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USING GAUSS MAPS TO DETECT INTERSECTIONS

by Frederico Xavier

To Andréa, with love and admiration

ABSTRACT. A family of compact submanifolds with boundary has a non-empty
stable interior intersection in R provided a certain geometric estimate holds. As a

global application we establish a sharp intersection criterion for a family of properly
embedded my-dimensional submanifolds M, C R" that is based solely on their Gauss

maps Qj : My G(n — my, n), Çj(p) [TpMj]x

1. Introduction

F°r 1 < J < k < n, 2 < k < n, let Mj c RB be a smooth compact
submanifold with boundary, 1 < dim My < n — 1, and fy. Mj -¥ RB a smooth
immersion. In this note we are interested in formulating geometric conditions
under which the intersection

/i(intMi) fl • • • P,fk(intMk)

is non-empty and stable. In order to ensure stability under perturbations, and

since one does not know a priori where the intersections are going to lie, we

require that for all choices of pj intJWy the normal spaces

[df(Pl)TpxMi\L, • • •, W(Pk)Tp,Mk\L

are in direct sum. Starting from this natural assumption, we prove that the
above intersection is non-empty provided the conditions are such that a certain

geometric estimate holds. The inequality in question involves three features:
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the intrinsic sizes of the submanifolds, a weighed measure of the effect of the

Euclidean translations, and the distortion of the aforementioned configurations
of normal spaces. This is the content of Theorem 2, our main result.

In the simplest case when M\ and M2 are compact hypersurfaces with

boundary, Theorem 2 reads as follows. Let a [0, f] be the inftmum of the

angles formed by all normal spaces (lines) corresponding to arbitrary points
in intMi and mtM2, one point from each hypersurface. If a > 0 and

\/2 /a\ /ex\ min {d\(q\,dM\), d2(q2,dM2)\
— cot — csc — < sup —— :
2 \2/ \2/ q\M\,qzMz |/l0?l) — fli^l)]

then the intersection /(intMi) 0,f2(mlM2) is non-empty.

The result below is a sharp global consequence of our work on the

intersection of compact manifolds with boundary :

Theorem 1. Let M\...... Mk C R® be connected, properly embedded

non-compact smooth submanifolds without boundary, 1 < dimMj — mj < n,
codimMii-- • •+ codim M^ < n. Let Qy. Mj ~¥ G(ji—mj, n), Gjip) — [TpMj]^,
be the Grassmanian-valued Gauss map of Mj. Assume that for all points Ej
in the closure of Gj{Mf), 1 < j < k, the subspcices E\,... ,Ej of R" are
in direct sum. Then M\ O • • • OMk is non-empty. Moreover, this intersection
reduces to a single point if codim M\ + • • • + codim Mk — n.

COROLL.ARY 1. Let M\, M2 c R" be properly embedded connected smooth

hypersurfaces without boundary. If G\(M\) fl GiiMf) — 0 then M\ P,M2 f 0.

Corollary 2. Let M\,,Mn C RK be properly embedded
connected smooth hypersurfaces without boundary. If every hyperplane in
RP" 1

— G(l,n) intersects at most n — 1 of the sets Q\(M\)....,Çn(Mn),
then Mi ft • • • O Mn consists of a single point.

Corollary 2 generalizes to properly embedded hypersurfaces the observation

that n affine hyperplanes with linearly independent normals intersect at a single
point. In the linear case the Gaussian image Gj{Mf) is trivially closed, since it
reduces to a single point. However, elementary examples show that Theorem 1

fails already at the simple level of Corollary 1 if one does not take the closures

of the Gaussian images into account. To see this, consider an open circular
cone K in R3 with central angle < ci. Inside K we take a rotationally
symmetric complete non-compact surface M\ of positive curvature that is
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asymptotic to dK. Let M2 be any plane tangent to K— {0}. One can see that

Corollary 1 does not apply. Indeed, M\ OM2 — 0 and Q\(M\)nGiU^h) — 0,
but S2CM2) ~ C

