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L’ Enseignement Mathématique (2) 33 (2007), 15-31

USING GAUSS MAPS TO DETECT INTERSECTIONS

by Frederico XAVIER

To Andréa, with love and adwiration

ABSTRACT. A family of compact submanifolds with boundary has a non-empty
stable interior intersection in R" provided a certain geometric estimate holds. As a
global application we establish a sharp intersection criterion for a family of properly
embedded m;-dimensional submanifolds M, ¢ R* that is based solely on their Gauss

maps & M; — Glrn—my;, 1), Gp) = [Tpr-]i.

1. INTRODUCTION

For 1 <j<k<n 2<k<n let M CR" be a smooth compact
submanifold with boundary, 1 < dimM; < n—1, and f;: M; — R" a smooth
immersion. In this note we are interested in formulating geometric conditions
under which the intersection

Jant M) O 0 frint M)

1s non-empty and stable. In order to ensure stability under perturbations, and
since one does not know a priori where the intersections are going to lie, we
require that for all choices of p; € intM; the normal spaces

are in direct sum. Starting from this natural assumption, we prove that the
above intersection is non-empty provided the conditions are such that a certain
geometric estimate holds. The inequality in question involves three features:
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the intrinsic sizes of the submamnifolds, a weighed measure of the effect of the
Euclidean translations, and the distortion of the aforementioned configurations
of normal spaces. This is the content of Theorem 2, our main result.

In the simplest case when M), and M, are compact hypersurfaces with
boundary, Theorem 2 reads as follows. Let o € [0, %] be the infimum of the
angles formed by all normal spaces (lines) corresponding to arbitrary points
in intM) and imtAh, one pont from each hypersurface. If & > 0 and

—— cot sup

V2 o a min {di(q1, M), da(qr, M)}
2 ( ) CSC( ) - QEM, 2EMs f1(q1) — fa(g)| “

then the intersection f(intMp) (3 f2(intMAh) is non-empty.

The result below is a sharp global consequence of ocur work on the
intersection of compact manifolds with boundary:

THEOREM 1. Let Mp,... .My C R" be connected, properly embedded
non-compact smooth submanifolds without boundary, 1 < dim M; = m; < n,
codim M ++ + 4 codim My < n. Let G;: M; — G(a—mj, n), G{p) = [Tpﬁ/{,-]i*,
be the Grassmanian-valued Gauss map of M;. Assume that for all points E;
in the closure of GiM)). 1 < j < k, the subspaces E1.....Ex of R" are
in direct sum. Then My Y- Y Mg is non-empty. Moreover, this intersection
reduces to a single point if codim M) -+ -+ -+ codim My = #n.

COROLLARY 1. Let My, My C R be properly embedded connected smooth
hypersurfaces without boundary. If G1(M) 0 Go(Mb) = @ then MM, # 2.

COROLLARY 2. Let My,... .M, C R" be properly embedded con-
nected smooth hypersurfaces without boundary. If every hyperplane in
RP* ! = G(1,n) intersects at most n— 1 of the sets Gi(M), ..., Cp(M,),

then Mj 7+« (Y M, consists of a single point.

Corollary 2 generalizes to properly embedded hypersurfaces the observation
that n affine hyperplanes with linearly independent normals intersect at a single
point. In the linear case the Gaussian image G;(M;) is trivially closed, since it
reduces to a single point. However, elementary examples show that Theorem 1
fails already at the simple level of Corollary 1 if one does not take the closures
of the Gaussian images into account. To see this, consider an open circular
cone K in R® with central angle < x. Inside K we take a rotationally
symmetric complete non-compact surface Mj of positive curvature that is
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asymptotic to JK. Let My be any plane tangent to K — {0}. One can see that
Corollary 1 does not apply. Indeed, M MMy = & and GiM) NG (ML) = &,
but Ga(Mp) = Gr(Mp) C Gi(M1).

One can also regard Corollary 2 as an existence and uniqueness result for
solutions of certain systems of non-linear equations. From this standpoint the
subject matter of this paper relates to the broader question of deciding when
a locally invertible map admits a global inverse. The latter topic has been the
object of intense research over the years, with applications and connections
to many different areas of mathematics. Recently, new mechanisms of global
inversion have been discovered, mostly of a topological nature. The interested
reader may want to consult [1]-[4], [6]-[14] and the references therein. We
mention explicitly some of the more recent developments. In [9] and [10]
algebraic methods and surgery theory were used to give a generic solution,
in a suitable sense, of the Jacobian Conjecture. A special case of the main
result of [8] states that a surjective local biholomorphism f : C* — C* is
bijective if and only if the pre-image of every complex line is connected
and simply-connected (the proof uses geodesics and the fact that the Hopf
map has no continuous sections). The main result in [14] is a necessary and
sufficient analytic condition for an injective holomorphic self-map of C* to
be the identity. This is potentially of interest in the study of Aut (C*), n > 2.
In [1] invertible maps were characterized by a homological condition: a local
diffeomorphism of R” into itself is bijective if and only if the pre-image of
every affine hyperplane is non-empty and acyclic. This result is more general
than the one in [7], which in turn improves in finite dimensions the classical
global inverse function theorem of Hadamard.

As to the organization of this paper, Theorem 1 is established in §4, in a
more general form (Theorem 3), as an application of Theorem 2 and the ideas
that go into its proof. Theorem 2 itself is stated in §2 and proved in §3.
Our arguments have a clear dynamical interpretation and are self-contained.

2. STATEMENT OF THE MAIN RESULT
Recall from the introduction that our basic problem is to formulate con-
k
diions to have the immersions f;: M; —» R" satisfy [} fdntM) # @.
J=1
In order to ensure that an eventual intersection persists under perturba-
tions, we require that for all choices of p; € intM; the normal spaces
[df(p1)Tp Mil~. . ... [df (p)Tp Mgl are in direct sum. Besides this quali-

tative condition, our estimate in Theorem 2 below captures what seem to be
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the three essential quantitative features of the problem:
1) The sizes of the submanifelds intA4;, relative to the metric induced by f;.
i1) A numerical way to measure the effect of translations.
iii) The deviation from orthogonality of all sums [dfi( pl)Tlel]‘*
[dfel p)Tp, Mi] ™.

Before we can state our results we need to discuss iii) above and introduce
a quantity that measures how distorted a direct sum of subspaces is, relative
to orthogonal sums. This can be formalized as follows.

Given x> 2 and positive integers ¢, ..., ax such that aq -+ -+ ag < #,
we say that a continuous 72: G(ay.n) %« % Glag, 1) > [1,00] 1S a distortion
Jfunction if the following two conditions are met:

a) (Ei.....Ep € Do) if and only if the subspaces Ej..... Ep are not in

direct sum.
b) (Ei.....Ep € D-1(1) if and only if the subspaces Ej.....FE are in direct
sum and the decomposition £y ¢ -« & E 1s orthogonal.

The idea of considering the distortion of a direct sum (deviation from
orthogonality) is a natural one, and it comes up in other contexts as well (e.g.,
the Oseledec multiplicative ergodic theorem in dynamical systems [S]). The
particular choice of distortion function that we make below reflects the flow
of the estimates in the proof of Theorem 2.

Consider proper subspaces Ei,..., Ey of R” which are in direct sum

- k k
and set «; = dimE;. In particular, m = dim(z Ej) = > ;. We say
1 =1

that an ordered set of unit vectors 55 = {ej,...,ey,} is an adapted basis of

E:=E & & E if {e, - ,e,} is a basis of E1, {€na1s---0Coben b
1s a basis for Ep, and so on. Let M = Mp be the symmetric matrix

bis]
given by M;; = {(e.ep, 1 < i,j < m. Since \Zy,-e,-‘z > 0 whenever
]

it

I
S y? = 0, the eigenvalues of My are strictly positive. Denote by Ag
£
and Ay the largest and smallest eigenvalues of My, respectively. From

det{{e;. ¢;3) = |det{{es. ¢;})| = le1 A+ Aew| < ler] < lem| = 1 and tr M = m,
one has

(1) m>Ag > VAg > 12> Ag > 0.
Given an adapted basis B of E, we set

DIS(B) = \";j
B
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We define a distortion function as follows. If (Ey,...,E) are subspaces
in direct sum, set

DIS(Ey. ..., B = inf DIS(B).

where the infimum 1s taken over all adapted bases of the decomposition. Of
course, to comply with a) we define DIS(E],... . Ex) = o0 if Ep,...,FE; are
not in direct sum. We shall see shortly that DIS is a continuous function.
As an example, let E7 and E; be two one-dimensional subspaces in R”
making an angle « € (0, 7]. If 5= {e1,e2} is an adapted basis of Fj & F»

with {ej.ez} = cose the eigenvalues of Mp are 1+ cose and 1 — cose,

so that /A
V2 ¥ I8
DIS(E, Fy) = 7cot(a) cse (5)

It follows from (1) that if DIS(5) = 1 the adapted basis £ is as straight
as possible that is, it 1s orthonormal. Another easy consequence of (1) 1s that
the infimum in the definition of DIS(F], ..., Ey) is actually attained by some
adapted basis. In particular, if DIS(Ey,....Ex) = 1 any adapted basis that
realizes the infimum must be orthonormal, and therefore the summands must
be pairwise orthogonal. This shows that DIS satisfies b) in the definition of
distortion function.

As before, let FEj....,E; be subspaces in direct sum. Taking the nor-
malization of the orthogonal projection of an admissible basis that realizes
DIS(FEy.....F;) onto a nearby configuration Fi,...,F; in direct sum (and
vice versa), and using the fact that the (largest and smallest) eigenvalues of a
matrix vary continuously with its entries, it is easy to argue that DIS is a con-
tinuous function on the open dense subset of G(eaq, 1) % -+ x Glag, n) formed
by all subspaces which are in direct sum. Hence DIS is locally bounded, as

long as the summands are in direct sum. We thus have:

LEMMA 1. For 1 < I < k, let {E{ J‘;ﬁl C Glag, n) be a sequence

converging to Ep such that the subspaces E,.... B, are in direct sum for
every j. If lim DIS(H],. ... E}) = 00, then the subspaces Fj. . ... Ey are not
Fo

in direct sum.

Similar arguments show that the function DIS is also continuous at those
(E1,...,Ep for which Ej,..., E; are not in direct sum, but this will not be

used in our proof. Hence, the larger the distortion of a direct sum, the closer
the decomposition comes to not being a direct sum.
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We can now state the main result of this paper, an intersection criterion
for compact submanifolds with boundary :

THECREM 2. For 1 < j< k< n, 2<k < n, lee M; be a connected
compact manifold with boundary, my = dimM; < n— 1. Let f;: M; — R”
be a smooth immersion, d; the riemannian distance in intM; induced by f[;
and G intM; — G(n — my, m), G p) = [df{ pT,M; ~ ¢ R*, the associated
Gauss map. Suppose thar for all choices of points p; € intM;, 1 < j <k,
the subspaces Gi(p1),..., Ci(pr) of R® are in direct sum. Assume also that

there are points q; € M;, 1 < j <k, such that

, A OM:
(2)  sup DIS(Gi(p1), ... Ge(pe)) < min /g OM))

€ int M, L<j<k S A — ftan21E
zeinll = [lgékm m) | filay — fapl?)

Then A(NtM) O D fANtME) is non-empty.

REMARK. We may assume that the right hand side of (2) is finite, otherwise
one already has fi(q1) = - = filge) € AGNtM) Y- - DY frlint Mp).

The estimate in Theorem 2 assumes a particularly simple form in the case
of two compact hypersurfaces. In the next corollary we use the above formula
for DIS(E1, E2).

COROLLARY 3. For j= 1,2, let f;: M; —» R" define a smooth connected
immersed compact hypersurface with boundary. Let « € [0, 3] be the infimum
of the angles formed by all pairs of normal spaces (lines) corresponding to
arbitrary points in intM; and intM>, one point from each hypersurface.
Suppose that « > 0 and there are points g1 € My, g, € My such that

V’E (g) s ((},) - min {dl(qlpf}Ml)p dg(@'gp(‘;)Mg)} ‘

3 Y2 ot i
) 5 O 2 A0 — /@)l

Then the intersection f(intMy) M fa(intMh) is non-empty.

The estimate in Corollary 3 displays the features 1)-iii) described at the
beginning of this section. Indeed, the left hand side of (3) manifestly measures
the distortion (or non-orthogonality) of the normal spaces. The numerator in
the right hand side involves the riemannian sizes of the surfaces whereas the
denominator, which is translation-invariant, changes if only one of the surfaces
1s translated. Fixing any two of these three geometric quantities while letting
the other degenerate violates (3), thus allowing for the intersection to be empty.
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For instance, the inequality fails if one of the two surfaces i1s kept fixed
while the other is translated by a large vector, as the denominator in (3) tends
to infinity, the other two quantities remaining the same. Similarly, start with
compact embedded hypersurfaces with boundary for which M; MM, # @ and
C1(nt M) N Ga(intMr) = @ (e.g., two flat discs in R?, centered at distinct
points ¢ and ¢», whose interiors intersect). Keeping M; constant, while
replacing A, by smaller subsets converging to g» € Mz — M, will eventually
make the intersection empty. In this process, the numerator in (3) goes to
zero, while the other quantities remain constant. The third alternative can be
illustrated by taking two orthogonal circles, centered at different points ¢
and ¢», whose interiors intersect. Rotate one of the circles about its center
until both circles become parallel. The distortion of the normal spaces varies
from one to infimty, whereas the right hand side of (3) remains constant. The
estimate in Corollary 3 is also sharp. To see this, take M) and M to be the
closed discs of radit 1+¢ m the xy and yz planes, with centers at the points
g1 = (1,0,0) and g; = (0,0, 0), respectively, and then let ¢ — O,

3. PROCF CF THEOREM 2

We begin with the dynamical interpretation behind the proof of Theorem 2.
For simplicity, suppose that the submanifolds are embedded in R” and that
their interiors do not have a common intersection. Assume also that any
configuration of normal spaces, one from (the interior of) each submanifold,
gives rise to a direct sum.

We fix M) and continuously translate M, . .., M along suitable directions
until they intersect A at the same point, after one unit of time. The idea is to
undo the motion of the submanifolds M, ..., M, in the direction of increasing

times, starting say at time ¢ = — 1, while keeping track of the evolution of the
k

(local) intersection set. Since we are assuming [} intM; = &, the backwards
o 1
motion will cease to have a common intersecti(;n sometime before (or when)
one unit of fime has elapsed. One wants to confrol the speed at which the
intersection set is propagating. Of course, it is technically easier to observe
the evolution of a single point (given by the flow of a vector field, say),
rather than that of the entire intersection set. In the case when the sum of
the codimensions is strictly less than s it is crucial that we choose curves
parametrized by time that move orthogonally to the intersection set, in order to

minimize speed. As explained, the intersection set must cease to exist before
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(or at) time # = 0. But this can only happen if for some submamnifold M; the
appropriate integral curve x; in the interior of M; reaches ¢M; before (or
at) time 0. The speed of motion of the intersection set is controlled by the
local configuration of normal spaces to the moving submanifolds. In fact, the
speed increases if the normal spaces of the submanifolds tend to “rest” on
each other. A somewhat similar situation occurs if one rotates a line £7 in the
plane about one of its points, with constant angular speed. The intersection
L? ML, between the line L; rotated by #, and a line L, parallel to L;, moves
faster as # -+ 0. In other words, the speed of L;éf M L, increases when the
distortion of the configurations of their normal spaces tends to oG,

As it was indicated above, one must control the distortion of the direct
sum of normal spaces at the intersection sets during the evolution. But since
we are simply translating the submanifolds, the supremum of the distortions
of the configurations of all normal spaces remains constant throughout the
motion. The estimate (2) in the statement of Theorem 2 comes in precisely
to guarantee that the intersection set in the backward motion exists in the
interiors of all M;’s for more than one unit of time, a contradiction to the
original assumption that the interiors of the manifolds are disjoint.

Let us now proceed to give a formal proof of Theorem 2. For 1 < j <k
define a; by

(4) filqy) — a1 = filq) = fi{gp) — a;.
Hence ap = 0 and, from (4),
(5 (fl(thMl)w%MIal)ﬂ Q(fk(iﬂth)w%MIak) 7/: &2

for the value ¢ = —1. The theorem will be proved if we can show that (5)
holds for ¢ = 0. In fact, we will show the validity of (5) for all t € [~1,T),
for some T > 0. We begin with 7 sufficiently close to —1:

LEMMA 2. There exist 6 > —1 and unigue smooth curves x;: [—1,4] — M;
such that, for all t € [~1,4],

XA € intM;, xj(—1) = g;.
(6) H@@) = fi@) +1a;, 1<j<k.
dfi e W) € G ) & - 8 Gel®) C R

Since the hypotheses and the conclusion are local in nature we may assume,
for the purpose of proving Lemma 2, that (a small neighborhood of g; in) M;
is contained in R” and f; is the inclusion. With this identification, (6) becomes
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X0 € Int My, x;(—~1) = g;.
D 0 =x+1, 1<j<k.
X € Goa) & B G T R™,

For jfixed and 1 <1< I(j) = n—m; = codim M;, let 5} be an 7! -valued
smooth function defined in a neighborhood of g; in R* which, when taken
together, form a (unitary) frame of Gi(p;) for all p; € M; near g;. If the sum
of the codimensions of all submanifolds is # the inclusion in (7) is an equality
and the third equation is trivially satisfied. On the other hand, if this inclusion
is proper, consider an S*~!-valued function #® defined in a neighborhood

k
of (q1,....qx) in My %« x M, 1 < e < 3 := n~ > K, such that
Ju=1
{17%(p1,- . pe), 1 < a < A} constitutes a basis of [G1(p1) & -+ & Gr(p)l*
for all (pi1.....px) near (q1.....4gx).

With these choices, (7) is equivalent to the following system, for |f -+ 1]

small :

(8) