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L’ Enseignement Mathématique (2) 53 (2007), 265-305

THE IRREGULARITY OF CYCLIC MULTIPLE PLANES
AFTER ZARISKI

by Daniel NAIE

ABSTRACT. A formula for the irregularity of a cyclic multiple plane associated to
a branch curve that has arbitrary singularities and is transverse to the line at infinity
is established. The irregularity is expressed as a sum of superabundances of linear
systems associated to some multiplier ideals of the branch curve and the proof rests
on the theory of standard cyclic coverings. Explicit computations of multiplier ideals
are performed and some applications are presented.

1. INTRODUCTION

Let fix,y) = 0 be an affine equation of a curve B C P* and H. be the
line at infinity. The projective surface So C P defined by the affine equation
7" = flx,y) 1s called by Zariski the n-cyclic mulitiple plane associated to B
and Hy — possibly only to B if » = degB. For a given curve B, the
cyclic multiple planes play an important role in the study of the fundamental
group of the complement of B. At the same time they provide interesting
examples of surfaces. In [23], Zariski took up the study of Sp in the case that
the curve B has only nodes and cusps and answered the following question:
What is the irregularity of Sy, 1.e. the dimension of the vector space of global
holomorphic 1-forms on a desingularization of Sp 7
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ZARISKI'S THEOREM. Let B be an irreducible curve of degree b,
transverse fo the line at infinity H, and with only nodes and cusps as
singularities. Let So © P be the n-cyclic multiple plane associated to B
and H.., and let S be a desingularization of Sy. The surface S is irregular
if and only if n and b are both divisible by 6 and the linear system of curves
of degree 5b/6 — 3 passing through the cusps of B is superabundant. In this

9 = (P2, 7:(-3+ ).

case,

where Z is the support of the set of cusps.

The aim of this paper is to present a generalization of Zariski’s theorem
to a branch curve that has arbitrary singularities and 1s transverse to the line
at infinity bringing to the fore the theory of cyclic coverings as developed
in [20]. The irregularity will be expressed as a sum of superabundances of
linear systems defined in terms of some multiplier ideals associated to the
branch curve B. We refer to [5] for the notion of multiplier ideal. To state the
main result in Section 3, we recall here that if the rational £ varies from a very
small positive value to 1, then one can attach to B a collection of multiplier
ideals ,7(£-B) that starts at Opz , diminishes exactly when £ equals a jumping
number — they represent an increasing discrete sequence of rationals — and
finally ends at Zg = Op:(—B). The multiplier ideals reflect the singularities
of the rational curve £B. For example in case B has only nodes and cusps,
the only jumping number < 1 of B is 5/6 and the corresponding multiplier
ideal is Zz, where Z is the support of the cusps.

THEOREM (3.1). Let B be a plane curve of degree b and let H,. be a
line transverse fto B. Let S be a desingularization of the n-cyclic multiple
plane associated to B and H.. . If J(B,n) is the subset of jumping numbers

of B smaller than 1 and that live in mz, then

g = Y h(P, Iyen(-3 +£b)) .

E£¢J(B.n)

where Z(EB) is the subscheme defined by the multiplier ideal J(¢ - B).

Since for B with nodes and cusps 5/6 is the only jumping number
< 1, Theorem 3.1 becomes Zariski’s theorem. In general, the usefulness of
Theorem 3.1 relies on explicit computations of the jumping numbers and
multiplier ideals attached to B. In case the singularities of B are locally given
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by equations of the form »” 4 y? = 0 such explicit computations may be
performed and will enable us to apply the theorem to various examples in
Section 4. Furthermore, in Remark 4.7 it will be shown that the irregularity
may jump in case the position of H.. with respect to B becomes special.

(Generalizations of Zariski’s theorem are discussed in several papers and the
proofs are based on different points of view. First, Zariski’s original argument
divides naturally into three parts. He describes the canonical system of § in
terms of the conditions imposed by the singularities of Sy that correspond to
the cusps. Then he establishes the formula

(LD) W= 5 N (3 [2]),

kzpeinjo|

where Z denotes the support of the set of cusps. To finish, he invokes the
topological result proved in [22]: If n is a power of a prime and B is
irreducible, then the n-cyclic multiple plane is regular. The theorem follows
from the examination of the different terms in the previous sum when the
degree of the cyclic multiple plane 1s a power of a prime and goes to infimty;
these terms are

AP, T2(~34+5b/64 1)), b (P2, Te(~345b/6+2)).. .., W (P, Ze(-34 b))

and they all vanish.

Second, Esnault establishes in [7] a formula similar to (1.1) for the
irregularity of the b-cyclic multiple plane 53, where 5 is the degree of
the branch curve B that possesses arbitrary isolated singularities. She uses
the techniques of logarithmic differential complexes, the existence of a mixed
Hodge structure on the complex cohomology of the associated Milnor fibre
— the complement of Sy with respect to the plane that contains B — and
the Kawamata-Viehweg vanishing thecrem. In [1], Artal-Bartolo interprets
Esnault’s formula for the irregularity and applies it to produce two new
Zariski pairs. Two plane curves By, By ¢ P? are called a Zariski pair if
they have the same degree and homeomorphic tubular neighbourhoods in P2,
but the pairs (Pz_.,Bl) and (Pz,,Bg) are not homeomorphic. Zariski was the
first to discover that there are two types of plane sextics with six cuspidal
singularities depending on whether or not the cusps lie on a plane conic.
In [21], Vaqui¢ gives a formula for the irregularity of a cyclic covering of
degree n of a non-singular algebraic surface X ramified along a reduced
curve B of degree b with respect to some projective embedding and a non-
singular hyperplane section H that intersects B transversely. His formula
is stated in terms of superabundances of the set of singularities of B and
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the proof also uses the techniques of loganithmic differential complexes. The
superabundances involved are given by ideal sheaves that coincide in fact to
the multiplier ideals. Vaquié’s paper is one among several to introduce the
notion of multiplier ideals implicitly and we refer to [5] for this issue.

Third, in [13], Libgober applies methods from knot theory to study
the n-multiple plane Sp. His results are expressed in terms of Alexander
polynomials and extend Zariski’s theorem to irreducible curves B with arbitrary
singularities and to lines H,. with arbitrary position with respect to B. Later
on, in [14, 15, 16], he deals with the case of reducible curves B having
transverse intersection with the line at infinity and the irregularity of the
multiple plane is expressed using quasiadjunction ideals. The technique is
based on mixed Hodge theory, and the result is a particular case in a vaster
study pursued in the above mentioned papers where the homotopy groups of
the complements of various divisors in smooth projective varieties are explored.
These groups are related to the Hodge numbers of cyclic or more generally
abelian coverings ramified along the considered divisors, as well as to the
position of their singularities. We refer the reader to [18] for more ample
details and references and to [17] for the relation between the quasiadjunction
ideals and the multiplier ideals.

Our argument will follow Zariski’s ideas. A desingularization of cyclic
multiple plane is expressed as a standard cyclic covering. Then an analog of
the formula (1.1) is obtained thanks to the theory of cyclic coverings:

9= 5 (P, Zugn(2+ [2])
P

Finally Theorem 3.1 1s established using the Kawamata-Viehweg-Nadel van-
ishing theorem.

REMARK. The above formula coincides with Vaquié’s in [21] when the
latter is interpreted for a plane curve B and a line H transverse to it. At
the same time, Vaquié’s formula in its general form might be obtained by
the argument we make use of in establishing Theorem 3.1 if Vaquié’s general
setting were to be considered.

The paper is organized as follows. In §2 the theory of cyclic coverings and
some facts about multiplier ideals are recalled. Next, in §3 it is shown that the
normalization of a given cyclic multiple plane is birationally isomorphic to a
standard cyclic covering of the plane. Then, using it, Theorem 3.1 is proved.
In §4 some applications are presented. Finally, in the appendix a new explicit
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computation for certain multiplier i1deals 1s performed and used to complete
the proof of Proposition 4.3. It is hoped that this description might be useful
in other circumstances.

NOTATION AND CONVENTIONS. All varieties are assumed to be defined
over C. Standard symbols and notation in algebraic geometry will be freely
used. The multiplier ideal associated to a curve B and a rational £ will be
denoted by ,7(£-B) and the corresponding subscheme by Z(£B) = Z(.7(£-B)).
If Z is a subscheme in X, then Z; is the sheaf of ideals locally defined by the
functions that vanish along Z. In particular, .7(£-B) = Zz,5 . Moreover, if D
is a divisor on the variety Y, we shall often write H(Y, D) and h'(Y, D) instead
of HI(Y,Op(D)) and R(Y,Op(D)) respectively. If £ is an invertible sheaf
on Y, then we shall regularly denote by L a divisor such that £ =~ Oy(L).

For m a positive integer, if @ € Z/m then " will denote the smallest
non-negative integer in the equivalence class a.

ACKNOWLEDGEMENTS. [ started this paper during a one week stay at the
University of Pisa in the spring of 2004. I would like to thank Rita Pardini for
her hospitality and for the friendly talks we had. The paper owes Mihnea Popa
its present form. I would like to record my debt to his reading of a preliminary
version in the autumn of 2005 and to his encouragements to generalize the
results [ obtained at that time. I wish to thank my friends Marian Aprodu,
Laurent Evain and Jean-Philippe Monnier for the conversations they put up
with during this period. Finally, I would like to thank the referees for their
comments and constructive criticism on questions of presentation, principle
and proportion.

2. PRELIMINARIES

We shall summarize, in a form convenient for further use, some properties
of cyclic coverings and of multiplier ideals.

