résultat

précis sur la limite.
Notre article s'organise comme suit:
Dans la première partie, nous généralisons le résultat concernant les

fonctions harmoniques à toutes les dimensions. Nous suivons la démarche
de [3] et nous utilisons les inégalités classiques de Harnack pour travailler sur
les fonctions harmoniques. Nous donnons ensuite des critères de normalité pour
des familles de fonctions harmoniques ainsi qu'une caractérisation intrinsèque
des fonctions affines parmi les fonctions harmoniques.

Dans la seconde partie, nous faisons le lien entre applications harmoniques
et tubes dans C". Des critères d'hyperbolicité (au sens de Kobayashi) sont
donnés. On montre ainsi qu'il existe des tubes hyperboliques dont l'enveloppe
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d'holomorphie est tout C2. Il nous a paru intéressant de faire quelques

remarques en complément sur les images d'applications entières harmoniques.
Dans la dernière partie nous montrons que les fonctions (ou applications)

solutions d'opérateurs elliptiques admettent une renormalisation à

constante près en des fonctions (ou applications) affines non constantes. Une

généralisation naturelle est donnée pour les groupes de Lie complexes.
Pour les propriétés élémentaires sur les fonctions harmoniques utilisées ici,

nous renvoyons le lecteur à [1].

2. Renormali sation des fonctions harmoniques

Notation 3. Dans cette partie, on désigne par U un domaine dans Rr,!

et on note par H(U) l'espace des fonctions harmoniques sur U. Une fonction
de H(Rm) sera dite harmonique entière.

Sur [—'00, i-oo], on met la distance d définie par: d(x.y) — |5(x) — S(y)|,
avec S(x) := arctan(sinhx). Cette distance définit la topologie usuelle. Elle est

inspirée par la métrique de Fubini-Study.
Pour une fonction / différentiable sur U, on pose f(x) |(5of")'(x)\ —

5 o f(x)\f (xi)\ où on a noté s la dérivée de S et f le gradient de /.
Explicitement: f (x) — ^ —1 J coshf(x)

Dans la suite, nous utiliserons un lemme de renormalisation de base donné

par plusieurs auteurs. La version que nous donnons, due à F. Berteloot, est

similaire à celle de Gromov (voir [7]).

Lemme 4. Soit (V,d) un espace métrique complet et <p une fonction sur
V à valeurs positives, localement bornée. On fixe r > 1, e > 0 et p V tel

que &(p) > 0. Alors il existe q V tel que :
h d(p,q) < ——S -,eç'X»(r - 1)
2. é(a) >
3- <P(x) < T0(q) si d(x,q) <

e4<q)

La preuve de ce lemme est élémentaire. Elle consiste à construire une
suite pn en partant de po — p. Si la condition 3. est satisfaite en remplaçant

q par po, on s'arrête et on prend q po. Sinon on choisit pi dans la boule

fermée de centre po et de rayon —-— avec à(p\) > ré(po). On raisonne
r4(po)
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alors sur pi comme sur po. Il est alors facile de voir en utilisant l'hypothèse

0 localement bornée que la condition 3. est satisfaite pour un certain pn et

que les deux autres conditions le sont également.

Le lemme suivant, conséquence du lemme précédent est celui qui nous
intéressera par la suite.

LEMME 5. Soit fn une suite de fonctions dijférentiables sur U. On suppose

que pour un certain point r de U, il existe une suite rn qui tend vers r
et telle que f„(rn) tend vers l'infini. Alors il existe deux suites an > 0

et bn Rw tendant vers 0 et r respectivement et telles que si on pose:
g„(z) :~ fniflnZ i~ bn), on a: d'une part gn(0) — 1 et d'autre part pour tout

compact K de R"1, il existe une suite de nombres e„ > 0 tendant vers 0 et
telle que : gn < 1 + on sur K.

Preuve. On particularise d'abord le lemme précédent en prenant e :•=

0(p)~~5 r 1 f e. La condition 1. devient: d(p,q) < (1 + <p(p)~s)0(p)~s.
On pose ensuite: p rn et à fn et on choisit pour espace V du lemme

précédent une boule fermée non triviale de centre r contenue dans U. On

applique à cette situation le lemme particularisé. Pour chaque n, le lemme

nous donne un élément q noté qn. En utilisant la condition 1. et l'hypothèse

que fn(rn) tend vers l'infini, on voit que qn tend vers r. Pour conclure, on

prendra pour suite bn la suite des qn et pour an la suite des _

1
En

fniqn)
utilisant toujours l'hypothèse, la condition 3. nous montre que la suite des

fonctions gn construite à partir des a.n et bn satisfait bien aux conditions

requises.

DÉFINITION 6. On dira qu'une telle suite gn est une renormalisation de

la suite fn en r.

Conséquence du lemme : En utilisant l'inégalité des accroissements finis,

on voit que la famille des fonctions gn est une famille équicontinue à valeurs

dans R. Ceci implique via le théorème d'Ascoli que si on voit les gn à

valeurs dans le compact [—oo, +oo] on peut en extraire une sous-suite qui

converge uniformément sur tout compact vers g à valeurs dans [—oo, +oo].

Remarque. Le principe de renormalisation sera utilisé plusieurs fois
dans la suite sans que nous donnions toutes les étapes, comme nous les avons
données ici.
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Énonçons le théorème principal :

THÉORÈME 7. Soit une suite fn de fonctions de H(U). On suppose

que pour un point p, la suite des fn(p) tend vers l'infini. Alors on peut
renormaliser en p la suite des fn en une suite gn telle qu'une suite extraite
tend uniformément sur tout compact de R.m vers une fonction affine non
constante.

COROLLAIRE 8. Soit f une fonction harmonique entière non constante.
Alors il existe une suite de positifs An et une suite d'éléments B„ de

telles que f(Anz Bn) tend uniformément sur tout compact vers une fonction
affine non constante.

Preuve du corollaire. Comme / est non constante, on peut trouver un

point p tel que f(p) soit non nul. On applique alors le théorème à la suite

fn(z) :—f(p + nz).

Remarque. Dans le cas où / est la partie réelle d'un polynôme
holomorphe, il est facile de voir directement l'existence des An et des Bn.

On peut aussi vérifier dans le cas général qu'on peut choisir la suite des An

bornée.

Preuve du théorème. La preuve du théorème va se faire en deux temps:
On prouve d'abord que la suite renormalisée gn tend après extraction vers g
à valeurs finies. L'ellipticité du laplacien permet d'en déduire immédiatement

que g est harmonique avec g < 1 et g(0) — 1. Cette dernière égalité montre

que g est non constante. On exploite ensuite la condition g < 1 pour conclure.

La finitude de g se déduit immédiatement du lemme suivant:

LEMME 9. Soit gn une suite de fonctions de H(U) qui tend uniformément

sur tout compact vers g à valeurs dans [—oo, +oo] • Alors si g vaut -f-oo

ou — oo en un point, elle va être égale à cette valeur partout. De plus g est

alors identiquement nulle.

Preuve. On utilise les inégalités de Harnack (conséquences de la formule

intégrale de Poisson) dont voici un énoncé: Étant donné une boule ouverte
de rayon 2R et de centre p, il existe une constante A strictement positive
telle que pour toute fonction harmonique / positive dans cette boule et pour
tout x et y dans la boule de centre p et de rayon R, on ait: Af(x') < f(y)
(voir [1]).
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Revenons au lemme et supposons par exemple g(p) — +00. Alors par

convergence uniforme, les gn seront positives dans un voisinage de p pour n
assez grand. On va donc avoir pour x dans un voisinage de p : g„(x) > Agn(p).
Ceci implique que gn tend vers +00 dans un voisinage de p. Par convergence
uniforme, l'ensemble des points x où g„(x) tend vers -foo est fermé. La
connexité de U permet de conclure que gn tend partout vers +00. Plaçons

nous alors dans cette situation et fixons p dans U. Les inégalités de Harnack

nous montrent que la suite des vn(x) := (1 fcn)gn(x) avec cn gn(p) est

une suite bornée dans un voisinage de p. Par normalité, on peut donc en
extraire une sous-suite qui converge dans un voisinage vers une fonction qui
sera strictement positive toujours d'après Harnack. Pour montrer que les gn(p)
tendent vers zéro, on écrit: gn(p) — cn\v'n(p)|s(cnvn(p)) et on utilise le fait que
xs(x) tend vers 0 quand s(x) tend vers l'infini.

Passons à la seconde partie de la preuve. Par passage à la limite et

ellipticité, on a maintenant une fonction limite g harmonique telle que g < 1.

Cette partie est similaire à la preuve donnée dans [3]. On remarque que

pour g harmonique, le laplacien de lnfcosh#) vaut soit g On
(cosh g(x)Y

en déduit que c|x|2 — ln(cosh$) est sous-harmonique en prenant c — 1/2m.
De ce fait si on note M(F,r) l'intégrale d'une fonction F sur la sphère de

centre 0 par rapport à la mesure p standard de masse un sur la sphère,

on a d'abord M(lncosh$, r) < cr2 puis en tenant compte de la relation

|x| < (lncoshx) -f- d avec d — ln2, on déduit: M(\g\,r) < cr2 F d.
Il est alors classique d'en déduire que g est un polynôme de degré au

plus deux. La méthode consiste à développer g en série de polynômes
harmoniques homogènes P*. Les relations d'orthogonalité des P-K permettent
d'en déduire: M(gPk,r) — M(P\,r). On fait alors tendre r vers l'infini et on
conclut en tenant compte de l'homogénéité des Pk et de l'inégalité sur les

M(g. r).
La nullité de la partie quadratique de g résulte de la normalité de la

famille des gt(z) g(z F t) pour t Rm. (Pour la normalité, voir la
section suivante et la proposition 12.) En effet on écrit: g(z) — Q(z) F Liz)
avec Q partie quadratique homogène et L partie affine. Si on suppose Q

harmonique non nulle, il existe un vecteur v isotrope qui n'est pas dans

le noyau de la forme bilinéaire B associée. On considère alors la suite des

g(zFnv) — n{B(z,v) FLiv)) FL(z). Comme B(z, v)FL(v) peut prendre toutes
les valeurs réelles, il n'existe pas de sous-suite extraite qui converge. Ceci

termine la preuve du théorème.
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Esquissons une preuve directe du corollaire analogue à la première preuve
de [3]. Soit F harmonique entière non constante. Supposons par exemple
F'(0) non nulle. On choisit alors une suite Rn de telle sorte que pour la suite

Fn(z) — F(Rnz)/n on ait: limFn((ï) — oo. On renonnalise alors cette suite en

une suite gn comme dans la première partie de la preuve du théorème. La

limite g de la suite extraite des gn est harmonique entière non constante. Il est

classique qu'elle s'annule en un point p ([8]) et comme elle est harmonique,

on peut aussi supposer qu'en ce point, le gradient ne s'annule pas (voir lemme

suivant). Supposons par exemple p — 0. On conclut alors en considérant la
suite des ngn(z/n) et en faisant tendre n vers l'infini.

Montrons le lemme dont on a eu besoin.

LEMME 10. Soit f H(U) non identiquement nulle. Alors si f s'annule

en un point p, il existe un point q où f s'annule et tel que f'(q) ne s'annule

pas.

Preuve. D'après le principe du maximum, / prend des valeurs strictement

positives et strictement négatives. Donc l'ensemble des zéros de / qui est par
ailleurs un ensemble analytique réel, est une hypersurface. On se place alors

en un point lisse de cette hypersurface et on applique un lemme classique de

Hopf pour conclure [1].

2.1 Critères de normalité

Ces remarques sont fortement inspirées par l'article de Zalcman [13] qui
traite le cas méromorphe à une variable.

DÉFINITION 11 (voir [12] pour la dimension deux). On dira qu'une famille
E de fonctions de H(U) est normale si de toute suite de E, on peut extraire une
sous-suite convergeant uniformément sur tout compact soit vers une fonction
de H(U) soit vers ~foo soit vers — oo.

On a la proposition suivante qui donne un équivalent du théorème de Marty

pour le cas harmonique (voir [13]).

PROPOSITION 12. Une famille E est normale si et seulement si pour tout

compact K, il existe une constante positive Mk telle que pour tout f E,
on ait: f(x) < Mk pour x K.
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Preuve. La condition de la proposition sur les dérivées au sens du tilde
implique que la famille est équicontinue et le théorème d'Ascoli joint au
lemme 9 montre la normalité de la famille. Dans l'autre direction, supposons

que la condition sur les dérivées ne soit pas remplie. Il existe alors un compact
K et une suite fn de E telle que le sup des fn tende vers l'infini sur K. Si

la suite était normale, quitte à extraire, on pourrait supposer que la suite des

fn tende uniformément sur tout compact de U vers f H(U) ou vers -f-oo

ou vers —oo. Ceci est contradictoire avec ce qui a été dit précédemment sur
les relations entre les limites de fn et de fn.

On a les deux critères généraux de normalité suivant:

THÉORÈME 13. Une famille E dans H(U) est normale si elle satisfait à
l'un des deux critères suivants:

1. On fixe a R. On considère la famille E des f H(U) vérifiant:

pour tout compact K, il existe Mk > 0 tel que \f'(x)\ soit majorée par Mk
sur f~l(a) fl K.

2. On fixe une fonction l sur R à valeurs dans [0, oo] finie en au moins

un point. On considère la famille E des f H(U) vérifiant: \f'\ < lof.
Preuve. 1. On suppose la famille non normale. Il existe d'après la

proposition précédente, une suite fn dans H(U) et une suite p„ qui tend

vers p dans U et telle que fn(pn) tende vers l'infini. Le lemme de

renormalisation permet de renormaliser fn en gn au point p. Pour ce qui suit,

nous avons simplement besoin de savoir que la suite gn (modulo extraction)

converge vers g harmonique entière et non constante. En utilisant la relation :

g'niz) ~ anf'n(anz + bn), pour z KO, fl(a) on a: \g'n(z)\ < anMK pour n

assez grand. On en déduit que g' s'annule sur g-1 (a), ce qui est contradictoire

avec le lemme précèdent.

2. On choisit b tel que 1(b) soit fini et on applique le 1. avec les Mk — 1(b).

2.2 Fonctions de Brody

En s'inspirant du cas méromorphe, on dira que / entière harmonique est

une fonction de Brody si elle vérifie f < M pour un certain M > 0. La

preuve du théorème précédent montre qu'une fonction harmonique de Brody
est en fait une fonction affine. Nous allons donner un théorème caractérisant
de manière plus intrinsèque les fonctions de Brody et qui a un analogue dans

le cas méromorphe.
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THÉORÈME 14. 1. Une fonction harmonique entière f est de Brody (i.e.
affine) si et seulement si la famille des fonctions fi(x) : — f(x h t) indexée par
t Rm forme une famille normale.

2. Soit l une fonction de R dans [0, +oo] finie en au moins un point.
Alors les fonctions harmoniques f sur R.m vérifiant \f'\ < 1(f) sont de Brody
(i.e. affines).