One can also regard Corollary 2 as an existence and uniqueness result for
solutions of certain systems of non-linear equations. From this standpoint the

subject matter of this paper relates to the broader question of deciding when

a locally invertible map admits a global inverse. The latter topic has been the

object of intense research over the years, with applications and connections

to many different areas of mathematics. Recently, new mechanisms of global
inversion have been discovered, mostly of a topological nature. The interested
reader may want to consult [l]-[4], [6]-[14] and the references therein. We

mention explicitly some of the more recent developments. In [9] and [10]
algebraic methods and surgery theory were used to give a generic solution,
in a suitable sense, of the Jacobian Conjecture. A special case of the main
result of [8] states that a surjective local biholomorphism / : Cn -¥ Cn is

bijective if and only if the pre-image of eveiy complex line is connected
and simply-connected (the proof uses geodesies and the fact that the Hopf
map has no continuous sections). The main result in [14] is a necessary and

sufficient analytic condition for an injective holomorphic self-map of Cn to

be the identity. This is potentially of interest in the study of Aut (Cn), n > 2.

In [1] invertible maps were characterized by a homological condition: a local

diffeomorphism of R* into itself is bijective if and only if the pre-image of

every affine hyperplane is non-empty and acyclic. This result is more general
than the one in [7], which in turn improves in finite dimensions the classical

global inverse function theorem of Hadamard.

As to the organization of this paper, Theorem 1 is established in §4, in a

more general form (Theorem 3), as an application of Theorem 2 and the ideas

that go into its proof. Theorem 2 itself is stated in §2 and proved in §3.
Our arguments have a clear dynamical interpretation and are self-contained.

2. Statement of the main result

Recall from the introduction that our basic problem is to formulate con-
k

ditions to have the immersions fj\ Mj R" satisfy 7^ O-
j= 1

In order to ensure that an eventual intersection persists under perturbations,

we require that for all choices of pj intMj the normal spaces

[df(pi)TPxMi\^-,..., [df(pk)TPiMk]^ are in direct sum. Besides this qualitative

condition, our estimate in Theorem 2 below captures what seem to be
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the three essential quantitative features of the problem:

i) The sizes of the submanifolds intM), relative to the metric induced by f.
ii) A numerical way to measure the effect of translations.

iii) The deviation from orthogonality of all sums [df\{p\)TPxM\\^ ||§ • • % #
[dMPk)TPkMk]L,

Before we can state our results we need to discuss iii) above and introduce
a quantity that measures how distorted a direct sum of subspaces is, relative

to orthogonal sums. This can be formalized as follows.
Given n> 2 and positive integers a1,.... a* such that a\ + • • • + o:k < n,

we say that a continuous V : G(a\, n) x • • • x G(ak, n) —> [1. to] is a distortion

function if the following two conditions are met:
a) (E\,..., Ef) X>-1(oo) if and only if the subspaces E\._... ,Ek are not in

direct sum.

b) (E\,..., Ef) V""l(l) if and only if the subspaces Ei,... ,Ek are in direct

sum and the decomposition Ei ® • • • © Ek is orthogonal.

The idea of considering the distortion of a direct sum (deviation from

orthogonality) is a natural one, and it comes up in other contexts as well (e.g.,
the Oseledec multiplicative ergodic theorem in dynamical systems [5]). The

particular choice of distortion function that we make below reflects the flow
of the estimates in the proof of Theorem 2.

Consider proper subspaces Ei,...,Ek of RB which are in direct sum

/ k \ k.

and set q.j — dimi^. In particular, m dimf say
7=1 J j= 1

that an ordered set of unit vectors B — {ei,.. .,em} is an adapted basis of
E Ei (B ••• (B Ek if {ei,---,em} is a basis of Ei, {eai+i,... ,em+a2}
is a basis for Ei, and so on. Let M — Mg be the symmetric matrix

m 2
given by Afj — (e,-, e/>, 1 < i, j < m. Since I y,«,-] > 0 whenever

«=1
m

YLy\ > 0. fhe eigenvalues of Mg are strictly positive. Denote by Ag
i= i
and Àg the largest and smallest eigenvalues of Mg, respectively. From

det({e,-, ef)) — |det((êj. e/j) | — |eiA'"Aera| < |^i|- — |6m| — 1 and tiM m,
one has

(1) m > Ag > y^Ag > 1 > Ag > 0.