2.1 CYCLIC COVERINGS

Let ¥ be a vanety and let G be the cyclic group of order n. If G acts
faithfully on Y, then the quotient X = Y /G exists and Y is called an abelian
covering of X with group G. The map #: ¥ - X is a finite morphism, 7,0y
is a coherent sheaf of (Jy-algebras, and Y = Spec gx(ﬂ¢(jy).
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If ¥ is normal and X is smooth, then « is flat and consequently 7.0y is
locally free of rank . The action of G on 7,0y decomposes it into the direct
sum of eigen line bundles associated to the characters x € G = Hom(G, shy.

The action of & on .C;’("l 1s the multiplication by .

There are two naturally arising questions when dealing with cyclic
coverings. First, what is the ring structure of 7.0y 7 Knowing this structure
is equivalent to knowing the covering Y. This structure, being compatible with
the group action, is determined by the multiplications 13;("1 ® E;} — f,;;,_,
for any v.x" € G. Finding the image of each of these maps will provide
us with an answer to the first question and lead us to ask the second one:
Given a covering Y of X, is there straightforward information at the level of
X — less involved than n — 1 line bundles L,, x € G, y # 1, and a ring
structure on €5 (el ﬁ;(‘_"l — for telling us how to reconstruct ¥ ?

ExaMPLE 2.1 (Simple coverings). Let B ¢ X be a reduced effective
divisor such that there exists a line bundle £ over X with £" =~ (Ox(8). This
data (later on it will be called reduced building data) defines an n-cyclic
covering of X totally ramified along B: let # be a fixed generator for 6
let Ly == L% and let

L3 Lol — L7h ® Ox(—e(j, B) — L},

be the multiplications for any 1 < j, k < n—1, with &(j. k) = 0 or 1 depending
on whether or not j+ k< n. If L £ X denotes the total space of £ with z
the tautological section of p*L, then Y is defined in L by " — p*s = 0,
where s is a global section defining B.

Before turning to the two questions asked formerly, let us notice that a
general cyclic covering Y may be seen as a subvariety into a vector bundle
over X in the same way a simple covering was seen into a line bundle. Let
F oz @X@ﬁ;l. The surjection Sym, F -+ 7.0y defines the embedding
of Y into the total space of F, F % X. The ring structure of 7.0y is
equivalent to knowing the kernel of that surjection. Over an open subset
U C X, if z; denotes the tautological section of the line bundle p*L,,, the
surjection Symg, F -+ 7,0y becomes

(2.1) Ox(Ulz1. - .- Za-1] = (T OP)U) = Optz~1(U)).
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To understand the ring structure of 7.0y let us consider a component D
of the ramification locus. We suppose that Y is normal and X is smooth.
Since « 1s flat, D i1s 1-codimensional. The component [) i1s associated to
its inertia subgroup H C G — the subset of elements of G that globally
fix D — and to a character ¥ € H that generates H. The character W
corresponds to the induced representation of H on the cotangent space to Y
at D. Dualizing the inclusion # C G, such a couple (H,%) is equivalent to
a group epimorphism f: G — Z/my, where my = |H|; for any y € G, the
induced representation x|y is given by /00"

Recall that 4" denotes the smallest non-negative integer in the equivalence
class of @ € Z/m. Here and later on, § denotes the set of all group
epimorphisms from G to different Z/mZ. let By C X be the subdivisor
of the branch locus defined set-theoretically as «(Ry), with Ry the union
of all the compeonents £ of the ramification locus associated to the group
epimorphism f. In [20] it is shown that the ring structure is given by the
following isomorphisms: for any v,y € 6

(22) f-r)( e “Cr)(’ 2 ‘C)()(’ &0 ®f§€§ OX(g(f X “(/)Bf)

with 2(f, x.,x") = 0 or 1, depending on whether or not f(x)" - f(x)" < my.
EXAMPLE 2.2. lLet P and O be two distinct points of P!, We define

isomorphisms

ﬁx & ‘C’X ~ lf.Xz & Opi (), ‘CX & .C.Xz ~ Op1 & Op1(P + O)
and .C,Xz & .C,Xz ~ L, R Op(P).

We obtain the triple covering ¥ of P! totally ramified over P and Q. For
example above P! — {Q}, if x is a local coordinate centered at P, ¥ is
defined by the surjection

Clxllz1. z2] = Clxllz1, 221 /(83 ~ 72,2122 ~ X, 25 ~ x21) == Clxl[z1]/(z] — x) .

Similarly, above P! - {P} with y the local coordinate y(Q) = 0, the triple
covering is defined by C[y][z2]/ (z% —y). In other words, locally ¥ looks like
a simple triple covering, but globally it is not a simple covering.

The next proposition is formulated for cyclic groups, since it is this case
that will be used in the sequel. We refer again to [20] for the case of abelian
groups.
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PROPOSITION 23. Let 5. Y — X be a cyclic covering with Y normal
and X smooth. If 1 generates G, then for every k=1,...,n,

A2
(23) Ly o kly — { mf j B
JEF
In particular, for k = n equation (2.3) becomes
n e
(2.4) nly ~ ; " ) By

Proof. From the hypothesis, # spans the group of characters. Apply-
ing (2.2) for % and /! we get

Ly + Ly~ Ly + > _e(f, 9.9 DB
fEX

Then, summing over j from 1 to k%,

k k
Ly mokly = 3" " e(f,0, 9 By =kl = >3 " e(f. 40,9/ )B; .

j=l feF FEF j=1

By definition &(f,%,%/ 1) = 1 is equivalent to fG) + f@/™1 > my
which is equivalent to (f(#) «:;«»f(i;)f“"”l))' < f(), 1e to (W)Y < f(h).
It follows that Z;fmls(f_,@f;@f;f“"l) counts the number of j’sin {1.2,....k}
for which (jf(@))" <« f(#)", 1.e. for which the remainder of the division of
Jf(@) — equivalently of jf(z)" — by my is smaller than f(2)". This number
is exactly |kf(v)"/m,| and formula (2.3) follows. Formula (2.4) is obvious,
since " = 1. (]

We are now able to answer the second question. Starting with a line bundle
L, a fixed generator # of @ and effective divisors By, f € §, that satisfy the
identity (2.4), we define the line bundles L.« using formula (2.3). Any three
of these line bundles L., L, and L, veﬁfy equation (2.2). Consequently,
the Ox-module €5, £} is endowed with a ring structure, hence it defines in

Q“!/,k

a natural way the standard cyclic covering 7w: Y = Spec C}X(@k E;;kl) X
In case Y is normal the covering is unique up to isomorphisms of cyclic
coverings. We notice that when we started the investigation of the ring
structure we supposed ¥ normal and denoted by B, some components of the
branch divisor defined set theorefically, hence without multiple components.
Now in the construction of the standard cyclic covering the divisors By may
have multiple components. For example starting with By = P+ 20 on P
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the standard covering defined by 3L, ~ B, 1s the simple 3-covering (see
Example 2.1) ramified above P and @ and having a cuspidal point over Q.

Following [20], we will call the divisors £, and By, f € §, used in the
definition of a standard cyclic covering a set of reduced building data for the
covering.

2.2 THE NORMAIIZATION PROCEDURE FOR STANDARD CYCLIC COVERINGS

The standard covering obtained starting with a set of reduced building data
may not be normal. In [20, Corollary 3.1] it is shown that such a standard
covering is not normal precisely above the multiple components of the branch
locus and the normalization procedure is constructed. Let f: G = Z/my; be
a group epimorphism and let By = rC 4+ R, with C 1irreducible, C not a
component of R and r > 2. The surface Y is not normal along the pull-back
of €. The normalization procedure along this multiple component splits into
two steps and shows how to end up with a new covering, normal along the
pull-back of €. We shall later review the formulae involved for each step.
They are based on the comparison between the multiplicity r and the order m,
of the inertia subgroup. Two simple examples should shed some light on these
steps.

EXAMPLE 2.4 (for the first step). Suppose that s is a coordinate along the
affine line, that ¥ — Al is given by z” — 57 = 0 in the affine plane and that
d divides m. The curve Y = Spec C[s.z]/(z" ~s%) is a simple cyclic covering
of the line ramified above the origin. It is smooth, or equivalently normal,
if and only if d = 1. If d > 1, a desingularization ¥’ of Y is defined by
the C[s]-algebra C[s,z. (1/(z"% — {s,¢% —1). The inclusion of C[s]-algebras

CLs, 20/@" — 5% =5 Cls, 2,1/ — 1,277 — ¢5)

tells us that the covering ¥’ —+ Al factors through an étale covering of the
affine line of degree d, ¥’ —» Y, — Al

EXAMPLE 2.5 (for the second step). This time, suppose that ¥ — Al is
the simple cyclic covering given by z” — s == 0 in the affine plane and that
m and r > 2 are relatively prime positive integers. Let the positive integers
g and » satisfy 2r - gm = 1. A desingularization ¥’ of Y is defined by the
inclusion of C[s]-algebras

Cls. /(2" — 5~ Cls, £1/(E™ — 5.
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with #(z) = £7. It says that the covering ¥ — Al is desingularized by the
change of coordinates £ = z%/s? since we have £ = z%/s? = z.

STEP 1. If By =rC+R and (r,my) = d > 1, then the natural composition
1s considered
F o8 LoZim — z/™.

For any v, the integers f(x)" and f(y)" are linked by the relation f(y)" =
@my fd + ()" Put

Ly~Ly—qx5C, By=R, By=By+-C and B, =B, if g#Lf

in order to construct ¥’ -+ X, a ‘less non-normal’ covering over C.

Two facts should be noticed. Firstly, if # € G is such that fFGa) = 1,
then Y is a simple covering locally over X ~ UQW B, defined by L. The
new covering ¥’ -+ X factors over the same open subset through an étale
covering of X of degree d followed by a simple covering of degree my/d
defined by the pull-back of £/, on the étale covering. By Proposition 2.3,
L,{éw/d ~ mf/dng,, then '

} F iy s
L%“;mf/d NLZ‘,/»?-[JWECN?LQLWEC«

hence

Iy
d
These relations, seen in terms of tautological sections of the corresponding
line bundles as in (2.1), are exactly the relations from Example 2.4. Secondly,
looking at f*, the induced multiplicity and the corresponding subgroup order
become relatively prime.

dL, Jd L O Blld

" C.

iy / ;. S
Ly~ Lyl + =
L I S

STEP 2. If Bf = rC+ R with r >» 2 and (r,my) = 1, the composition
f}Z é M"Ji“%‘ Z/mf W’:m} Z/I’Hf

1s considered. As before, for any y € @ the integers f(y)" and f'(y)" are
linked by »« f(x)" = gyms + f(x)". Put

L’XNLquXC,, BJ’;mR,, Bj’p, = Bpr -+ C  and B; =B, if g&ff
to get a new covering — if f(#%) = 1 and #r — gm = 1, then over
X\ (RU, By the covering Y is simple defined by Ly, Lyv ~ L7

and ¥’ is simple and defined by £/, as in Example 2.5 — and finish the
normalization procedure along C.
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EXAMPLE 2.6. On P? let £, = O(1) and nL, ~ Hy+(n— 1)Hx, where
Hy and H.. are two different fixed lines. The simple cyclic n-covering ¥ —+ P2
given by the set of reduced building data £, and By = Hp + (n — 1)H,
where f(x) = 1, is not normal above H. . Applying the second step of the
normalization procedure, if f: G - Z/nZ is defined by f'(x) = n— 1, we
obtain the normalization ¥’ of ¥ as the n-cyclic covering with building data
L, = O(), By = Hy and By = H,. . Clearly ¥’ has a singular point above
P, the intersection of Hy and H., . Actually we may obtain a desingularization
of Y using the theory of cyclic coverings. We consider the blow-up surface
Blp P?, with £ the exceptional divisor and the induced simple cyclic covering
S —+ BlpP? with building data L. = Og, p(H) and By = Ho+(mn—1)Hy, +nE.
Curves on P? and their strict transforms are denoted by the same symbol. This
time the normalization procedure requires the first and the second step and leads
to §' -» BlpP* defined by nll, ~ Ho+(n—~ DHy, with £, = Opy, p2(H — E),
By = Hy and By = H,. . Incidentally, the surface S may be identified. The
lines in the plane through P tell us that §" is a geometrically ruled surface.
Besides, the pull-back of E is a rational section with self-intersection -#,
hence & is the Hirzebruch surface F,,.

EXAMPLE 2.7. On P? let B be a reduced curve of degree b, Hy a
fixed line and # > 2 a fixed integer. For an integer r > 0O, the identity
nl ~ B+ rH, defines a simple n-covering S, - P? if and only if n
divides r -+ b. A set of reduced building data for the covering is represented
by Ly ~ Op((r + b)/n) and By = B+ rH,, with fiz) = 1. If r > 1,
the normalization procedure leads to the standard cyclic covering § which is
independent of r. It is defined by £, = Op([b/n]), By =B and B, = Hy,
where f: - Z/n, f() =1, and

n , ibinin—b
ged(n, [b/nln —b)’ 9W) = ged(n, [b/nin—b)’

g:@MZ/

We shall justify the assertion when the integers » and r are relatively prime
and leave the more involved case as an exercise. The normalization procedure
1s reduced to the second step and g: G -3 Z/n is the composition of f with
the multiplication by » in Z/n. Then

9@y =r—||n="22n—p—|Ln=[2] n-b

£y = coson(- (£ ~on(t)s on (-2 =0 (2]

and
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23 MULTIPLIER IDEALS

In this subsection we briefly recall the notion of multiplier ideal of divisors,
the other foremost tool of the paper. We refer the reader to [12] for the many
contexts where multiplier ideals appear and for the results that are cited below.

Let X be a smooth variety, D C X be an effective Q-divisor and zi: ¥ — X
be a log resolution for D, 1.e. the support of the Q-divisor Kyjx — #*D is a
union of irreducible smooth divisors with normal crossing intersections. Then
;5¢Oy(KngW [14*D]) is an ideal sheaf 7(D) on X. We will denote by Z(D)
the subscheme defined by this ideal. Hence Zypy = 7 (D). Showing that ,7(D)
is independent of the choice of the resolution, we have:

DEFINITION.  The ideal J(D) = u.Oy(Kyx — |p*D]) is called the
multiplier ideal of D.

ExamprES 2.8. 1) Let X be a smooth surface and B < X a smooth curve
except at the point P where B has a simple double point — a node. Then
for any rational 0 < £ <1 we have that

J(E B) = 1. Oy(Kyjx ~ |178 < B]) = p.Op(E —~ [2£| E) = Oy,

since the blow-up of X at P is a log resolution for B and ., Oy(E) =
1.0y = Ox.

2) We keep the same notation, but suppose that the singularity of B at P
is a simple triple point, i.e. in local coordinates it is given by x* +v = 0.
Then J¢ - B) = p.Oy(E — |38 E), so J(¢ -B) =0 forany 0 < £ < 2/3
and J(£-B)=TZp for any 2/3 <§ < 1.

The sheaf computing the multiplier ideal verifies the following local
vanishing result: for every 7 > 0, R";zﬁ@y(KYgX ~ |p*D]) = 0. Therefore,
applying the Leray spectral sequence, we obtain that for every i and any
Cartier divisor L on X,

(2.5 H'(X,Ox(Kx+ L) ®Ixp)) = H'{Y, Oy(u* Kx + p° L+ Kye — [ 11* D)) .

In the example below we consider a simple instance of how the multiplier
ideals appear in the computation of the irregularity of multiple planes.

EXAMPLE 2.9. Let L1, 1, and L3 be three lines in the plane that intersect
in P and let Sy be the simple cyclic 3-covering given by the line bundle
Op(1) and by B = By = L1 + Lp + Ls with f(z) = 1. After blowing up
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the plane at P and normalizing the induced ftriple covering, we obtain the
desingularization of S, a smooth simple 3-covering § —+ BlpP? given by
Ly = Opi,p(H — E) and ramified over the strict transforms of the lines Z;.
The exceptional divisor has been denoted by E. The covering being simple,
the canonical divisor of § is Ky = 7*(Kp,p + 2L;). We have

W (S, 7" (Kpy,pe + 2Ly)} = h'(Blp P2, Ky po + 2Ly) = W'(Blp P*, ~H — E) ,

hence ¢g(S) = hl(Pz,,Zp(wl)). To see how the notion of multiplier ideal
appears in this computation, in fact how Zp is naturally seen as J(% B,
notice that z:: Blp P2 5> P?isa log resolution for the divisor B = Ly 4Ly +13
at the triple point and that 2L, = 2(L; + L, + L3)/3 = 2H — |p"2B/3]. We
have

. co s B
Rap, 10 £9L s i S 0H w:,»m(KBIPinpz W [’“ : BD
and using (2.5),

() = b (S, Ks) = b (P?, Om(~1)® J(2/3 - B)) .
For multiplier ideals, the basic global vanishing theorem is the following:

KAWAMATA-VIEHWEG-NADEL VANISHING THEOREM. [Let X be a smooth

projective variety. If L is a Cartier divisor and D is an effective Q-divisor
on X such that L — D is a nef and big Q-divisor, then

W (X, Ox(Kx + L) & Typy) = 0

for every i > 0.

DEFINITION-LEMMA (see [5]). Let B < X be an effective divisor and

P € B be a fixed point. Then there is an increasing discrete sequence of
rational numbers £&; = £(8, P),

O=§p <& < ...

such that
JEBY = J(E&B)p for every £ € [£.£8i41).

and J(£;118)p & J(&B)p. The rational numbers £;’s are called the jumping
numbers of B at P.
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3. THE IRREGULARITY OF CYCLIC MUITIPLE PLANES

THEOREM 3.1. Let B be a plane curve of degree b and let H,, be a
line transverse to B. Let S be a desingularization of the projective n-cyclic
multiple plane associated to B and H., . If

J(B,n) = {{: ‘ & jumping number of B, 0 < & < 1, £ € ;Z} 5
ged(d, n)
then o
@S = > (P Taen(-3 +¢b),
£eJ(B.0)

with Z({B) the subscheme defined by the multiplier ideal J{¢ - B).

Proof. To compute the irregulanty of a desingularization of Sy we need
either to desingularize Sp, or to find a smooth surface birationally equivalent to
So. We shall follow the latter possibility. Let Sy — P? be the normal standard
covering defined by the reduced building data £/, = Op:([b/n}]), By = B and
B, = H,,, where % is a generator of @ £ - Zin, f(3) =1, and

n . ibinin—b
i o= IV Godim, tojmn—5)
It might be noticed that by Example 2.7 the surface 57 is the normalization of
any n-standard covering of the plane ramified along B and along a multiple
of the line at infinity. The relation defining S is

g:@«w}Z/

nliy ~ B+ ([b/n]n— bHy, .

Over A? = P? ~ H, the covering §; coincides with the affine surface I
defined by z* = f(x,y), with f(x,y) = 0 an equation for B~ H, C A%. The
surfaces S; and the normalization S of Sy are birationally equivalent. In fact,
since they are normal and §7 —+ P2 is finite, Sg ~* 51 is a birational morphism.

We compute the irregularity of the multiple plane Sy using the standard
covering S1. If x: X —+ P? is a desingularization of B such that its total
transform on X is a divisor with normal crossing intersections, i.e. if j is
a log resolution for B, then the standard cyclic covering S; pulls back to a
standard cyclic covering S of X. The normalization procedure yields a normal
surface S with only Hirzebruch-Jung singularities (see [20], Proposition 3.3).
We have the diagram shown in Figure 1.

If £, denotes the line bundle defining §, we need to control the line
bundles L« in order to express the irregularity of a desingularization of § as
a sum of some A'’s. The proof will be concluded by applying the Kawamata-
Viehweg-Nadel vanishing theorem. We need two preliminary results.
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S Sé — &
7 S 81 2
x —* ., p A?

FIGURE 1

PROPOSITION 3.2, Let X be smooth and let 7. Y — X be a standard
cyclic covering of degree n determined by the set of reduced building data
Ly and By, f€§, de. by nLy ~ 3 on/mf() By, For a fixed g € §,
the branching divisor B, is supposed to have a multiple component, say
B, = rC+ R with v > 1. Let Y' —» X be the standard cyclic covering
obiained from Y afier the normalization procedure has been applied fo the
multiple component vC. If Y is associated to

43 LN
L 3
JEF
then for every k=1,....n—1,

Ly kL — {krg(@)'} c Vy(@)‘} RS {qu@-ﬂ»)'J B

iy my P iy

Proof. We present the proof in case both steps of the normalization
procedure from the Subsection 2.2 are needed. Otherwise the argument is
easier. So suppose that (r,m,) = d > 1 and consider the map
Ny

g @w{{w&Z/’meZ// =

For any y € G the integer g(y)" satisfies
G.D 900" = g2 + 400"
The covering data are modified to
(32) Ly ~Ly~qxy2C, B, =R, By =By+5C,
B}me for f#g.9.
Now the multiplicity r/d of C is an integer greater than 1 and prime to m,/d.

. - {f ‘d-
Consider the map g”: G -2+ Z/% 5 7/™  We have
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Pty = o M o ey
(33) 900 =g, 90
and the covering data are modified to
# ? ! A 4 7 .
(34 L] ~L, —q,C, Bye=By, Bj=B,.-+C,
B =B for f#4.4".

Using _(3_.2) and (S:L) we l'fve LY ~ L, (qxr/aiw%m q,)C for any x € G. By
Proposition 2.3, Ly, ~ kL, — Zf L& () fmy ] Bf forany k=10,....n~1,
so L, is linearly equivalent to

n_ {kgG | o 1RG5 K@Y | mip k@)
kLz;; { Hiy ‘iR {m!}fd}gfg t_ mgy/d ‘i(CiBg ) Z {_ iy, JBJ“

f#g.a.g”

or linearly equivalent to

LR I A PR T o8 P S 0}
kL d mg,fd} kg ‘kq/“j’)c {TQ}R Zt_ my }Bf'

fsty

Now, from (3.3) and (3.1), we get successively

{fc,g (»c_-:»)'J - {w (»c_-:»)'J gy = {kr,gc@-z)'J kgl —kgy. O

my fd My iy

LEMMA 3.3, Let S — X be a normal standard cyclic covering of surfaces
defined by the line bundle Ly with X smooth. If S has only rational

singularities and S — § denotes a desingularization of S, then

e |

4S) = qUO + > W (X,wx ® Ly).
Szl

Proof. Since the singularities are rational, if S %5 § is a resolution of
the singular points of S, then ng*ﬁg = 0, for all i > 1. From the Leray
spectral sequence it follows that (S, Og) = h(S.Os) for all i. Since by Serre
duality g(g) = hY(S, Oz, we have

1
&S = h'(S,09) = WX, 7,00 = Y WX, L5]).

J=0

Using the Serre duality, the required equality follows. [
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One more notation is in order. Let P be a singular point of B and
let 1 X — P2 be a log resolution of B at P with Ep1.Ep2.....Ep, the
irreducible components of the fibre ;z~'(P) < X . This finite array of irrecucible
curves will be denoted by Ep. If ep is a finite array of rational numbers
Cp., then

”

(3.5) cpEp=3 crobro.

cxaz]

End of proof of Theorem 3.]. We have seen that if ;: X — P? is
a log resolution for B, it 1s sufficient to compute the irregularity of a
desingularization of S, which is the pull-back to X of Sy, the standard
cyclic covering of the plane defined by nL), ~ B 4 ([b/n]n— b)H. . If the
constants ¢p,, are the multiplicities of the strict transforms of the exceptional
divisors that appear in the pull-back of B, i.e. p*B = B+ Y pep - Ep, then
the standard cyclic covering S, 1s defined by

”L;éNgwémqb/”‘;”wb)ﬁao%ch«Ep_
P

Notice that L ~ [b/n] H and H,, ~ H. By Proposition 3.2, the normalization
§ of §, is defined by the line bundle £, and

(3.6) Lys ~ kLY ~ [E([b/n} " b)J Ho ¥ [—cpJ wlBp
P

2] 5]

the last equality resulting from [b/n|k — [ki([b/nin—b)/n| = [kb/n].
Here, |kep/n| « Ep denotes > |kcpo/n|Ep,. By Lemma 3.3, ¢(S) =
7L RU(X, Kx + Lys). Now,

Ky 4 Lyx ~ 1" Kpo + [;} H 4 Kxp2 — EP {HCPJ Ep
and

Sk ] 2o fita)
P i 143

since the curve B ¢ P? is reduced. By the local vanishing (2.5), it follows
that
k

HYX,Kx + L) = H' (X it ks (»»»»3 2 {%D ® OX(KX;W - [;g* ;BD}

o CTRB
~ H (P . Ope (“"“3 + [;D Q@’ZZ(EB))P
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hence
1 kb
G(S) = Zhl (Pz_.,(/)pz (WB e {;‘DX‘ZZGB))
f ]

If k/n ¢ J(B,n), then either k/n is not a jumping number of B, or it is, but
kb/n is not an integer. In the former case, if £ is the biggest jumping number
for B smaller than k/n, then, since [kb/n| —£ > 0,

(50 (0 2] )= (0[] ) =

by the Kawamata-Viehweg-Nadel vamshing theorem. In the latter case, we
apply the same argument, now using [kb/n|—kb/n > 0. The result follows. []

4. APPLICATIONS

We shall now apply Theorem 3.1 to illustrate how to compute in a uniform
way, the irregularity for some examples of cyclic multiple planes. Of course, we
shall need to control the multiplier ideals and the jumping numbers attached to
the branch curves. In this section we shall deal with curves having singularities
only of type A,,, m > 1. In the appendix, more involved singularities will be
considered.

We recall that a singularity of type A,, is defined locally by x? +y"*! = 0.
The multiplier ideals and their jumping numbers are easy to compute; see
for example [4] and [5], or [11]. A different argument for these computations
using the theory of clusters will be given in Example A.13.

LEvMA 4.1. Let B be a curve on a smooth surface and let P be a
singular point of B of type A, . The jumping numbers < 1 of B at P are

1 a

gamiwfmm%«l

with a = 1,...,\m/2]. If locally around P the curve B is defined by
x2 w»;my’"“+w1 = 0, then, for every a, the multiplier ideal T, B) is (x,¥*),
i.e. the ideal that defines Zf[f], the O-dimensional curvilinear subscheme along

B supported at P and of length a.

Theorem 3.1 becomes the following:
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COROLLARY 4.2. Let B be a reduced plane curve such that its singularities
are either simple nodes or of type A, with m > 2 given. Let Hy. be a line
transverse to B and let S be a desingularization of the n-cyclic multiple
plane associated to B and H. .

) If m=2r—1, then

fron 1

=Y WP Tw(3+5+3).

aquzl
atr. 1 4
2r % ged(h.n)

1) If m=2r, then S may be irregular only if n and b are even, and in

this case
”

= % ALY

amm]

a

PR S
2¢-+1% ged(b.n) Z

In both formulae, Z14 = UPZ,[)‘I].

ZARISKI'S EXAMPLE

The curve B is irreducible, of degree 6 and has six cusps as singularities.
If n is divisible by 6, in the formula for the irregularity of the mr-cyclic
multiple plane from Corollary 4.211) we have a = 1 since m = 1. Hence
Gg(S) == hl (P{Ig@)), where Z is the support of the cusps. So either the cusps
lie on a conic and the irregulanty 1s 1, or they do not, and the irregularity
1s 0.

ARTAL-BARTOLO’S FIRST EXAMPLE IN [1]

Let C ¢ P? be a smooth elliptic curve and let Py, P;, P3 be three inflexion
points of €, with L; the tangent lines at P; to C. Taking B = C+Lj+1y+13
we construct the multiple cyclic plane with three sheets Sy associated to B.
The curve B has three points of type As at the P;’s, hence n =3, b =6
and r =3 in Corollary 4.21). We have @ = 1 and

q(S) = B (P2, ZLip, p, pyy (D}

So the irregularity is 1 if the three inflexion points are chosen on a line. If the
points are not on a line, then the irregularity is 0. These two configurations
give an example of a Zariski pair.
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ARTAL-BARTOLO’S SECOND EXAMPLE IN [1]

Let P be a fixed point and K = {Py....,Po} a cluster centered at P, all its
points being free. It represents a curvilinear subscheme Z = Z. In [1], Artal-
Bartolo considers sextics with an Aj7 type singularity at P, with P..... P9

the infinitely near points of the minimal resolution.

1) If P3 lies on the line /., determined by P; and P, and if K does not
impose independent conditions on cubics, then all sextics are reducible. Let
B be the union of two smooth cubics from |Zz(3)|. If Sp is the 3-cyclic
multiple plane associated to B, then by Corollary 4.21),

g(S) = h' (P, Zym(D)) = 1.
Similarly, if Sp 1s the 6-cyclic multiple plane, then
g(S) = W (P2, I (1)} + A P2, T (2)) =2,

since there is no irreducible conic through Z®1 — ie. through the points
Pi1,...,Ps — but the double line 2L: if K’ = {P%, P}, P}, then ZI%  Zg.

More generally, if Sp 1s the n-cyclic multiple plane associated to B and
a transverse line H.. , then by the same argument it follows that g(S) = 2
when 7= 0 mod 6, g(S)= 1 when n =3 mod 6, and g(S) = 0 otherwise.

2)If P; ¢ L and Ps € T, the conic through Py, ..., Ps, then there exists an
irreducible sextic with an Aj7 type singularity at P, such that the intersection
with T" is supported only at P. If Sp is the n-cyclic multiple plane associated

to B and to a transverse line to it, then
q(S) = h' (P2, Tz ()} = 1

when n is divisible by 6, and g(S) = 0 otherwise.

3)If P3¢ L and Ps ¢ T, then for every reduced sextic B with an Ay
type singularity at P, the n-cyclic multiple plane associated to B and to a
transverse line to it is regular.

REMARK. In[1]it1s shown that in the third case above, two configurations
may appear: either Pi1.....P9 do not impose independent conditions on
cubics and B 1s the union of two smooth cubics, or the points do impose
independent conditions on cubics and B is irreducible. Using these and the
two configurations in 1) and 2), two more Zariski couples are thus produced

there.
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OKA’S EXAMPLE IN [19] WHEN p = 2

In [19], if p and ¢ are relatively prime integers, Oka constructs the
curve C,, of degree pg enjoying the following property: C,, has pg cusp
singularities each of which is locally defined by the equation x* 4-y% = 0. For
the construction, let €, and C, be smooth curves of degree p and g that
intersect transversely. If f = 0 and g = 0 are homogeneous equations for C,
and C,, then C,, 1s defmed globally by f* - g7 = 0.

PROPOSITION 4.3.  The normalization of the pg-multiple plane associated
to the curve C,, is irregular, the irregularity being equal to (p— 1)X(g—1)/2.

REMARK 44. We shall establish the result in the appendix and discuss
here the particular case p = 2. All the ideas are already present in this
situation. In the general computation the argument that uses the trace-residual
exact sequence will need the description of the multiplier ideals developed in
the appendix and based on the theory of clusters.

Proof when p = 2. The integer g must be odd, so let g = 2r + 1.
To simplify the notation, let C = (.41 and I' be the conic transverse
to C. The curve (22,41 1s a curve of degree 4r -+ 2 with 4r 4 2 singular
points of type As.. Let Sp be the (4r + 2)-cyclic multiple plane associated
to (2241 and let § be the normal cyclic covering constructed in Section 3.
We apply Corollary 4.2ii) to obtain ¢($) = 3./, _; A {P?, Tz (2r + 2 — 2)},
where 201 = Up Z}f’] and Z,[f] is the curvilinear subscheme associated to the
cluster {P; == P,P2.....P,}. We shall apply the trace-residual exact sequence

with respect to T' (see [10]) to show that all the terms of the sum equal 1
and to get g(S) = r.

DEFINITIONS. Let X be a projective variety, D be a Cartier divisor on X
and £ be a closed subscheme of X. The schematic intersection Trp & = D¢
defined by the ideal sheal (Zp %ZQ/ZD 1s called the trace of £ on D. The
closed subscheme Respf ¢ X defined by the conductor ideal (Z; : Zp) is
called the residual of £ with respect to D. The canomical exact sequence

0 ——3 Zng(wD) Ww}:?:‘g S :?:Trf; 0]

is called the frace-residual exact sequence of &£ with respect to D.

In our situation, the trace-residual exact sequence with respect to I
becomes
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0 3 Lot (2r + 20 — 4) — Lot Cr + 20 — 2) —3 Op1(dex — 6) — 0.

Since C € |[Zzi+n(@r+ 1)), the map H(P?,Zza(2r + 2a — 2)) —
HO (P13 Opi (4@:w-~6)) from the long exact sequence in cochomology is surjective
for every 1 <X e < r. Hence

AP, Ton(@r —2)) = - = W' {P?, Tu@r)) = A (P, Op(-2)) = 1,

establishing the proposition in the particular case p = 2. L]

REMARK. The irregularity of the r-cyclic multiple plane associated to B
and to a line H.. transverse to B, n being an arbitrary positive integer, may
be computed by the same argument. Of course, if 27 - 1 is a prime number,
then it might be shown that g(S) = 0 unless 4r + 2 divides n — one should
use Theorem 3.1 and the result form [22] cited in the introduction. But if
2r -+ 1 1s not a prime number, then irregular cyclic multiple planes exist for
other values of n. For example, if 2r + 1 = 15 and n = 40, then

gt = A (P2, To0(18)) + A (P2, T2 (24)) = 2.

A SPECIALIZATION OF OKA’S EXAMPLE WHEN p = 2

Keeping the notation from the previous paragraph, the conic I' is now the
union of two distinct lines that intersect at O and C 1s a smooth curve of
degree 2r -+ 1 passing through O and intersecting transversely the lines of T’
at this point. The curve B has 4r points of type Az, and one singular point
at O of type A4,41. It can be shown that the irregularity of the (4r+-2)-cyclic
multiple plane associated to B is again r. We develop the computation for
r = 2. In this case, B is a curve of degree 10 with 8 points of type Ay
and one point of type Ag. By Theorem 3.1 and using the notation from
Corollary 4.2, the irregulanity is given by

(P, Ty (@) + 1 (P2, Ly (6))

where £[1 is the support of the points of type As and £P = U of type As ZE]
1s the support plus the tangent directions. Now, 10 points on a conic do not
impose independent conditions on quartics, hence the first term is 1. The
second term is seen to be equal to the first after applying the trace-residual
exact sequence with respect to the two lines of I'. So the irregularity is 2.

The computations for r = 1 lead to a branching curve of degree 6 with
four cusps and an As singularity at O. The irregularity of a 6-cyclic multiple
plane is 1, given by hl(Psziﬂ'f[%Zg](z)). If in addition, the two lines of the
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degenerate conic I' are brought together such that the cusps collapse two by
two, the branching curve has three As singularifies. For a 6-multiple plane,
g = 2, with the contributions of the superabundance of the singularities with
respect to the lines and the conics both equal to 1. The branching curve is
reducible; it is Artal-Bartolo’s first example.

LINE ARRANGEMENTS FOLLOWING [7]

In this example we consider as branch curve a line arrangement
B = U?mlL; ¢ P? that has only nodes and ordinary triple points as sin-
gularities. We revisit, from the point of view developed here, results obtained
in [7]. See also [2] where line arrangements are examined using the techniques
from [1].

Using Example 2.8 or Corollary A.2, we have that for an ordinary triple
point 2/3 is the only jumping number < 1. The multiplier ideal is Zp. By
Theorem 3.1, if H. is a line transverse to B = Uf’mlf_,,-, then the normal
n-cyclic covering § corresponding to the n-cyclic multiple plane associated
to B and H,. 1is irregular if and only if 3 divides both 4 and n, and
| Z2(—3 + 23—b)‘ is superabundant, in which case

a(S) = ht (Pz,,l"z (ws + %)

In case § is irregular, it can be shown that the irregularity is bounded by a
constant depending on the arrangement B.

PROPOSITION 4.5. Let B = U?ml L;, Hy. and S be as above with b and
n divisible by 3. If t; is the number of triple points lying on the line L; for
each i, then
g(S) < mI{lin bri.

For the proof (see [7] for a different argument), we need a preliminary
lemma.

LEvMMA 4.6, If 3 divides both b and n and if one line of the arrangement
contains no triple point, then g(5) = 0.

Proof. Let B be the arrangement of the b — 1 lines of B except the one
with no triple point. If § is the normal n-cyclic covering corresponding to
the n-cyclic multiple plane associated to B and H.., then ¢(§") = O since
3 does not divide degB’. Taking & == 2rn/3 in Theorem 3.1 we obtain
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o= P25+ [ 5 Z)

where Z 1s the support of the triple points. L]

Proof of Proposition 4.5. Let us suppose that L; is the line containing the
minimum number of triple points. If B’ = L] Ul Li is a line arrangement
with no triple point on L] and if Z’ denotes the :support of the triple points
of B, then by the previous lemma, #! (Pz,Zza(WS o 2b/3)) == (. Since
hl(PZPZ'z(WS 4 2b/’3)) measures how much Z fails to impose independent
conditions of the curves of degree 25/3 — 3,

bl (P%::fz (WB & é_b)) < Bl (P{Z'zf (mg & %)) feard(Z — By =1,

hence the result. []

EXAMPLE. Let B be the line arrangement of 9 lines with 9 triple points
represented below (Figure 2). In a convenient affine coordinate system (x,y),
the triple points that lie in the affine plane are the following:

(0,0), (£2,-2), (~2,0), (0,5), (2.8) and —=_(—1,1), with s # —2,0 and 2.

s+4
#)
FIGURE 2
It is easy to see that there are two cubics — each the union of three

lines — through the 9 triple points, i.e. the system of cubics through the
points is superabundant. It follows that the irregularity of the n-cyclic multiple
plane associated to B and to a line H,, transverse to B, is 1 if and only if
3 divides n.

If s = 2, then the arrangement specializes to an arrangement with 10
triple points, 4 of them lying on the line x -+ y = 0. But these points lie on
a cubic, the union of three of the lines of B, and again hl(Pz_.,Zz(S)) =1,
hence the irregularity is 1 in this case too.
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REMARK 4.7. The irregulanty depends on the position of the line H,
with respect to B. To see this, let B be the line arrangement below of 5 lines
with 2 triple points from Figure 3.

FIGURE 3

If H, 1s transverse to B, then the irregularity of the 6-cyclic multiple
plane is 0. But if H,, 1is the line through the double points £ and @ then
the irregularity jumps to 1.

A, CLUSTERS AND MUITIPLIER IDEALS

Among the examples treated in Section 4 there is Oka’s example. The
irregularity of the surface involved is computed in Proposition 4.3. The
proposition was proved only in the particular case when the singularities
of the branch curve are of type A,,. The general proof may be supplied along
the lines developed in the particular case on condition that the multiplier ideals
involved in the formula for the irregulanty have a description fit for use in
the trace-residual exact sequence.

Throughout this appendix we work under the following hypothesis: B is
a curve on a smooth surface such that each of its singular points is locally
characterized by an equation of type x™ + y* = 0. We shall give a new
description of the multiplier ideals attached to B. They are determined only
by the study of the coefficients of the last exceptional curves in a log resolution
of B.
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PROPOSITION A.1. Let y: Y — X be a log resolution of B in X and
denote by Ep the last exceptional curve in the resolution above each singular
poini P.If cp is the coefficient of Ep in —Kyjx+ |1*EB], then the multiplier
ideal J(¢-B) is given by

JEB) = j1. ®p Or(—cpEp).

Moreover, if P is locally given by x® + y" = 0 with d = gcd(m.n) and
m=dp, n=dq, then

1. Oy(—cpEp) = 11, Oy(—cpEp), with cp= min (ap +bg),
aptbgzce
a.b=0

and ;1. Oy(—cEp) G 11.Oy(—¢pEp) for any ¢ > ¢C.

We refer the reader to [11] for a different description of these multiplier
1deals.

COROLLARY A.2 (see [4, 5, 111). Let P be a singular point of a curve
B on a smooth surface S. If P is locally given by x™ -+ y" = 0, then the
Jjumping numbers of B at P are

= | B

3=

with a and b positive integers.

Above a singular point P, through the log resclution ¢, lies an exceptional
configuration, a Z-linear combination of strict transforms of exceptional
divisors. The proof of Proposition A.1 will mainly deal with this configuration.
To prepare the way for the proof we need to formalize the setup and recall
some results from the theory of clusters.

A.1 CLUSTERS AND ENRIQUES DIAGRAMS

Let X be a surface and P € X a smooth point. A point Q is called
infinitely near to P if Q € X’ with g: X’ — X a composition of blowing
ups and @ lying on the exceptional configuration that maps to P. The points
infinitely near to P are partially ordered. The point (O precedes the point R
if and only if R is infinitely near to Q.
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DEFINITION. A cluster in X centered at a smooth point P is a finite set
of weighted infinitely near points to P, K = {P{",.... P}, with Py = P
and such that the ordering of the points is compatible with the partial order
of the infinitely near points — if a < 3 then either P4 is infinitely near
to P, or there is v < e such that P, and P4 are infinitely near to P, . The
point Py is called the proper point of the cluster.

In the sequel, if K 1s a cluster, then all points preceding a point that
belongs to K will belong to K, possibly with weight 0.

Let ¥ = Y1 = Y, =+« = Y] = X be the decomposition of j: ¥ — X
into successive blowing ups with Y, == Blp_ Y, . Each point P, corresponds
to an exceptional divisor E, C Y,.1. All its stnict transforms will also be
denoted by E, and the total transform of each E, by W,. When needed,
the strict transform of £, on Yz will be denoted by Efj) and similarly for
the total transform. For example WD = glo+D,

The strict transforms £,, and the total transforms W,, form two different
bases of the Z-module €3, ZE, C PicY. The combinatorics of the configu-
ration of the strict transforms on Y 1s codified in the notion of proximity for
the points of the cluster: a point Py is said to be proximate to P, Psz < P,
if Ps lies on Efj) C Y3, the strict transform on Yz of the exceptional divisor
corresponding to the blow-up at P, . Besides, a point that is infimtely near,
i.e. that is not proper, is always proximate to at most two other points of the
cluster. It 1s said to be free if it 1s proximate to exactly one point and satellite
if it is proximate to exactly two points of the cluster.

Let IT = ||p,s]| be the decomposition matrix of the strict transforms in
terms of the total transforms on Y. Since

Ey =W, — Z W3

PS "‘<P<\'

Poo = 1 for any o and p.s equals —1 if Pz is proximate to P, and O
otherwise. Notice that along the « column of IT the non-zero elements not on
the diagonal correspond to the points to which P, is a satellite. The matrix
-IT+'II is the intersection matrix of the curves E, on the surface Y. For
any c,

Ei = (1 4Pl

where p,, is the number of points Pz proximate to P, . Since the intersection
matrix of the curves W,, is minus the identity, there exist effective divisors B,,
that form the dual basis for the divisors —E,, s with respect to the intersection
form. In the sequel this basis will be referred to as the branch basis. Clearly,
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the decomposition matrix of the basis of strict transforms in terms of the
branch basis is IT-IT.

The points of a cluster K, their weights and proximity relations were
encoded by Enriques in a convenient tree diagram now called the Enrigques
diagram of the cluster (see [3, 6, 8]). If the weights are omitted, the tree
reflects the combinatorics of the configuration of the strict transforms £, < Y.

DEFINITION.  An Enrigues free 1s a couple (T.¢), where T = T(U, &) 1s
an oriented tree (a graph without loops) with a single rootf, with 20 the set
of vertices and & the set of edges, and where £ is a map

g: & - {‘slant’, ‘horizontal’, ‘vertical’}

fixing the graphical representation of the edges. An Enriqgues diagram 1s a
weighted Enriques tree.

EXAMPLE A 3. Let p < g be relatively prime positive integers. 7,, will
denote the Enriques tree associated to the Euclidean algorithm. It is a unibranch
tree. Let ro = ayry 72, ..., Fped = Gyl F e & Frp A0 Frpyon] 3 @pFr, With
ro = q and r; = p. The oriented tree has U = {P, |1 < a <ay+ - +a,}
and A = {[PuPur1]l | 1 <a < a1+ +a,—1}. The map ¢ is locally constant
on the a; edges [P, P,41] with g+ v+ g +1 < a < ap +- 0 +a;.
The first constant value of ¢ — on the first a7 edges — 1s ‘slant’. The
other constant values are alternatively either ‘horizontal” or ‘vertical’, starting
with ‘horizontal’. The Enriques trees 713, 723 and 757 are represented in
Figure 4. The tree Ts7 together with the weights # = 5, wn = w3 = 2

Py Ps
P Py Py Py Pa
’0 >0 Py
1 Py Pl
FIGURE 4

and w4 = ws = 1 becomes the Enriques diagram that reflects the Euclidean
algorithm for p = 5 and ¢ = 7: if P, is the initial vertex of one of the a;
edges on which ¢ has constant value, then u:,, = r;. The configuration of
exceptional curves is the configuration obtained when desingularizing the curve
x> 4y =0,
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The fact that clusters and Enriques diagrams carry the same information 1s
asserted by the following lemma. One more piece of terminology first. Let T be
an Enriques tree. A horizontal (respectively vertical) L.-shaped branch of T is
an ordered chain of edges such that the final vertex of each is the starting vertex
of the next, and such that all edges, but the first, are horizontal (respectively ver-
tical) through ¢. An edge is an L-shaped branch, regardless its value through 4.
It 1s a horizontal L-shaped branch if its value through &£ is either slant or
vertical and it is a vertical L-shaped branch if its value through ¢ 1s horizontal.

An L-shaped branch is proper if it contains at least two edges. A maximal
L-shaped branch is an [.-shaped branch that can not be continued to a longer
one.

LEvMA A 4 (see [8], Proposition 1.2). There exists a unique map from
the set of clusters in X centered at a smooth point P to the sef of Enriques
diagrams such that :

* For every cluster K = {P{",. .., P} the set of vertices of the image tree

is U = {Py,....P.} with the weights given by the integers wi,uwn,. ... w,.
The root of the tree is the proper point.

* At every point there ends at most one edge.

* A point P, is satellite if and only if there is either a horizontal or a
vertical edge that ends at the vertex P, .

o If there is an edge that begins at the vertex P, and ends at the vertex
Ps then P3¢ Eg;?), and the converse is true if P is free.

* The point Py is proximate to P, if and only if there is an L-shaped
branch that starts at P, and ends at Pj3.

* The strict transforms E,, and Eg intersect on Y if and only if the Enriques
diagram contains a maximal L-shaped branch that has P, and Py as its
extremities.

* An edge that begins at a vertex of a free point and ends at a vertex of a

satellite point is horizontal.

EXAMPLE A.5. The Enriques tree 757 seen in the previous example
has two maximal horizontal L-shaped branches. These branches are shown
in Figure 5 together with the configuration of the strict transforms of the
exceptional curves.

A.2 UNLOADED CLUSTERS

Lt & &8 d PP o g P} be a cluster centered at P. It defines a divisor

Dg = > w,W, on Y, an ideal sheaf ;.Oy(~Dg) on X and hence a
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P5

P Py

Py Eq Es

Py £y E;

FIGURE 5

subscheme Zg of X. The decomposition matrix IT is also called the proximity
matrix of the cluster Using it,

Dg = Z'U""a W, = Z Colly = Z boB .
I IS

(X

with w = ¢-II and b = ¢ 1111, where w = (wi,..., %), € = (C1,....Cp)
and similarly b = (b1,....b,). The lemma below clarifies the comparison
between the divisor Dk and the ideal sheaf ;1. Oy(—Dg) or, equivalently, the
subscheme Zg.

LEMMA A.6. Let Dg =% b,B,. If by <0 for a certain 3, then
#:Oy(—Dg) = j1.0y(—~Dg — Eg) .
Proof. We take ji. on the exact sequence
Omiy Oyp=bp= By) =0 =Dgiess Op, Dy g )+ 0.

Since
deg(—Dy |g,) = ~ (> _boBa) Eg=bs <0

we have 10,0, (—Dg [g,) =0. [

A cluster K 1s said to satisfy the proximity relations if for every P, 1n K,

Wy = Z Uiz < W -

PadPy
COROLLARY A.7 (see [3], Theorem 4.2). Ler K = {P{",....P¥} be a
cluster that contains a point P, at which the proximity relation is not satisfied.
If K' = {P;Ul oo s P s the cluster defined by w, =w,+1, u’i =wz—1

for every 3 with Ps proximate to P, and w! = w., otherwise, then K and
K’ define the same subscheme in X, i.e. j1.Oy(—Dg) = j1.Op(—Dg:).
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Proof. Let Dg = Y w.Ws = Y cofo = Y, boB, and Dg =
>, blB.. The coefficients b, are given by b = ¢ II'I1 = w Il = w ~ .
Then

bf = w’ mw; O Wwﬁ“(nfn)a = b“?"(HiH)Q
and

¢ =¥ MO0 =p 1D + J1 1D, - J1D 7!

hence Dy = Dy + E,. But b, =, — 0, < 0 and the result follows from
the previous lemma.  []

The cluster K’ is said to be obtained from K by the unloading procedure.
Starting from X, iterated applications of this procedure lead to a cluster XK
that satisfies the proximity relations and defines the same subscheme in X.
The cluster K is called the unloaded cluster associated to K. Notice that a
cluster is unloaded if and only if the coefficients of its divisor in the branch
basis are non-negative.

EXAMPLE. Let {#,P}, P3P}, PL} and {P}.P3, PY, P, PL} be two clus-
ters with the proximity encoded by the Enriques tree 757. The former is

unloaded. The latter does not satisfy the proximity relation at P;. The un-
loaded associated cluster K, is {P‘I‘?P%,,P%:PLP(S)} and Dg = By + By.

A3 THE PROOF OF PROPOSITION A.1

We consider R, ,, the set of unloaded clusters whose lattice tree is T, ,
with p < ¢ relatively prime positive integers. Given a positive integer ¢, we
want to characterize the unloaded cluster in £,, whose associated ideal 1s
i1.Oy(~cE,), with E, the last exceptional divisor.

All along this subsection the W,,’s, 1 < & < r, denote the total transforms
of the exceptional divisors in the process of blowing up the points of the
clusters in £, ,, the £, s the strict transforms and the B, 's the elements of the
branch basis. The integer r is given by r = aj 4+ -+ +a,,, where g = a1p-+r,
p=ar b3, ..., Ymel = GuVy. Findlly, ¢ @ ZE, — Z =~ ZE, denotes
the projection of €B, ZE,, on its last factor.

We need four lemmas. In the following lemma two finite sequences closely
linked to the Euclidean algorithm are introduced.
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LEMMA A8 If (fdoi<jcm and (dD1< j<my1 are two finite sequences

defined by
fi=fi2+ap forany 1 <j<m
and
dj=0 2+rap1fir forany2<j<m+1

and such that f.1 = fy = 0 and dy = o1 = 1, then the remainder v; in the
Euclidean algorithm is given by —fi_.1q+ o;p if j is odd and d,q —fj.1p if j
is even.

Proof. left to the reader. [

REMARK A.9. If m is odd, then f, = g and é,41 = p, and if m is
even, then f,, = p and 4,41 = ¢q. Indeed, let us suppose that m is odd. Then
the equalities follow since for any 1 < j < m the integers f; and ¢, are
relatively prime and O = 71 = dpr 1@ — frb -

LEMMA A 10 If (f)oi<jcm and (0D1< jxmi1 are the finite sequences
defined in Lemma A8, then for any 1 < j < m and any 1 < k < aj,
the coefficient of the last strict transform in By ..o 4r equals either

(fi2+kdpp if j is odd or (fi 2+ kdpq if jis even.

Proof. The proof proceeds by induction on j and &. It is clear for j = 1
and any k. Suppose that j is even, & <t a; and that P Baytoba_ k) =
(fie2 +kd)g. We recall that B, is given by the Enriques diagram for which
the weight of the point P, is #, = 1, the weights of all the points that do
not precede P, are 0, and all the others are computed by imposing equalities
in the proximity relations. Then

Bajyotartitl = Bagoqa it + Warpo gtk + Bago g
and
B taikr) = (fj2 + kg +1+ (fiizs + a1 6-10)p
= (fi-2 + k0 q + dg — fi1p + fi-1p
= (fiz +k+ 1)) q.

The argument is similar in all the other cases, i.e. when either k& = a; or
jodd LI

LEMMA A 1L If K € R,,, then the coefficient of E, in Dy is of the
form ap -+ bg, with a.b non-negative integers.



THE IRREGULARITY OF CYCLIC MULTIPLE PLANES 297

Proof. Since Dy =Y oW — )8, the result follows from the previous
lemma. []

NOTATION. The cluster K, ,(ap + bq), a.b > 0, is the unloaded clus-
ter associated to {P{,..., PO PPtPL e whose associated ideal is

1. Oy(~(ap + bOE).

LEMMA A12. Let K € 8,, such that ¢Dg) = ap -+ bg. Then
K = K, (ap + bq), the cluster that corresponds fo ;z*@y(w(ap 4 bg)Er),
if and only if every ordered chain of maximal L-shaped branches determined
by the points P,,,....P, — each P,, precedes P, and the jth maximal
L-shaped branch starts at P, and ends at P, ., — safisfies

{ {
() > s, = W) < 3 Py +2 -1
Py | Ko ]

(Recall that the non-negative integer p, is the number of points Py rhat are
proximate to P, .)

Proof. The proof divides into four steps the third being the main one.
First, if an unloaded cluster does not satisfy the condition (x), then an
inverse of the unloading procedure may be applied to K with the output
an unloaded cluster. Indeed, suppose that there exists an ordered chain of
maximal L-shaped branches determined by the points P, ,...,P,, such that
Ziml(u;“k - W) 2 zimpak 4+ 2 - {. We may further assume that all its
proper subchains satisfy (x). It follows that

Wy — Wy ™ Py, We — Wa & Poy

and for any other ay,

ﬂ'}(lk - 'Zz(ik mp(}:k - ]- 2

By Lemma A .4, the strict transforms E,,,. ..., E,, intersect two by two. Then,
i i
(DK i Z E(k'k) By = (Z boBy — ZEak) By,
K] 43 k]
Wb(};lméw(p(klm%]-)wl} Im]‘

ol by w | Sl Bl wldl, Tewbml
"““"bo;{“““"l"f“(Pa,"f"“l)_«. Iml
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hence (Dy — ZimlEak)‘Eag < 0 for any ;. We conclude that the cluster K’
whose divisor 1s Dg - ZimlEak 1s still unloaded and the coefficient of £,
in Dg is unchanged. Clearly, ;1. Oy(—Dg) C 1. Oy(—Dg).

Second, if K is a cluster that satisfies (x), then for any 1 < & < r and
any ordered chain of maximal I-shaped branches determined by the points

P,,..... P, such that the last one ends in Pj,
i
(A1) > bo,#Bu) < 9(By).
j=1

Let us suppose that Pz is the final vertex of a maximal horizontal L-shaped
branch (the argument being similar if the branch is vertical). There are two
cases: the last maximal L-shaped branch is either proper or it is not, i.e. there
exists { < r - 1 such that 3 = gy -+ + @ <+ k with in the first case k= 1
and 1n the second 2 < k < a;,.; (see Figure 6).

Pg.i1
Ps

P41

a; virtices Bl
Heo a; vertices .
£ T T
P(,l»‘g
FIGURE 6

In the first case, due to the condition (%) and using the formulae of
Lemma A.8,

{ i1
> by #(Bo) <> (Pay — Dip(Ba) + Poyp(Ba)

L @l ey v il D) p

=(—d1+ 0 +afitap+ e+ DfDp
= (01 + 041 +fie1)P

= =P 9 Baj 4 tart1) -
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For the second inequality we have supposed that 3 < r and hence p,, =

Papdrvpay = a;+ 1. If f=vr, then oy =a; +++ +ay.1 and p,, = a, and
we get

{
3 by oBy) < @ fitasfst Fanfu)p = (=01 48P = —p+9(B,).
j=1

Similarly, in the second case, i.e. when & = g+« +a;+k with 2 < k < a;.1,

i forl
Y boo(Bo) < Y (P, — DpBa) + Po#Bo)
J=1 j=1

<lmfi+aa s+ aifier + (fier + k= Ddip1))p
= (=l dip + (fig ke~ Ddeg))p
= —p + ¢Baittati) -

Third, if both K and K’ are unloaded and satisfy the condition (x)
and are such that @(Dg) = @(Dg), then K = K’. To justify this, let
Dyg =By + <+ b.B, and Dgr = BBy + -+ b.B,. We want to show that
for any e, b, == b),. Then, if P, ~+ Lj indicates that the vertex P, is the
initial vertex of a maximal horizontal L-shaped branch,

DR = > bapBu)+ > ba(Bu) + brp(By) = ap + bg + brpq.,

(e s (S s
P~y FEONEVE

with a,b non-negative integers. By the previous step applied to 5 = r, it
follows that ¢ > @ and p > b. Analogously, ¢(Dg:) = dp+¥b g+ b pg, with
g>d >0and p>»b >0 We get

(b, — bpq = (a—dp + (b— b)g

with |a—d'| < p and |b— ¥| < ¢, and hence b, = b,, a= & and b = b/
since the integers p and ¢ are relatively prime. Now, the equality among the
other coefficients is established similarly. Keeping the above notation, suppose
that b, = b/, for any o > #, with 4 <« r the initial edge of a maximal
horizontal Z-shaped branch. If by < &/, then

ap= Y bap(Be)+bseB)+ > bap(By)

a3 B<adr
P(V WL}, P<\,- "N}Lh
. . /
< 9By +bypBa) + > bHLpB) < dp,
By

Pc\,- "J"}I.;h
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contradicting the identity a = & obtained previously.

To finish the proof of the lemma, we notice that the unloaded cluster whose
associated ideal is 1, Oy{—(ap + b)E,) satisfies the condition (x) since the
subscheme supported at P = P; defined by this ideal is the smallest subscheme
such that its pull-back on Y contains FE,. with multiplicity ap --bg. We have
seen in the first step that (%) characterizes this minimality condition. L1

Now we are ready to identify the unloaded cluster whose associated 1deal
is 1. Oy(—cE,). We have

11 Oy(—cE,) = 11.Oy(—¢E,) with ¢= min (ap + bg).
ap-tbg=e
a.bz0

So the unloaded cluster whose associated ideal is e, Oy(—cE,) is K, 4(E).

Proof of Proposition A.1. We shall argue on the cluster associated to
the divisor —Kyjx + [p*£B]. To find the multiplier ideal is equivalent to
determine the unloaded corresponding cluster. Let the pull-back of B be
> 1€uEs +B=c¢ -E-+B. Then —Kyjx + [ p*€B] = > [ waW, = w w, with
w=—w -+ |fe¢] I and w = (1,...,1).

Let P,,...,P, be ordered points that determine a chain of maximal
L-shape branches. Then
(A.2) w—w=w I = |{c| I~ w TI.

The matrix —II -'II is the intersection matrix of the strict transforms E, on
the surface Y. So for every 1 < j<{1,

Uy, U {gcaj 1 E (pczj : KC%E {gcaj t (pchj
and Z;ml('w%. ~ ;) 18 equal to
Jo
téc@u_; T Pa {Cm_; Z(pm 56‘% Do Lécw_% ‘icm 1 i Z(p(k_;
j».....
Since ¢-IT-I1 = (0....,0,d), we have

{ {
(A3) ~2< Y (W, = T} < Y Poy + 21
j=1

o1
Putting / = 1 we observe that if the proximity relation is not satisfied at P,,,
then w,, — i, = —1. But the unloading procedure of L.emma A.7 at P,
changes the vector w — w into the vector w — w -+ (I ‘II),,. It follows that
the unloading procedure does not change the inequalities in (A.3) for the new
cluster. So the associated unloaded cluster satisfies (). LLemma A .12 gives
the result. [
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Proof of Corollary A.2. Let d = ged(m,n) and m = dp and n = dq. Let £
be a jumping number for B at P and consider the cluster whose associated
divisor is the exceptional configuration in |;*(£B)]. The coefficient of E,, the
last strict transform for a log resolution of B at P — the Enriques diagram
associated to the configuration of strict transforms above P is T, , with the
weights corresponding to 4B, — must be of the form ap + bg + 1, for some
a,.b > 0. But the last coefficient is |[£dpg| — (p + ¢ — 1), hence £ is the
minimal rational number such that

|¢dpq| = (a+ Lp + (b + 1)q,
and the result follows. ]

ExXaMPLES A.13. Let P ¢ B be a singular point of type Az, locally given
by x*+y¥*+l =0, r > 1. The Enriques diagram of the minimal log resolution
of B at P is T3 3,41 with the weights as shown in Figure 7.

Prw%«l Prw{NZ
1 1
Pr
o2
P
2
Py
2
FIGURE 7

By Corollary A.2, the jumping numbers < 1 of B at P are £, = 1/2 +
af(2r + 1), with @ = 1,...,r. Then

T EaBp = 11Oy (—QRa—1DE42) = p1.O0r(—2aE42) = 1 Op(=Wi—++ = W)

for any a. The corresponding subscheme Zy2,41(2a— 1) = Z< is the
curvilinear subscheme defined by the unloaded cluster {Py,...,P,}.

Let P € B be a singular point locally given by x* +y* = 0, r > 1.
As before the Enriques diagram of the mimmal log resolution of B at P
is Ty,. It consists of r free points with all the weights equal to 2. By
Corollary A.2, the jumping numbers < 1 of B at P are &, = 1/2 -+ a/(2r)
with @ = 1,....r — 1, and by Proposition A.1 the multiplier ideals are
Ty Bp = (1. Oy(—akE,) = 1. Oy(—W1 — +««— W,). The subscheme Z; ,(a@)
18 Z,[f], the curvilinear subscheme corresponding to the unloaded cluster

{P1,....P,} forany 1 <a<r-—1.
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A4 OKA'S EXAMPLE AND THE PROOF OF PROPOSITION 4.3

Keeping the set-up and notation of Section 4, suppose that p < ¢. By
Theorem 3.1 and Proposition A.1, the irregularity of the pg-multiple plane
associated to the curve C,, is given by

- 1 2 3 i
@)= 3 HPI womromman(—3 + o+ 59).

o871
ap-+Jg<pg

The sum consists of (p—1)(g-1)/2 terms, and as in the particular case p = 2,
we shall show that each of them equals 1. For an arbitrary couple (e, ),
with e« > 2, we first apply the trace-residual exact sequence ¢ - 1 times with
respect to C,. If Z denotes the subscheme Z, (o — Lp + (J — L)g + 1),
using the lemma hereafter, we have the short exact sequence

0— 1 (oDprEan(—3 a1+ 59
~—t Tz(~3 +ap + B@) < I, (-3 + ap+ @) — 0.

Let P be any point in the support of Z and %y be the weight of P = P
in the unloaded cluster K, ,((cx — 1)p + ( — 1)g + 1). The subscheme Z is
contained in 7z C,, hence using the multiplication with the equation of , at
the power 11, the global sections of Ops(—~w1g-+n) live in HO(Pz_“,Z'g(n)) for
any integer r. Since Tre, Z = unCy ECp’ the global sections of Z'Trcpg(WS»émn)

are cut out by the curves of desree —3 + n — unq, hence H%p is surjective.
We conclude that

lrp2 ; P
(Ad h (P >Zzp>q((<>w1)p+(;'sw1)q+1)(““”3 TP ,‘3‘5’))
1/p2 Lo

= h (P .«.:?:,sg,fm((’_fgw1).51,.+~1)(”"”“3 e P JQ))
whenever « > 2. Then, in case 4 > 2, we apply & ~ 1 times the trace-
residual exact sequence with respect to (, starting with the subscheme
Z = 2, (8~ 1)g+ 1). As before, we have

0=T; qaoan3+p+E - D@ = Lz(=3+p+ g
D I, 2(-3+p+ 89 =0,

the surjectivity of H%p being given this time by the inclusion Z ¢ wC,, with
w the sum of the weights of the points Py, P;,..., P, . Py 41 1n the cluster
Kp,q((:’g o 1)@ =+ 1)- S0

1/p2 : n . plip2 ; ;
(A5 WP Ty crmgrn(—3+p+80) =h (P Ty5(-3+p+9).
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Finally, 3;,,4@) = | JpP and we apply once more the trace-residual exact
sequence for this subscheme with respect to C, to get

0wt Opa(—3 4 q) ~—3 ZZM(T)(WS +p+q —* Oc(~3+p)— 0.

Since q > p, hl(Pz,,Z'zp (D3 +p+@)) = h'{Cp, Oc,(~3+p)} = 1. Together
with (A.4) and (A.5) this concludes the proof of the proposition.

LEMMA A.14. Let Z = Z, ,(ap + Aq + 1) be the subscheme associated to
the unioaded cluster Kp!q(m) and centered at a point of intersection
of Cp and C4. If a > 1, then Resc, Z = Z, (o — Lip + 8q + 1), and if
821, then Resc, Z = Zp J(ap + (8~ Dq + 1).

Proof. We first show that if K, (ap -+ 3q+ 1) = {P{",.... P}, then
the subscheme RescZ corresponds to the unloaded cluster associated to
K s {P"i”l“""l ..... P}, To see this, let us denote by & the blowing up

of the plane at P = P; and by ;/ the sequence of the remaining blowing ups

that compose z¢: X g Xz = BlpP? i X1 = P2 Then
1 .
Iz = j1Ox(~Dg) = &4 (Opp m (~un W) & 1L Ox(—Dg + un W) .

The ideal je, Ox(~Dg-+1u:1W1) is associated to the cluster K* = {Py?,... P}
centered at P;. If & is given locally around P; by x = x’y and y =y, then
the equation of the exceptional divisor Egz) = Wiz) C BlpP? is ¥ = 0. It
follows that

A6 Tz L) = (euOpp(—11 W) & 1, Ox(~Dg +unW1)) : Typo)
= 2. (Opp e~y — DW) & 1, Ox(—Dg + w1 WD) ,

hence the result. Next, suppose that ap + 3g + 1 = ap -+ bg. From the proof
of Lemma A.12, since the cluster {P{",... P} satisfies condition (=), it
follows that K satisfies this condition too and hence K is of the type K, ()
with

c=p(n =W+ Wo) =p(>_ Wo)—p(WD=ap+bg—p=(a—1)p+bq.
x> ¥

Here ¢ is as before the projection ¢: B, ZE, — Z =~ ZE,. So ¢ = ¢ and

Resc, Z = Z, ,((a — 1)p + bg). To finmsh the proof of the first assertion, it 1s

sufficient to show that (& — 1)p + dg -+ 1 = (a ~ 1)p - bg, where « > 1 and

ap + Bg + 1 = ap + bq. But this is clear, since if there existed non-negative

integers @', b’ such that
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(a~ Dp+bg>ap+bq2la~1p+fe+1,

then ap -+ 3¢ + 1 would be equal to (& + 1)p + b'q.

The proof of the second assertion 1s similar; the argument in formula (A .6)
has to be repeated a; + 1 times, i.e. for all the free points of the Enriques
diagram. [J
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