Preuve. 1. Supposons la famille f normale. Alors d'après la proposition

12, il existe M > 0 tel que pour tout t, on a: fi(0) < M. Ce qui signifie

que / < M et donc / est affine. La réciproque est claire dans notre situation
où on sait que les fonctions de Brody sont affines. Mais on peut aussi donner

un argument direct en remarquant simplement que si / < M, alors il en est
de même de ses translatées qui forment une sous-famille de la famille normale
des g H(Rm) telles que g < M.

2. La famille E des / harmoniques entières telles que |/' | < 1(f) est une
famille normale d'après le théorème précédent. On remarque ensuite que si

f E, il en est de même des fi. La famille des fi est normale et donc / est

affine d'après le 1.

3. Lien avec la géométrie des tubes

DÉFINITION 15. On dira que Q est un tube (ou domaine tube) de C" s'il
s'écrit sous la forme u A iR" avec uj domaine de R".

Citons à propos des tubes un théorème classique de S. Bochner [8],

THÉORÈME 16. L'enveloppe d'holomorphie d'un domaine tube coïncide

avec son enveloppe convexe.

De ce théorème, on déduit aisément:

COROLLAIRE 17. Pour un domaine tube Q pseudo-convexe, on a

équivalence entre :
1. Q est biholomorphe à un domaine borné.

2. Q est hyperbolique (au sens de Kobayashi).
3. uj ne contient pas de droite affine.
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Preuve du corollaire. Par le théorème de Bochner, Q est convexe. Le 3.

signifie que Q ne contient pas de droite affine complexe. L'équivalence de 1.

et 3. est bien connue dans ce cas ([2]). Elle implique évidemment l'équivalence
commune avec 2.

On utilise ce résultat pour montrer:

PROPOSITION 18. Un tube Q est biholomorphe à un domaine borné si et

seulement si l'enveloppe convexe de u ne contient pas de droite affine.

Preuve. La condition suffisante est évidente d'après le corollaire précédent.

Montrons que la condition est nécessaire et supposons que l'enveloppe
convexe uf de w contienne une droite L. Alors par chaque point de

u/ il passe une droite parallèle à L et contenue dans <J. On peut
alors choisir x et y distincts dans uj et contenus dans une droite D
de <J. Ceci va impliquer que pour toute fonction holomorphe bornée

/ sur UJ, on a: f(x) f(y), et donc Q ne peut être biholomorphe
à un domaine borné. L'assertion sur / s'obtient comme suit: On peut

supposer / à valeurs dans le disque unité. Cette fonction va se

prolonger en une fonction holomorphe F de l'enveloppe d'holomorphie (qui
est aussi l'enveloppe convexe) toujours à valeurs dans le disque unité.

Par Liouville, cette fonction va être constante sur la droite complexe
D -j~ iD', où D' est la droite vectorielle parallèle à D. En particulier

f(x) ^f(y).

Remarque. La preuve précédente montre en fait que pour un domaine

tube, on a l'équivalence entre: Le domaine est biholomorphe à un domaine

borné, la pseudo-métrique de Carathéodory est une métrique, l'enveloppe
convexe de uj ne contient pas de droite affine.

Notre intérêt concernant l'hyperbolicité va donc se porter sur les domaines
tubes non pseudo-convexes dont l'enveloppe convexe contient des droites
affines. On introduit les définitions suivantes:

DÉFINITION 19.

1. Une application harmonique (voir par exemple [5]) d'un domaine U
de R" à valeurs dans R,!1 est une application dont les fonctions coordonnées

sont harmoniques.
2. Dans le cas où U — R", on parlera d'application harmonique entière.
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3. Un domaine V de R"' est dit n-Brody-hyperbolique (par rapport aux

applications harmoniques) s'il n'existe pas d'application harmonique entière

non constante de R" à valeurs dans V. Dans la suite, nous serons surtout
intéressés par le cas n — 2.

Un domaine V de R*1 est dit n-hyperbolique (par rapport aux applications
harmoniques) si pour tout a dans V, il existe un voisinage W de a et une
constante M > 0 tels que pour toute application harmonique / de la boule
unité de R" à valeurs dans V et telle que /(0) W, on ait: |/'(0)| < M.

On rappelle les notions classiques [10] du cas holomorphe avec lesquelles

on va faire le lien:

3Une variété complexe est dite Brody-hyperbolique s'il n'existe pas
d'application holomorphe entière non constante à valeurs dans cette variété.

Une variété complexe V est dite Kobayashi-hyperbolique (ou hyperbolique)
si pour tout a dans V, il existe un voisinage W de a et une constante M > 0
tels que pour toute application holomorphe du disque unité à valeurs dans V

et telle que /(0) W, on ait: |/'(0)| < M. (On pourra mettre une métrique
Riemannienne sur V pour donner un sens précis à cette notion.) Comme nous
n'avons pas trouvé de référence précise dans la littérature, nous donnons en

annexe finale une preuve de l'équivalence de cette définition de l'hyperbolicité
avec la définition standard.

On remarquera que hyperbolique implique (aussi bien dans les cas

harmonique que complexe) Brody-hyperbolique. En effet si / est une application
entière non constante à valeurs dans V on se place en a tel que f(a) ne soit

pas nul et on considère la suite des f(a+nx) pour montrer la non hyperbolicité
de V.

On fait maintenant le lien entre les notions réelles et complexes. On va

supposer n 2.

Un lien est donné par la proposition suivante :

PROPOSITION 20. Un tube Q est Kobayashi-hyperbolique (resp. Brody-

hyperbolique) si et seulement si u est 2-hyperbolique (resp. 2-Brody
hyperbolique).

Preuve. On utilise les relations classiques entre les fonctions holomorphes
et leur partie réelle harmonique.

Le cas qui va nous intéresser est celui des domaines tubes de C2 et

qui d'après la proposition précédente correspond aux valeurs m n — 2.
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Toutefois certains résultats seront donnés en général et d'autres résultats pour
m quelconque et n — 2.

Pour un domaine uj dans R2, on a deux cas : Celui où l'enveloppe convexe
n'est pas tout R2 et celui où cette enveloppe est tout R2. Nous allons d'abord
traiter le premier cas en donnant un résultat complet. On remarquera qu'un
tel domaine est contenu dans un demi-plan et sans nuire à la généralité, on

supposera par la suite que uj est contenu dans le demi-plan {(x.j) | y > 0}.
On dira alors qu'un point a — (01,02) uj est borné s'il n'existe pas de suite
b-K qui tende vers 02 et telle que chaque segment [~k.k] x soit contenu
dans a-'.

THÉORÈME 21. Soit u; un domaine de R2 d'enveloppe convexe différente
de R2. Alors:

1. uj est n-Brody hyperbolique si et seulement s'il ne contient pas de

droite affine.
2. uj est n-hyperbolique si et seulement si tout point a de uj est borné.

Remarque. On voit que dans ce cas, n ne joue aucun rôle.

COROLLAIRE 22. Il existe des tubes de C2 qui sont hyperboliques et dont

l'enveloppe d'holomorphie n'est pas Brody-hyperbolique.
Il existe des tubes Brody-hyperboliques et non hyperboliques.

Les exemples du corollaire sont faciles à construire à partir du théorème.

On va donc prouver le théorème.

Preuve. 1. Il est clair que Q est non «-Brody-hyperbolique si uj contient

une droite. Pour la réciproque, on suppose / — ififfii) harmonique entière à

valeurs dans uj. D'après le théorème de Liouville, fi est constante. Donc si /
est non constante, son image est une droite. Par conséquent, si uj ne contient

pas de droite, il est «-Brody hyperbolique.
2. On suppose que uj contienne un point a — («1,02) non borné. Il

existe alors une suite bk tendant vers «2 telle que l'image de ] — 1,1[
par les applications: t m- (lct.bk) soit contenue dans uj. De ce fait on voit
immédiatement que uj est non 1-hyperbolique et aussi non «-hyperbolique

pour tout «.

Supposons maintenant que uj soit non «-hyperbolique. Il existe alors une
suite fk — (uk-. Vk) d'applications harmoniques de la boule unité de R" dans

uj telles que /*(0) tend vers a et |//(0)| tend vers l'infini. La suite Vk de
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fonctions harmoniques positives est une suite normale. Quitte à extraire, on

peut supposer que cette suite tend vers une fonction harmonique v (elle ne

peut tendre vers l'infini). La suite uk est alors nécessairement non normale et

on peut la renormaliser après extraction en une suite Uk(x) uk(ckx~\~dk) qui
tend uniformément sur tout compact vers une fonction affine non constante.

La suite des fonctions vk(ckx ~tclk) tend vers 02 car ck et dk tendent vers 0.

Il est alors clair que le point a est non borné.

On va maintenant traiter le second cas plus difficile à savoir celui où

l'enveloppe convexe de uj est tout R2. Ceci permettra d'avoir des domaines

tubes hyperboliques dont l'enveloppe d'holomorphie est tout C2. On énoncera

d'abord un lemme de renormalisation pour les applications harmoniques

proche de celui de [3] concernant les fonctions holomorphes. Étant donné

une application harmonique /, on note / la somme des fi où on note f les

fonctions coordonnées de /.

PROPOSITION 23. Soit fk une suite d'applications harmoniques définies

sur un domaine U de R" à valeurs dans Rm. On suppose qu 'il existe p U
et une suite pk qui tend vers p telle que la suite des fk(pk) tende vers l'infini.
Alors on peut renormaliser la suite des fk en une suite Fk(x) fk(ckx~tdk)
avec des ck > 0 et tendant vers 0 et des dk tendant vers p telle que :

La suite des Fk (après extraction) tend uniformément sur tout compact
de R" vers une application F dont les coordonnées sont des fonctions affines

ou des fonctions identiquement égales à -foo ou ~oo. De plus une au moins
des coordonnées est une fonction affine non constante.

Preuve. On raisonne à partir du lemme général de renormalisation comme

pour les fonctions harmoniques. On utilise Ascoli pour montrer qu'on peut
extraire des Fk une sous-suite encore notée Fk qui tend uniformément sur
tout compact vers une fonction F à valeurs dans [—oo, +oo]m. De plus la
limite les Fk(0) vaut 1 et la limite supérieure des Fk(a) est plus petite que 1

pour tout a. On déduit le résultat en raisonnant composante par composante.
On notera que quitte à extraire, on peut supposer que pour une des fonctions
coordonnées gk de Fk, on aura une limite gk{0) strictement positive, ce qui
fournira une fonction limite affine non constante.

On donne un corollaire de la proposition 23 concernant les domaines u,<

de dimension deux.
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COROLLAIRE 24. A. Un domaine ut dans R2 non n-hyperbolique a au
moins une des deux propriétés suivante:

1. Son adhérence contient une droite affine.
2. Pour tout t R il existe une suite (.Xk>yù telle que x* tend vers +oo

et yy vers t ou une propriété analogue en remplaçant -j-oo par — oo ou en

permutant les coordonnées.

B. Il existe des tubes de C2 hyperboliques dont l'enveloppe d'holomorphie
est tout C2.

Preuve. A. Si uj est non «-hyperbolique, alors on peut trouver une suite

d'applications vérifiant les hypothèses de la proposition 23 à l'origine de

la boule unité et à valeurs dans ut. On renormalise alors cette suite fi et on
obtient une des propriétés 1. ou 2.

B. Il est clair qu'il existe des domaines dans R2 dont l'enveloppe convexe

est tout R2 et qui ne satisfont à aucune des propriétés 1. et 2. (prendre

par exemple un voisinage effilé de trois demi-droites convenablement choisies

partant de l'origine). Le théorème de Bochner permet de conclure.

Remarque. Un domaine de R2 peut avoir la propriété 1. et toutefois
être «-hyperbolique. Un exemple de tel domaine est donné par

{Cly) | 0 < y < exp(—|x|)}.

Il est hyperbolique en vertu du théorème 21 et clairement la droite d'équation

y — 0 est adhérente au domaine.

3.1 Remarques sur les domaines non «-Brody-hyperboliques

Nous nous plaçons dans R2. On fait ici quelques remarques sur les images
dans R2 des applications harmoniques entières. Le cas dégénéré fait l'objet
de la proposition suivante (on se place dans un cadre local).

PROPOSITION 25. Soit F une application harmonique d'un domaine U
de R" à valeurs dans R2. On suppose F de rang au plus un en chaque point
(si n — 2, ceci signifie que le jacobien est identiquement nul). Alors F(U)
est contenue dans une droite.

Preuve. Si F est de rang nul partout, alors F(U) est un point. On suppose
donc F de rang un en un point a et donc de rang un dans un voisinage
de a. Le théorème du rang implique alors qu'il existe une fonction régulière
M définie sur un ouvert non vide de R et telle qu'on ait une équation locale :
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u — M o v avec u et v fonctions coordonnées de F. Un calcul direct montre

que: Au — M" o v (U |2 -f (M'o v)Av. En tenant compte de Fharmonicité de u
et v et du fait que v est non constante, on en déduit que M" est localement
nulle. Donc il existe deux réels c et d tels que : u — cv 4- cl au voisinage
de a. L'analycité de u et v permet d'étendre cette relation à tout U.

On est donc amené à étudier le cas des applications harmoniques entières

non dégénérées dont l'image est alors d'intérieur non vide. Nous nous
contenterons de quelques remarques.

1. Pour une fonction entière holomorphe non dégénérée (c'est à dire non
constante) le théorème de Picard nous dit que l'image est le plan ou le

plan privé d'un point. Ceci est loin d'être vrai pour les applications entières

harmoniques. Dans [5] un exemple d'une application entière harmonique non
dégénérée de R2 dans lui-même est donné telles que les boules contenues
dans l'image aient un rayon borné. Cet exemple servait à montrer l'inexistence
d'une constante de Bloch. Nous donnons ici un exemple similaire: On vérifie
aisément que l'ensemble W :— {(v.y) j 0 < xy < 1} U {(0,0)} est l'image
de C par l'application harmonique: zh(!lez.Me~~z).

Pour cet exemple, outre l'inexistence de boule de rayon arbitrairement

grand qui y soit contenue, on notera qu'il ne contient pas de droite mais que
deux droites y sont adhérentes. A partir de là, il est facile de construire des

exemples de domaines non 2-Brody hyperboliques qui ne contiennent pas de

droite et qui sont de ce fait 1-Brody hyperboliques.
La proposition suivante caractérise, à transformation affine près, les

applications harmoniques entières qui sont holomorphes.

PROPOSITION 26. Une application harmonique H entière de R2 dans

lui-même dont le jacobien est positif ou nul en tout point est à transformation
affine près (sur l'ensemble image) une fonction holomorphe entière.

On a alors le corollaire:

COROLLAIRE 27. Une application harmonique H entière de R2 dans

lui-même dont le jacobien ne s'annule pas, est à transformation affine près
(sur l'ensemble image) une fonction holomorphe entière.

Preuve de la proposition. Soient u et v les coordonnées de H. On pourra
écrire : u — §£/ et v — Mg avec / et g des fonctions entières. Un calcul direct
montre que le jacobien de H est donné par xs(f' g'). En éliminant le cas g
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f'constant qui est trivial, la positivité de ce jacobien signifie que u( —) est positif
9*

f'là où la fonction méromorphe — est définie. Par une forme du théorème de
9'

f1
Liouville, ceci implique que — est constant Des considérations élémentaires

9'
permettent de conclure.

4. Applications à valeurs dans un tore
OU UN GROUPE DE LIE

Dans ce chapitre, on considère des applications solutions d'une équation

aux dérivées partielles elliptique à valeurs dans un tore. Les résultats de

renormalisation dans le cas elliptique sont plus généraux mais ne permettent

pas d'obtenir un résultat aussi fort que pour le laplacien. Pour les opérateurs

elliptiques, on renvoie au livre de Hörmander [9].

Dans la suite, on considère un polynôme homogène réel P sur R*1 auquel

on associe naturellement un opérateur différentiel P(d). On va supposer que P
ne s'annule qu'en 0 sur R*. L'opérateur P(d) est alors elliptique. Rappelons

une propriété essentielle:

Soit U un domaine de Rw. Toute fonction / suffisamment régulière sur
V et solution de P(d)f ~ 0 est analytique réelle. On appellera P-fonction
une telle fonction.

On a la propriété suivante: Si une suite de P-fonctions définies sur U

converge uniformément sur tout compact vers une fonction /, alors / aussi

est une P-fonction. De plus les dérivées convergent aussi uniformément sur
tout compact.

Introduisons les définitions suivantes:

1. Une application de U dans R* est une P-application si ses coordonnées

sont des P-fonctions.

2. Une application F de U dans Tn :~ R"/'Z" est une P-application si

elle s'écrit sous la forme : p o G où on note p la projection canonique de

R« sur Tn et G une P-application. Remarquons que G est définie à une

constante additive près. De ce fait G', qu'on notera F' dans la suite, est bien
définie. C'est aussi une P-application.

On a le théorème suivant de renormalisation.



APPLICATIONS HARMONIQUES ET HYPERBOLIQTÉ DE DOMAINES TUBES 363

THÉORÈME 28. Soit fi une suite de P-applications de U à valeurs

dans Tn. On suppose que pour un point p de U, il existe une suite p* tendant

vers p et telle que \ffipk)\ tend vers l'infini. Alors on a une renormalisation
d'une sous-suite des fi en une fonction affine non constante (notons que cette

dernière notion a un sens). La renormalisation signifie qu'il existe une suite
de nombres positifs a* tendant vers 0 et une suite de vecteurs tendant

vers p et telles qu'une suite extraite des fifa^x -j-bf) converge sur tout compact
de R'" vers une fonction affine.

Le théorème implique un corollaire analogue à celui des fonctions
harmoniques concernant les F-applications entières. Le corollaire suivant qui
se déduit immédiatement du théorème, fait le lien avec la renormalisation à

constante près.

COROLLAIRE 29. Soit fi une suite de P-applications de U à valeurs
dans R". On suppose les mêmes hypothèses que dans le théorème pour un

point p. Alors il existe une suite de vecteurs q de R", telle qu'on puisse
renormaliser une sous-suite des fi+c* en une application affine non constante.

Remarques. Avant de démontrer le théorème, faisons quelques remarques :

1. Le théorème similaire de M. Green concernant les applications
holomorphes prenant leurs valeurs dans un tore complexe est bien connu. En fait,
il est facile de retrouver ce résultat à partir de notre théorème en considérant

une fonction holomorphe comme un couple de fonctions harmoniques vérifiant
les relations de Cauchy-Riemann.

2. La notion de renormalisation à constante près concernant le cas

holomorphe à une variable est à la base du formalisme de Minda (voir le livre [12]
et l'article [11]). Cette renormalisation est essentiellement équivalente à la
renormalisation des fonctions holomorphes à valeurs dans un tore complexe.

Il nous semble important de remarquer que dans le cas particulier des

fonctions harmoniques les résultats de renormalisation obtenus par cette

méthode sont plus faibles que ceux démontrés avant pour le laplacien. En

général une P -fonction entière à valeurs dans R n'est pas renormalisable

en une fonction affine non constante comme le montre l'exemple simple des

P -fonctions que sont les polynômes à une variable.

Preuve du théorème. Pour une P-application F, on considère jF'j qui

joue le même rôle joué avant par /



364 J.-J. LOEB

Le lemme de renormalisation nous dit qu'il existe deux suites comme dans

le théorème telles que pour la suite des sk(x) : — fk(akx-tbk), on a: la suite des

s'k(x) tend uniformément sur tout compact vers une limite plus petite que 1

en norme et telle que les 5^.(0) valent 1 en norme. Un argument de normalité
valable dans le cas elliptique permet d'affirmer qu'une sous-suite de s'k a une
limite. Cette limite t est une /'-application bornée. Le théorème de Liouville
(voir lemme suivant) nous dit que t est constante. Pour conclure, on peut
utiliser le théorème classique d'intégration des limites de suites de fonctions

jointe à la compacité de Tn.

LEMME 30. Une P-fonction f bornée est constante.

Preuve. Par ellipticité de P(d), la transformée de Fourier de la distribution
tempérée / est à support en l'origine, donc combinaison de masse de Dirac
à l'origine et de ses dérivées en l'origine. Par conséquent / est un polynôme
et comme / est bornée, c'est une constante.

4.1 Le cas des groupes de Lie complexes

Les idées précédentes peuvent aussi s'appliquer aux groupes de Lie
complexes. Nous ne traiterons pas ce sujet dans toute sa généralité. On fait
d'abord quelques rappels:

Soit G un groupe de Lie complexe (le lecteur peu familier avec cette

notion pourra se placer dans la situation G — Gl(n, C)). Pour une application
holomorphe / d'un domaine U de C à valeurs dans G, on pose: Df(z) :•=

f{z)~"'lf(z) L'application Df est holomorphe à valeurs dans l'espace tangent
en l'identité (algèbre de Lie), qui est isomorphe à un C". Si Df(z) est

constante, alors f(z') est de la forme gexp(zX) pour un certain g G et un
certain X dans l'algèbre de Lie de G. Ces dernières applications généralisent
les applications affines.

On a le théorème suivant:

THÉORÈME 31. Soit une suite d'applications holomorphes de U
dans G. On suppose qu'il existe p U tel que la norme de Dfkip) tende

vers l'infini. Alors il existe une renormalisation des f à constante près (au
sens des groupes) en une fonction entière de la forme g exp(zX) avec X
non nul. De manière explicite: Il existe une suite gk dans G, une suite de

nombres positifs ak tendant vers 0 et une suite bk d'éléments de U tendant

vers p telles que la suite de fonctions gkfk(akZ~i~ bk) tende uniformément vers

g exp(zX) sur tout compact de C.
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Preuve. La preuve utilise les idées précédentes. On applique le lemme

général de renormalisation aux \Dfk\. Ceci permet d'obtenir une suite
renormalisée de fonctions Uk(z) :=fk(flkZ + bk). On remplace ensuite la suite des u-K

par une suite Uk(z) 9kuk(z) avec les 9k choisis de telle sorte que Uk(p) ~ id.
On a DUk — Dur. La suite des Uk est alors normale et elle tend après
extraction vers une application holomorphe entière non constante F à valeurs

dans G. La fonction F est de Brody, c'est à dire qu'elle vérifie \DF(z)\ < 1.

Le théorème de Liouville classique nous dit alors que DF est constante. Le
théorème se déduit des remarques de début concernant les groupes de Lie.

Remarques.
1. Comme cas particulier du théorème, on a la renormalisation à constante

près d'applications holomorphes entières non constantes.

2. On a le même type de résultats si on considère des applications
holomorphes à valeurs dans un quotient de G par un groupe discret cocompact.
Toutefois la situation C* — C/Z étudiée par Berteloot et Duval est en relation

avec la renormalisation à constante réelle près. Dans le cas d'un groupe de

Lie complexe, ceci signifie une renormalisation à une constante près variant
dans une forme réelle. Une telle renormalisation pourrait être utilisée pour
l'étude de tubes généralisés, i.e. des domaines invariants par l'action de la
forme réelle (voir [6]).

3. On peut généraliser la notion de F-application pour un groupe de Lie
réel G de la manière suivante : Une application / d'un domaine U de Rrt à

valeurs dans G est une P-application si P(Df) — 0. On peut alors développer
une théorie similaire à celle du cas Euclidien. Nous ignorons toutefois la portée

que peut avoir cette notion.

5. Annexe sur l'hyperbolicité

On note Dr le disque ouvert centré à l'origine de rayon r > 0.

PROPOSITION 32. Soit X une variété complexe qu'on munit d'une métrique
Riemannienne. Alors X est hyperbolique au sens de Kobayashi si et seulement

si on a la propriété (P) suivante:
Pour tout point a de X, il existe un voisinage V et une constante M > 0

tels que pour toute application holomorphe f : D\ —¥ X, vérifiant /(0) V,

on ait: |/'(0)| < M.
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Preuve. On suppose d'abord X hyperbolique. Pour a dans X on choisit
une boule fermée B pour la métrique de Kobayashi centrée en a et de

rayon 2r > 0 choisi assez petit pour que cette boule soit compacte. (Ceci est

possible car la métrique de Kobayashi induit la topologie [10].) On peut alors

choisir pour V la boule fermée de centre a et de rayon r pour la métrique
de Kobayashi. En effet d'après la propriété de contraction de la métrique
de Kobayashi, il existe r' > 0 tel que pour toute application holomorphe

f.D\ —> X vérifiant /(0) V, on ait: f(Dr0 c B. Comme B est compact,
un argument de normalité permet de montrer l'existence de M.

La réciproque est plus difficile. On suppose la propriété (P) vérifiée pour X.
En chaque point p, on définit l'indicatrice Kp de Kobayashi comme étant
le sous-ensemble de l'espace tangent Tp formé des éléments rf'{0) avec

0 < r < 1 avec / application holomorphe de D\ dans X vérifiant /(0) p.
A cette indicatrice, on associe de manière classique une jauge jp définie sur Tp

par: jp{v) mf{/ > 0 | vft Kp}. La propriété (P) signifie alors simplement

que pour tout point a, il existe un voisinage V de a et c > 0 tel que pour
tout p V et x Tp, on a: jp(x) > c\x\. On conclut en utilisant le fait que la

métrique de Kobayashi est la métrique intégrée par rapport aux jp (voir [10]

pour une preuve de ce théorème assez difficile).
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