Given an adapted basis B of E, we set

DISCB)
Ag
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We define a distortion function as follows. If (E\,.... Ef) are subspaces
in direct sum, set

DIS(Ei,..., Ek) — inf DIS(i3),

where the infimum is taken over all adapted bases of the decomposition. Of
course, to comply with a) we define DIS(£i,... .Ek) — oo if E\,... .Ek are

not in direct sum. We shall see shortly that DIS is a continuous function.

As an example, let E\ and £2 be two one-dimensional subspaces in R"
making an angle a G (0. |]. If B — ^2} is an adapted basis of E\ ® E2

with (0,62) — cos a- the eigenvalues of M& are 1 A cos a and 1 — cos a,
so that

DIS(£i,£2) - ^cot(f) csc(7)-

It follows from (1) that if DIS(B) — 1 the adapted basis B is as straight
as possible that is, it is orthonormal. Another easy consequence of (1) is that
the infimum in the definition of DIS(£i,... .Ek) is actually attained by some

adapted basis. In particular, if DIS(£i,... ,Ek) — 1 any adapted basis that
realizes the infimum must be orthonormal, and therefore the summands must
be pairwise orthogonal. This shows that DIS satisfies b) in the definition of
distortion function.

As before, let E\,...,Ek be subspaces in direct sum. Taking the
normalization of the orthogonal projection of an admissible basis that realizes

DIS(£i,... ,Ek) onto a nearby configuration F\,..... Fk in direct sum (and
vice versa), and using the fact that the (largest and smallest) eigenvalues of a

matrix vary continuously with its entries, it is easy to argue that DIS is a

continuous function on the open dense subset of G(a\, n) x • • • x G(a.k, n) formed

by all subspaces which are in direct sum. Hence DIS is locally bounded, as

long as the summands are in direct sum. We thus have :

Lemma 1. For 1 < I < k, let {Ej}j2i C G(ai,n) be a sequence

converging to Ei such that the subspaces E\,...,EJk are in direct sum for
every j. If lim DIS (e{,. Ék) — 00, then the subspaces E\,... ,Ek are not

J-">00
in direct sum.

Similar arguments show that the function DIS is also continuous at those

(Ei,...,EG for which E\,... .Ek are not in direct sum, but this will not be

used in our proof. Hence, the larger the distortion of a direct sum, the closer

the decomposition comes to not being a direct sum.
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We can now state the main result of this paper, an intersection criterion
for compact submanifolds with boundary:

Theorem 2. For 1 < j < k < n, 2 < k < n, let Mj be a connected

compact manifold with boundary, mj dim Mj < n — 1. Let fj'.Mj —> R"
be a smooth immersion, dj the riemannian distance in intM) induced by fj
and Qj\ intM) — G(n — mj.n), Gj(p) — [dfj(p)TpMj]- c Rw, the associated
Gauss map. Suppose that for all choices of points pj intMj, 1 < j < k,
the subspaces Gi(pi),... ,.Gk(pk) of RK are in direct sum. Assume also that
there are points qj Mj, 1 <j < k, such that

(2) sup DIS (£i(/?i),.. ...GkiPkï) < min r •

AgrtM -J- I y] (n _ m.) \ffq-) -fiqj)|2]2

Then /i(intMi) fib • • fl/^fintM^) is non-empty.

Remark. We may assume that the right hand side of (2) is finite, otherwise

one already has fiiqi) -fk{qk) /i(intMi)fl • • • 0,fk(mlMk).

The estimate in Theorem 2 assumes a particularly simple form in the case

of two compact hypersurfaces. In the next corollary we use the above formula
for DIS(£i;£2)-

Corollary 3. For j — 1,2, let f: Mj Rn define a smooth connected

immersed compact hypersurface with boundary. Let a [0, f] be the infimum

of the angles formed by all pairs of normal spaces (lines) corresponding to
arbitrary points in int Mi and int M2, one point from each hypersurface.
Suppose that a > 0 and there are points qi Mi, g2 M2 such that

Then the intersection /(intMi) fl/2(intM2) is non-empty.

The estimate in Corollary 3 displays the features i)-iii) described at the

beginning of this section. Indeed, the left hand side of (3) manifestly measures
the distortion (or non-orthogonality) of the normal spaces. The numerator in
the right hand side involves the riemannian sizes of the surfaces whereas the

denominator, which is translation-invariant, changes if only one of the surfaces

is translated. Fixing any two of these three geometric quantities while letting
the other degenerate violates (3), thus allowing for the intersection to be empty.

djiqj, dMf)

l<i<k

(3)
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For instance, the inequality fails if one of the two surfaces is kept fixed
while the other is translated by a large vector, as the denominator in (3) tends

to infinity, the other two quantities remaining the same. Similarly, start with
compact embedded hypersurfaces with boundary for which M\ DM2 i= 0 and

ÇJi(intMi) H GiixntMi) 0 (e.g., two flat discs in R3, centered at distinct
points qi and qi, whose interiors intersect). Keeping M\ constant, while

replacing M2 by smaller subsets converging to qi M2 — M1, will eventually
make the intersection empty. In this process, the numerator in (3) goes to

zero, while the other quantities remain constant. The third alternative can be

illustrated by taking two orthogonal circles, centered at different points q\
and q2, whose interiors intersect. Rotate one of the circles about its center

until both circles become parallel. The distortion of the normal spaces varies

from one to infinity, whereas the right hand side of (3) remains constant. The
estimate in Corollary 3 is also sharp. To see this, take M\ and M2 to be the
closed discs of radii 1 + e in the xy and yz planes, with centers at the points

qi — (1.0.0) and $2 — (0,0.0), respectively, and then let e-4 0.

3. Proof of Theorem 2

We begin with the dynamical interpretation behind the proof of Theorem 2.

For simplicity, suppose that the submanifolds are embedded in R" and that

their interiors do not have a common intersection. Assume also that any

configuration of normal spaces, one from (the interior of) each submanifold,
gives rise to a direct sum.

We fix Mi and continuously translate M2,..., Mj: along suitable directions
until they intersect Mi at the same point, after one unit of time. The idea is to
undo the motion of the submanifolds M2,...,M*, in the direction of increasing
times, starting say at time t — 1, while keeping track of the evolution of the

k

(local) intersection set. Since we are assuming f) intMj — 0, the backwards
j= 1

motion will cease to have a common intersection sometime before (or when)
one unit of time has elapsed. One wants to control the speed at which the

intersection set is propagating. Of course, it is technically easier to observe

the evolution of a single point (given by the flow of a vector field, say),
rather than that of the entire intersection set. In the case when the sum of
the codimensions is strictly less than n it is crucial that we choose curves

parametrized by time that move orthogonally to the intersection set, in order to
minimize speed. As explained, the intersection set must cease to exist before
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(or at) time t — 0. But this can only happen if for some submanifold Mj the

appropriate integral curve xj in the interior of Mj reaches ()Mj before (or
at) time 0. The speed of motion of the intersection set is controlled by the

local configuration of normal spaces to the moving submanifolds. In fact, the

speed increases if the normal spaces of the submanifolds tend to "rest" on
each other. A somewhat similar situation occurs if one rotates a line L\ in the

plane about one of its points, with constant angular speed. The intersection

Lf 0,L2 between the line L\ rotated by 0, and a line L2 parallel to L\, moves
faster as MO. In other words, the speed of Lf f\Li increases when the

distortion of the configurations of their normal spaces tends to 00.
As it was indicated above, one must control the distortion of the direct

sum of normal spaces at the intersection sets during the evolution. But since

we are simply translating the submanifolds, the supremum of the distortions
of the configurations of all normal spaces remains constant throughout the

motion. The estimate (2) in the statement of Theorem 2 comes in precisely
to guarantee that the intersection set in the backward motion exists in the

interiors of all Mj's for more than one unit of time, a contradiction to the

original assumption that the interiors of the manifolds are disjoint.

Let us now proceed to give a formal proof of Theorem 2. For 1 < j < k
define Oj by

(4) a\ —fiiqi) -fjiqj) - ctj.

Hence a\ — 0 and, from (4),

(5) (/1(intMi) + taO n • • • H (A(intMk) + tak) f 0

for the value i — — 1. The theorem will be proved if we can show that (5)
holds for t — 0. In fact, we will show the validity of (5) for all i [—l.L),
for some T > 0. We begin with t sufficiently close to —1 :

Lemma 2. There exist S > — 1 and unique smooth curves Xj\ [—1. A] —¥ Mj
such that, for all t [—1, d],

Xj(t) int Mj, Xj{—1) qj.
(6) /iChCO) =fj(Xj(t)) + taj} 1 < j < k.

dfi(xi(t))x[(t) Gfxft)) © • • • © Gk(xk(f}) Ç Rn.

Since the hypotheses and the conclusion are local in nature we may assume,
for the purpose of proving Lemma 2, that (a small neighborhood of qj in) Mj
is contained in RB and fj is the inclusion. With this identification, (6) becomes
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x/f) G int Mj, Xj{— 1) — qj.
(7) x\(f) — Xj(t) -ttcij, 1 < j < k.

Ait) e alexia» © • • • © ç r«

For j fixed and 1 < I < l(j) n—rrij — codim JW), let £j be an Sn~~1 -valued

smooth function defined in a neighborhood of qj in R" which, when taken

together, form a (unitary) frame of GjiPj) for all pj G Mj near qj. If the sum

of the codimensions of all submanifolds is n the inclusion in (7) is an equality
and the third equation is trivially satisfied. On the other hand, if this inclusion
is proper, consider an -valued function :qa defined in a neighborhood

k
of (qi,...,qk) in M\ x ••• x Mt, 1 < a < 8 n— such fhaf

7=1

{n'-'ipi,... ,Pk), 1 < a < ß} constitutes a basis of [Qi(pi) © • • • © GkiPk)]^
for all (pi,...,pk) near (qu....,qk).

With these choices, (7) is equivalent to the following system, for |î© 1|

small :

(8)

(XMS-A v »
A — cij.

_ (Apif) - o

where 1 < j < k, 1 < I < /(y), 1 < a < ß, (j $(*/*)), if ~
qa(xi(t),... ,xk(t))

k
Suppose first that 8 0, i.e., W l(j) n. In this case the last equations

7=1
in (8) should be disregarded. This situation corresponds to a local complete
intersection evolving in time, and it is possible to give a simple proof of the
lemma from general transversality arguments. Nevertheless, for completeness
and for comparison purposes with the case ß > 0, we provide full details.

For ,pk) sufficiently close to (q\,... ,qp), define

Lpi pk
: (Rn)k => RK1) x • • x Rm x (Rn)k~~1

(-vi,... ,vk) —¥ ({-i-'uCi1)^ • • • • • • s (Vk-Xk)> * * * *

îkk))
- v2 ^ Vl...... Vk — i!l) -

We observe that LPx....Pk is a linear map between spaces of the same
k k

dimension. If (iq,... ,vp) G kerLPx....Pk, then -iq G f) TpMj. From f] TPjMj G
7=1 7=1

TP(Ma one has Ça(pa) [TP,.M0^ Ç H TPjMj
7=1

and so
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Rn 0 QaiPa) - 0 [Tp<M:ÀL Q
<x=l <>:=!

n tpjmj
7=1

the map LPl_____PkHence v\ f] TPjM) — {0}, and since vi — v2 — • • •

j= i
is an isomorphism.

We write X — (xi,... ,Xk), V — (vi,... v*), and

LPx,..,,Pk(:vî,..., v*) - A(/?i,... ,pk)V.

where A is an invertible («£ x nk) matrix varying smoothly with (pi, ,pk)-
One can then easily check that any local solution of the system of ordinary
differential equations

f X'(t) - A"1 ,xk(f))b,

\ Xj(-1) qj,
where b is given by the right hand side of (8), satisfies (7). This proves the

lemma under the assumption ß — 0.

It remains to deal with the case ß > 0. All three sets of relations in (8)
are now in force. We proceed in an analogous manner by defining the map

• (R*)* -» R x • • • x RW x (R*)*-1 x

that sends (vi,..., vi) into

{(vu d),. (vud"), (VU à), (VU $*),
V2 VI, • • • ,V* Vi, {vi,'!]1},.. (piUff))

Once again, LPl,...,Pk is a linear map between spaces of the same dimension.

If (vi,...jVa) lies in the kernel of LPu___Pk then

vi fi tPjMj n ®Qj(Pj) f]TPjMj n eOj(Pj)
7=1 ' 7=1

But, as observed before,

so that vi — 0, V2

0a«(p<oç n tPjmj
a=l Ly=l

• Vk — 0 and tPu...Pi is injective. As in the previou:

case, LPu„._Pk is represented by an invertible matrix A(pi,... ,p£) and a loca

solution of the system

f X'(t) - A""1 (ai(?)s • • • ,xk(f))b,

\ Xji-l) ~ qj,
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where b is given by (8), satisfies (6). This concludes the proof of Lemma 2.

To continue with the proof of Theorem 2 we observe that the local
solutions given by Lemma 2 can be extended to a maximal one, by the

usual continuation argument. To be precise, there exist T (— l,oo), smooth

curves Xj\ [~*1, T) Mj, 1 <j<k, jo {1,... ,k} and tm [—1, T) such

that, for all t G [—1, T),

(9)

Xj(f) int Mj, Xj(— 1) cjj

fi (xi (/)) - fj(xj(t)) + toj, 1 < j < k.

dfiixmx'^t) GiiXiit)) © • • • © Gk(xk(t)) C R".

lim tm — T, lim Xj0(îm) exists and belongs to dMj;
TU—>00

Our next task is to estimate \dfja(XjQ(fj)x'j_}(t)\ for t G (—1, T) fixed. Since

this is a local question we may assume, as we did in the proof of Lemma 2,

that Xfois) Rn for s near t. Since is an isometric immersion we must
estimate |^0(O|-

Suppose first that ß ~ 0, so that R" — Giipù ® • • • © Qkipk) f°r every
choice of points pj intMj, and choose {£j, 1 < j < k, 1 < I < /(/)}
to be a frame that, when properly ordered, is an adapted basis realizing
DIS (Gi(xi(t)),..., Gk(Xk(t~)))- Next, we write

KD m
(10) 48)-X>l4i' i ••• + :

«=1 «=1

for appropriate coefficients c'f, 1 < j < k, 1 < a < l(j). From (8) we have

(11) x^xfj + bj, bj fjiqj)

From (10) and (11) we obtain a linear system of n equations in the n
unknowns cf, by taking inner products with £j, and £j, j / jo, respectively :

/(l) Kk)

E c'i KR© i 4Wyjg - 0: i < <io),
m '

«ni
KD Kk)

E c'i Bs# i • • • i- E ®'4s « &ê s

<*=1 <x=l

where, in the last set of equations, j {1,... ,jo> k} and 1 < / < l(j).
Reordering the equations if necessary, the system can be written in the form

MßC — B (notation as in §2). The «-dimensional vector C formed by the



26 F. XAVIER

coefficients of xj. (f), relative to the adapted basis B, satisfies C — (Mb)
Since the operator norm of (Mg)"""1 is A^1,

a® ; IF IF 2] I
l<<v<70) 1 <l<KJ)

1 <J<A 1 <J<A

(Notice that bß — 0, so it is legitimate to include the index jo in the summation

on the right hand side of (13).)

By the Cauchy-Schwarz inequality (13) implies

(M? ; v gg#jt<siiô 21
'J I J

1<<v<«J) j= 1
1 <j<A

Expanding the quadratic form given by |x|012 and (10), and recalling the

definition of Ag from §2, we have

(15) \dfjoxfjo I2 - \x'h I2 < Ag Y, (CP2
i<<*<*w

1 <j<A

Since the adapted basis {£j(î)} realizes DIS {G\(x\(t)).... ,Gk(xk(f))), (14)
and (15) imply that \xf; (t) | can be estimated from above by

(16) [DIS (G\{x\{t)),... 5 Gk(xk(t)j)] [ Y(-n m mj> I fMfi
j= i

In particular,

"tn

21 2

Lengthy,I[_iA] J
^

\x'jJ;(î)\dt

< (tn + 1)[ Yjn-^mj) I fjiqß -^b(^)|2]2 [ sup DIS (Giipi),
Pi&nlM

J=i 1<'<*

Letting n —» oo we have, in view of the last relation in (9),

4b &Mjo < lim SUP Length *jb|[_i Jn]

< (T + 1) [ V7/i - m-) I fj(qj) -jfcCft,)|2]2" • [ sup DIS (Gi(.pi),
*—f pi ginlMj
J=1 l<i<*

It now follows from (2) that 4b (% - ^Mio < (T -f- l)4b((6b • $A4,), so that

T > 0. Hence the middle equation in (6) is valid for t — 0, and so is (5).
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This proves the theorem under the assumption that the sum of the codimensions

of all submanifolds is equal to n.

Next, we indicate how the above arguments need to be modified in the

case ß > 0. Locally, we may regard J as the inclusion map. We also have

the situation covered by (9). For t & (—1.7*) fixed we write

KD m ß

(n) 4«) - Y. + E4f i Ed-4:
<>.= 1 «=1 m= 1

for appropriate coefficients cj*, dm, where 1 <j < k, 1 < a < KJ), 1 < m <
ß and {} is an orthonormal basis of [Ôt(xi(0)® • • •#Ä(äC0)]^ • Again, £j
is chosen so that, with an appropriate ordering, {£j, 1 < j <k\ 1 < / < /(/)}
constitutes an admissible basis of GiQc\(t)) © • • • © Gk&ki0) that realizes

DIS(Gi(xi(f)),..., &(*(*))).
From (11), (17), the third relation in (9) and — —b\, we have :

KD m
E C»W4; <' T.~a 1 TV<W•
<»=l <»=l

(18) KD K*)

E + ••• + £ > $ H® •

<»=i «=i
— (fcj,?/"), 1 <m< ß.

(In the second set of equations, j {1,... .fo,1 < l < /(y).)
We write the above n x « system in the unknowns cj*, drn in matrix form

as AC — B. We claim that, as in the case ß — 0,

I21
-71 j(19) \B\<^KS)\bj

j= i

To see this we first take j > 1 and estimate from the second set of equations
in (18) using the Cauchy-Schwarz inequality:

(20), E Us# CWtfî 3<y<t.
i<'<Kj&

In order to deal with the case j — 1, we let II be the orthogonal projection
onto Qi(xiC0)® • • • ® Qk(x/c(t)) • From the last equation in (18),

ß

(21) 5>i,02 ^ la n)&i|2 < /(i)|(/-n)&i|2.
«7=1
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If jo — 1 one has b\ — 0 and (19) follows from (20). On the other hand, if
jo 1 the second set of equations in (18) implies, with j — 1,

<22) V (6i:d)2- Y.
1<1<KI) 1<K/(1)

The estimate in (19) now follows from (20)-(22).
After rearranging the rows if necessary, we may assume that the matrix A

above is a 2x2 matrix of blocks. The off-diagonal blocks are 0, and along
the diagonal one has the matrix Mq and the identity matrix Ißxß-

It follows that the operator norm |A-1|, which is the reciprocal of the

smallest eigenvalue of A, is at most Ag1 (recall Xß < 1 from (1)). From

(19) and C — A-1B one then has an estimate on the Euclidean norm of the

vector C :

k

(23) |C| ^(ABrH^TW/]'.
j= 1

Next we expand the quadratic form given by |a^(?)|2 and (17). Using the fact
that the largest eigenvalue of A is max{ 1. Ay) < Aß by (1), one has

(24) < A^Cf.

From (23) and (24) one derives the same estimate as in (16). From this point
on the proof proceeds exactly as in the previous case ß — 0. This concludes
the proof of Theorem 2.

4. Proof of Theorem 1

In this short section both the statement and the proof of Theorem 2 are

used to prove Theorem 1. In actuality, Theorem 1 is valid in the more general

geometric context of complete isometric immersions:

Theorem 3. For 1 < j < k < n, 2 < k < n, let fy. (Mj, gß ~t R" be

an isometric immersion where Mj is connected, 1 < dim Mj mj < n — 1,

codimiW/ — n — mj, codimMi 4-... 4- codimM* < n, and gj is complete.
Consider the Gauss map Qy. Mj —> G(n — mj.n), Qj(p) — [dfj(p)TpMj] ^. If
for all Ej Qj{Mf), 1 <j<k, the subspaces E\,... .Ej of R" are in direct
sum then f\(M\) F) • • • P-.fßMk) ^ 0 • Moreover, f\(M{) fl • • • PfjfMjf) reduces

to a single point if codim M\ + • • • + codim Mj — n.



USING GAUSS MAPS TO DETECT INTERSECTIONS 29

To show existence in Theorem 3, fix points qj Mt and

assume, by contradiction, that M\ 0 • • • n — 0. Exhaust each Mj by
a sequence of compact submanifolds with boundary Mj, I ~~¥ oo. We may
assume qj Mj for every I. The claim is that Theorem 2 applies to the

immersions fj \ (Mj, gj) R'2, 1 <j < k, if / is large enough. Indeed, the

hypotheses in Theorem 1 certainly imply that if Vj Ç/mtA4j) the subspaces

V\,... j Vk of R'2 are in direct sum. Note that the denominator in (2) remains
the same as I —> oo, but the numerator tends to infinity, since all induced

riemannian metrics gj are complete. It remains to argue that the left hand

side in (2) does not tend to infinity with /. According to Lemma 1, if
DIS of a sequence of direct sums tends to infinity then, after passing to

convergent subsequences in the appropriate Grassmanians, the summands tend

to subspaces which, when taken together, are not in direct sum. But this would
be an outright contradiction to the central hypothesis in Theorem 3 namely,
that for all Vj GjiMj) the subspaces of R'2 are in direct sum.

This settles the issue of existence in Theorem 3.

Finally, we prove that the intersection set in Theorem 3 reduces to a

single point if the sum of all codimensions is n. Since the configurations of
normal spaces have uniformly bounded distortion, the estimate given by (16),
in the proof of Theorem 2, shows that is uniformly bounded for every

j (notice that the special property in (9) enjoyed by the index jo was used

only later in the proof). Since all manifolds Mj are complete relative to the

induced metric one has T — oo, regardless of the initial choice of points

(qi,...,qk) G M\ x ••• x M*. Hence each such choice yields an element
in /i(Mi) fl • •• CfkKMk) by considering the maximal extension of the local
solutions given by Lemma 2, and then setting t — 0.

Since [df\(p\)TPlMi]® • •• ffi [dfk(pk)TPkMk\+ — R'2 for all choices of

Pj Mj, the set f\(M\)fl • • • CftiM^) is discrete. By the arguments in the first

paragraph this intersection is also non-empty. For p £fi(M\)n- • - the
subset Op of M\ x • • • x Mk consisting of all (qi,... ,qt) giving rise to the

point p according to the procedure indicated at the end of the last paragraph is

non-empty and open. Indeed, to show Op ^ 0 if p fi (Mi fl • • • PfVMk) one

starts with any (qi,... ,qk) such that all fjiqf) are sufficiently close (or equal)
to p. Since the trajectories have uniformly bounded speed (by the estimate

given by (16)) and fi(Mi)f) ••• 0,fk(Mk) is discrete, the images fj(Xj(t)) of
the solutions will necessarily pass through p at time / ~ 0. The fact that

Op is open is a consequence of the discreteness of the above intersection,

together with the continuous dependence of solutions of ordinary differential

equations upon the coefficients and the initial conditions, over bounded time
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intervals. Here one should note that the solutions of (8) are independent of
the choice of frames, since they uniquely solve (6). Furthermore, the sets Op

are pairwise disjoint, by the uniqueness of solutions of initial value problems
for ordinary differential equations with smooth coefficients. Hence,

Mi x ••• x Mk - [J Op,
pmMùn-mMù

where, as observed, the sets Op are non-empty, open and pairwise disjoint.
Connectedness of M\ x • • • x Mk now implies that there is only one such

set, thus showing that f\(Mi) n •••Ofk(Mk) reduces to a single point. This
concludes the proof of Theorem 3.
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