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A UNIQUE DECOMPOSITION THEOREM
FOR TIGHT CONTACT 3-MANIFOLDS

by Fan DING and Hansjorg GEIGES

ABSTRACT. It has been shown by V. Colin that every tight contact 3 -manifold can
be written as a comnected sum of prime manifolds. Here we prove that the summands
in this decomposition are unique up to order and contactomorphism.

1. INTRCDUCTION

All 3-manifolds in this note are understood to be smooth and oriented.
Except for the more ‘local’ statements in Sections 2 and 3, we assume in
addition that all manifolds are closed and connected. A 3-manifold is called
non-trivial if it is not diffeomorphic to $*. A non-trivial 3-manifold P is said
to be prime if in every connected sum decomposition P = Py # P one of
the summands Py, P; is §% . 1t is known that every non-trivial 3-manifold M
admits a prime decomposition, 1.e., M can be written as a connected sum of
finitely many prime manifolds. The main step in the proof of this fact is due to
H. Kneser [11], cf. [8]. Moreover, as shown by J. Milnor [12], the summands
in this prime decomposition are unique up to order and diffeomorphism.

The purpose of the present note 1s to prove the analogous result for tight
contact 3-manifolds; see the following section for a summary of the contact
geometric notions used in this paper. The basis for the argument is a connected
sum construction for such manifolds, due to V. Colin [1] and reproved by
K. Honda [9]. Given a fixed connected sum decomposition M = My # My of
a 3-manifold M, Colin’s result says that tight contact structures £; on M;,
i=0,1, give rise to a tight contact structure £, # £; on M, uniquely defined
up to isotopy. Conversely, for any tight contact structure £ on M there are
— up to isotopy — unique tight contact structures &; on M;, i = 0,1, such
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that &y # £ 1s the given contact structure £. The prime decomposition theorem
for tight contact 3-manifolds is an immediate consequence.

Although Colin’s result goes a long way, it is not quite strong enough to
prove the unique decomposition theorem for tight contact 3-manifolds. This
is due to the fact that the system of 2-spheres in a given manifold M defining
the prime decomposition of M is not, in general, unique up to isotopy, as can
be seen by a simple example. Take two lens spaces P, P/ with fundamental
groups Z,, Z,, where p and p’ are distinct prime numbers (or any other
pair of prime 3-manifolds with distinct non-trivial fundamental groups). lLet
P # P’ be their connected sum and S < P # P’ the 2-sphere defining the
prime decomposition. Now form the connected sum with a further copy of P
by removing a 3-disc each from P # P’ and P and identifying boundaries.
The diffeomorphism type of the resulting 3-manifold P # P # P/ does not
depend on the choice of these discs. In particular, we may assume that the
3-disc in P # P’ was chosen in the complement of the separating 2-sphere S.
Up to 1sotopy there are two such choices. Correspondingly, there are two pairs
of 2-spheres S, §; and S. S; in P# P # P defining a prime decomposition.
The complement of S; is (P\D*)LiI{P# P"\D?) for both i = 1 or 2. But the
complement of § is either (P # P\D*}U(P'\D?} or (P\D*}U(P' # P\D?).
So the two systems of 2-spheres SiiS5; and SiiS> cannot be isotopic.

The argument for the unique decomposition of tight contact 3-manifolds
given here closely follows the varmant of Milnor’s argument given in
J. Hempel’s book [8].

2. BASIC NOTIONS COF CONTACT GEOMETRY

A contact structure £ on a 3-manifold M is a totally non-integrable
2-plane field. Our contact structures are understood to be cooriented and
positive. This means that they can be defined as £ = kera with a globally
defined 1-form « satisfying the non-integrability condition that the 3-form
& A do be a positive volume form.

A diffeomorphism f: (M,£) -~ (M’,£") between contact manifolds is
said to be a contactomorphism if its differential maps £ to £ (preserving
coorientations).

A contact structure £ on a 3-manifold M is called overtwisted if there is
an embedded 2-disc A C M tangent to £ along the boundary, that is, with
T,A = ¢, for all p € JA (not just T,(JA) C &, ). A disc with this property
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1s referred to as an evertwisted disc. A contact structure £ 1s called fight if
it is not overtwisted.

A fundamental result of Ya. Eliashberg [2] says that the classification
of overtwisted contact structures reduces to a homotopical problem: every
homotopy class of coonented 2-plane fields contains an overtwisted contact
structure, and any two overtwisted contact structures that are homotopic
as 2-plane fields are also homotopic as overtwisted contact structures (and
hence, according to Gray stability, isotopic). The classification of tight contact
structures, on the other hand, is a difficult problem having deep connections
with 3-manifold topology. For instance, the standard contact structure

£y = ker(xdy — ydx + zdt — tdz)

on & ¢ R* is the unique tight contact structure, up to isotopy, on §°,
while homotopy classes of 2-plane fields on §° (and hence isotopy classes
of overtwisted contact structures) are in one-to-one correspondence with
73(S2) =2 7. We also write £, for the standard contact structure

ker(dz + xdy — ydx)

on R?: the contact manifold (Rspgsg) 1s in fact contactomorphic to the
complement of a point in (53;551).

(Given an embedded oriented surface S i1n a contact 3-manifold (M, £),
the intersections 7,8 N £,, p € §, define an oriented 1-dimensional foliation
on 5 with singularities at the points p where the tangent plane 7,8 coincides
with £,. This is called the characteristic foliation of § and is denoted by S¢.
As shown by E. Giroux [7], the characteristic foliation S¢ determines the
germ of £ near S. This allows one to glue contact manifolds along surfaces
with diffeomorphic characteristic foliations.

The following fundamental theorem of Eliashberg lies behind all uniqueness
statements in the results of Colin.

THEOREM 1 ([3], Theorem 2.1.3). Two tight contact structures on the
3-disc D’ which induce the same characteristic foliation on the boundary
aD? are isotopic rel boundary. [

A surface §C (M.£) is called convex if there is a vector field transverse
to § whose flow preserves £. It turns out that the characteristic foliation S
being of Morse-Smale type is sufficient for such a flow to exist. This condition
can always be guaranteed by a C™-small perturbation of any given surface S.
For more detailed introductions to contact geometry see [4], [10] and [5].
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3. COLIN’S RESULTS

In this section we collect the results from [1] that we shall need. Given
an embedding f: S — (M,£), we write Sp-¢ for the induced characteristic
foliation on §, that is, the pull-back to § via f of the characteristic foliation

().

LEvMA 2 ([1], Lemme 5). Let (M.&) be a tight contact 3 -manifold.

(a) Given an embedding f: §* — M, there is an orientation-preserving
embedding g: D’ — R® such that Simfn = SJ%,eg. The tight contact structure
g*¢, on D is uniquely determined, up to isotopy rel boundary, by the
characteristic foliation Six ‘.

(b) Given embeddings fo.fi: S* — M, there is a tight contact structure
77 on S§? x [0,1] such that the characteristic foliation (S? % {i})77 coincides

with Sfxg, i = 0,1. This contact structure 11 is unique up to isotopy rel

on the boundary.

boundary. [

We can now define surgery of index 1 on a given tight contact 3-manifold
(M. £) as follows; this includes the formation of a connected sum.

Equip the 3-disc D® with its standard orientation. Let ¢y, ¢1: D° — M
be embeddings such that ¢y reverses and ¢ preserves orientation, and whose
images B; := ¢;(D%) ¢ M are disjoint. Let 5 be the contact structure
on §? x [0, 1], constructed in the preceding lemma, with the property that
(S% % {ib)y, = (@D%)yz¢. Then set

(M.&") = (M Int(Bo U B). &) Us (S % [0,11,97) ,

where ‘Int” stands for interior, and U5 denotes the obvious gluing along the
boundary.

If M = MyiiM is the disjoint union of two connected tight con-
tact 3-manifolds (My,&), (M. &), and B; € M;, i = 0,1, then M’ is
the connected sum My # M; of My and M, and we write & # & for
the contact structure ¢’ in this specific case. We also use the notation
(Mo, &) # (Mi.£&1) for this connected sum of tight contact 3-manifolds.
As 1n the topological case, this connected sum operation is commutative
and associative; these are consequences of the discussion that follows.
From Theorem 1 we deduce that (S3,,§sf) serves as the neutral ele-
ment.
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LeMMA 3 ([1], Corollaire 8). Let (M',£") be a coniact 3-manifold and
fii S s M, t € [0.1], an isotopy of embeddings. If the spheres S; 1= fi(5%),
i = 0,1, are convex with respect io &', and (M'\ So.&") is tight, then so is
M\ §1.8). O

LEMMA 4 ([1], Proposition 9). The manifold (M’ , §") obtained, in the way
described above, via surgery of index 1 on a tight contact 3 -manifold (M.£),
is tight and only depends, up to contactomorphism, on the isofopy class of
the embeddings ¢y, ¢1. U

In particular, with notation as before, the contact structure & # & on
Mo # M is tight and does not depend, up to contactomorphism, on the choice
of embeddings B; C M;.

4. THE UNIQUE DECOMPOSITION THEOREM

We can now formulate the unique decomposition theorem for tight contact
3-manifolds.

THEOREM 5. Every non-trivial tight contact 3-manifold (M,£) is contacto-
morphic to a connected sum

(M, &) # -~ # (M, £

of finitely many prime tight contact 3-manifolds. The summands (M, £),
i=1,...,k, are unique up to order and contactomorphism.

The proof of this theorem requires a few preparations. First of all, we
observe that there is a well-defined procedure for capping off a compact tight
contact 3-manifold whose boundary consists of a collection of 2-spheres.
Indeed, suppose that (M,£) 1s a tight contact 3-mamfold with boundary
IM = Sy LSk, where each S; is diffeomorphic to §% . Choose orientation-
reversing diffeomorphisms f;: dD° — §;. By Lemma 2(a) one finds an
orientation-preserving embedding g;: D* —+ R® such that S%;?E“ = SZE,E.
The tight contact structures 7; = gf&y, i = 1,....k, on D* — each of
them uniquely determined by the characteristic foliation it induces on the
boundary — can then be used to form the closed contact manifold

M, = M.E)Us (D', m)U...U D', m)
where the gluing is defined by the embeddings f:.
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Eliashberg’s theorem entails that we arrive at a contactomorphic manifold
if instead of gluing discs along the §; we first perturb the boundary spheres
into convex spheres S. in the interior of (M. £), cut off the spherical shell
between S; and S/, and then glue discs along the S;. The following is implicit
in Colin’s work [1].

LEMMA 6. The contact manifold (ATL é) is tight.

Proof. It suffices to deal with a gluing (M’,£") 1= (M,£) Us, (D, n0)
along one boundary component of M, which by the above we may assume
to be convex with respect to £. Given an embedded 2-disc A C M/, there is
an isotopy of Sy in M’ to a sphere S disjoint from A. Since (M"\ Sp.&)
is tight, the same is true for (M’ 51,¢’) by Lemma 3. So A cannot be an
overtwisted disc. [

Noftice that for the validity of this argument it is irrelevant whether one
of the constituents of the boundary gluing was a disc.

Given an embedded 2-sphere § ¢ Int(M), we can find a product
neighbourhood §x [~1,1] C M of § = §x {0}. Set My = M\ {Sx(—1,1)).
Again by Theorem 1, the contactomorphism type of (ﬂsgé\) is independent
of the choice of this product neighbourhood; this follows by comparing the
resulting manifolds using two given product neighbourhoods with a third
manifold constructed from a product neighbourhood contained in the first two.
In particular, this justifies our notation (ﬁgjé\).

LEMMA 7. If So and S1 are isotopic 2-spheres in Int (M), then (ﬁgu,é\)

and (Mg, . &) are contactomorphic.

Proof. This is clear if S; 1s isotopic to Sy inside a product neighbourhood
So #(—1,1). The general case follows by breaking up the isotopy into smaller
ones that move the sphere inside a product neighbourhood only. For details
see the proof of [1, Corollaire 8]. L]

Given a connected sum decomposition M = My # M; of a closed,
connected 3-manifold with a tight contact structure £, let § C M be an
embedded sphere defining this connected sum, 1i.e. ﬁg = My i M. The
described constructions imply that

(M, £) = (Mo, £p) # (M1, E|a) .



UNIQUE DECOMPOSITION FOR TIGHT CONTACT 3 -MANIFOLDS 339

So the topological prime decomposition of M also gives us a decomposition of
(M.£) into prime tight contact 3-manifolds. The only remaining issue is the
uniqueness of this decomposition up to contactomorphism of the summands.

A 3-manifold M 1s said to be frreducible 1f every embedded 2-sphere
bounds a 3-disc in M. Clearly, irreducible 3-manifolds (except §°) are prime.
There 1s but one orientable prime 3-manifold that 1s not irreducible, namely,
§2 % St [8 Lemma 3.13]. In a connected sum M = My # 5% = S! we obviously
find an embedded non-separating 2-sphere S such that M s = My ; simply take
S to be a fibre of §% ¥ §' not affected by the connected sum construction.

In the argument proving that the number of summands S* x §* in a prime
decomposition of M is uniquely determined by M, the crucial lemma 1s that
for any two non-separating 2-spheres Sy, S1 C M there is a diffeomorphism of
M sending Sp to S; [8, Lemma 3.18]. In the presence of a contact structure,
this statement needs to be weakened slightly; the following is sufficient for
OUr pPurposes.

LEMMA 8. Let (M.£) be a (comnected) tight contact 3-manifold and
So. 51 C M two non-separating 2-spheres. Then (1’\715035) and (ﬂ//}gl_ﬁf) are
contactomorphic.

Proof. By the preceding lemma we may assume that Sy and S§; are in
general position with respect to each other, so that Sy M S; consists of a
finite number of embedded circles. We use induction on the number n of
components of Sy M.Sy.

If » =0, we find disjoint product neighbourhoods §; x [~1,1] C M,
i=0,1.In case M\ (Sp 1 S1) is not connected, we may assume that the
identifications of these neighbourhoods with a product have been chosen in
such a way that Sp x {1} and §; % {1} lie in the same component of
M\ (Sp1S81). As described above, we then obtain a well-defined tight contact
manifold (M, £) by capping off the boundary components §; % {1} of

M (So x (=1, DS % (—1, 1)

with 3-discs DéK y Dlm Our assumptions imply that D i Dy is isotopic
to Dy L%Di*" in M. By performing index 1 surgery with respect to these
embeddings of S0 % D? we obtain (ﬂ?fsuf) and (1’\71 Smé\), respectively, so the
result follows from Lemma 4.

If > 0, then some component J of Sp1.S; bounds a 2-disc D C §;
with Int(D) " S = &. Let £ and E” be the 2-discs in S3 bounded by J,
and set Sh =DUE and §§ = DUE".
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CLAIM 1. At least one of S, and S§ is non-separating.

Proof. Since Sy is non-separating, there is a loop v in M (in general
position with respect to all spheres in question) that intersects Sy in a single
point, say one contained in the interior of E'. If S; is separating, then ~
intersects it in an even number of points. Since ~ does not intersect E”, these
points all lie in D. So ~ intersects S; in an odd number of points, which

means that S, is non-separating. L]

Thus, continuing with the proof of LLemma &, we may assume without 1oss
of generality that S, is non-separating. Move S, slightly so that it becomes
a smoothly embedded sphere disjoint from S¢ and intersecting S; in fewer
than » circles. Then two applications of the inductive assumption prove the
inductive step. [

Proof of Theorem 5. As indicated above, it only remains to prove the
uniqueness statement. Thus, let

M, L0 # - # (M, £0

and
(MY €D # - # (M7 ED

be two prime decompositions of a given tight contact 3-manifold (M.£).
Without loss of generality we assume!) & < /[, and use induction on k. For
k = 1 there is nothing to prove. Now assume & > 1 and the assumption to
be proved for prime decompositions with fewer than 4 summands.

(1) Suppose some M; (say M) is diffeomorphic to S§? % S' Then M
contains a non-separating 2-sphere. By applying the argument from Claim 1
to this non-separating 2-sphere and the 2-spheres defining the splitting of M
into the connected sum of the M, one finds a non-separating 2-sphere in
at least one of these summands, say M;, which therefore must be a copy of
5% »x S'. By a folklore theorem of Eliashbers, there is a unique tight contact
structure on S$% x S!: cf. [4] for an outline proof and [6] for a complete
proof. Thus, (M, £&x) is contactomorphic to (M;,&). Let Sp, S1 be a fibre
in M, M7, respectively. From Theorem 1 it follows that

(Mg, &) = (M, ED # - # My1, E_1)

1y Of course, from the topological prime decomposition theorem, one already knows that
k == ] but this does not help to simplify the present proof.
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and
(Ms, &) = (M.EDH - # (ML E0 D),

and by the preceding lemma these two manifolds are contactomorphic. So the
conclusion of the theorem follows from the inductive assumption.

(i1) It remains to deal with the case where all the A, are irreducible.
Arguing as before (with the roles of the two connected sum decompositions
reversed), we see that each M7 must be irreducible. Choose a separating
2-sphere S < M such that the closures {/, V of the components of M\ S
satisfy

(U, &lg) = ML ED # -+ # My, &)

and (V 2 EV) = (M. &). Observe that the contact structure §EU 18 the same as
the restriction of the contact structure { (defined on M = = U u V) to U.

Similarly, there exist pairwise disjoint 2-spheres 77,....7;.1 in M
such that — with Wi....,W; denoting the closures of the components
of M\ (T ... UTi1), and £; the restriction of £ to W, — we have

W L e OV 205, [, o o L

Suppose that the system 77.....7T;..1 of embedded spheres has been chosen
in general position with respect to § and with SO (77 U ... L T;1) having
the minimal number of components among all such systems.

CLAM 2. The minimality condition implies SO (T U ... UTe) = @

Here we have to enter a caveat. The notation suggests that W; has boundary
T1, the W; with j € {2,..../~ 1} have boundary 7T,y U 7;, and W; has
boundary 7;..1. In fact, some of the reasoning in the proof given in [8] seems
to rely on such an assumption. However, under the mimimality condition we
have just described, it is perfectly feasible that some of the W; have several
boundary components (i.e., the connected sum looks like a tree rather than a
chain). In particular, the numbering of the W; is not meant to suggest any
kind of order in which they are glued together.

Assuming Claim 2, we have § C W, for some j ¢ {1,....{}. Since
WJ = M7 1s ureducible, § bounds a 3-cell B in M;. Thus, § cuts W,
into two pieces X and Y, where say Y = §8. By the umiqueness of the
tlght contact structure on $° we have in fact (Y gfy) 5", ,£::). Moreover,
(Xpéfx) = (M7 .£7) by Theorem 1.

Of the 3-discs in M; used for forming the connected sum with one or
several of the other prime manifolds, at least one has to be contained in B,
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otherwise § would bound a disc in M. This means that of the closures U/, V
of the two components of M\ S, the one containing ¥ must contain at least
one of Wy,..., W1, Wi1..... W;. Thus, in the case ¥ C V, the numbering
(including that of W;) can be chosen in such a way that Wy,... W, . X C U
and Y. Wiq,.... W, CV, with j<<[~ 1. (The case with X CV and ¥ C U

is analogous; here j > 2.) With Theorem 1, and in particular the fact that

(53,,551) is the neutral element for the connected sum operation, we conclude
that

M D) # o # My, 81 = (U. £l
= (WL 8D # o # (Wi, &) # REPO
= (ML ED H - (ML E)

and

My, £ = (V. £lv)
= (VA # W £ o # (Wi dp
5 (Mﬁu:gﬁpl) #o ¥ (M?‘Sz*)

Since M is prime, we must have j= [ 1, hence (M, &) = (M;,£;). Once
again, the theorem follows from the inductive assumption. Modulo Claim 2
this concludes the proof of the unique decomposition theorem. [

Proof of Claim 2. Arguing by contradiction, we assume that 71,..., 7.1
is a system of 2-spheres as described, with S M (77 Ui. ..U T;1) having the
minmal number of components among all such systems, and that this minimal
number is positive. Then we find a 2-disc D ¢ § with ¢D ¢ T; for some
ie{l,.... =1}, and Int(D)Y N (T3 U...UT1) = &. This disc is contained

in W; for some j < {1,....I}. For ease of notation we assume that i = j = 1,
and that W is the other component adjacent to 77.

Let £/, E” be the 2-discs in T bounded by #D. Since W, is irreducible,
the sets D E and D E” (which are homeomorphic copies of $?) bound
3-cells B, B” in W,. One of these must contain the other, otherwise it would
follow that Wy can be obtained by capping off the 3 cell B’ Up B”, and thus
would be a 3-sphere.

So suppose that B” ¢ B'. Then D U E’ can be deformed into a smooth
2-sphere 77 that meets S in fewer components than 7, see Figure 1. In the
complement M\ (T{ UTr U ... UT..1) we still find Wa,..., W;, but Wi, W,

have been changed to new components Wi, W;. Write &), &5, respectively,
for the restriction of £ to these components. We are done if we can show that
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because then the new system of spheres 77,7»,...,7;.; contradicts the
minimality assumption on 71,7, ..., 751,

FIGURE 1

Modification of the prime decom position

The 2-sphere 77 is isotopic to Tp in Wi simply move D ¢ T} across
the ball B” to E”. But beware that 77 need not be isotopic to T in W)
or M. However, B” lies on the same side of 77 as Wi, so 7] is isotopic to
T] in S

Wil Wa = Wi U Wj.
Cutting this latter manifold open along 77 and then capping off with discs
gives the disjoint umon of (1//1?1,,51) and (széz) ; cutting it open along 77 and
capping off yields the disjoint union of (ﬁ\/}l} fi) and (ﬁ};p é\é) From Lemma 7
it follows that the results of either procedure are contactomorphic.  []

There is no unique decomposition theorem for overtwisted contact
3-manifolds. For instance, start with a comnected sum of two distinct
prime fight contact 3-manifolds (My,£p), (M1.£1). Choose arbitrary knots
K, C M, \D3 ¢ My # My. After a C%-small isotopy we may assume that the
K; are transverse to & (or & # £1) [5, Theorem 2.44]. Then, in suitable local
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coordinates (4,7, ) near K; = S' x {0} C S! x R? the contact structure can
be written as ker(d# -+ ¥? dip) [5, Example 2.33].

Now perform a full Lutz twist along either K or K;. This means
that the contact structure ker(df -+ r?dy) near the knot is changed to
ker(hy (r) dd + ha(r) dp) with (hi(r), hp(r)) as shown in Figure 2. It is required
that #1(x) = 1 and () = #* both near r == 0 and for large r.

)

FIGURE 2
A full Lutz twist

It is not difficult to see that this local procedure does not change the
homotopy class of the contact structure as a 2-plane field, but it makes the
contact structure overtwisted [5, Lemma 3.17]. Thus, by performing such a
full Lutz twist along either K, or Ky in (My # M;.& # &), we obtain
the contact manifolds (My # M. &) # £1) and (My # M. & # &), which
are contactomorphic by Eliashberg’s classification [2] of overtwisted contact
structures (because, by construction, 56, 5’1 are overtwisted, and so are the
contact structures £) # £1 and £ # £] on the connected sum). This obviously
gives us two distinet connected sum decompositions.
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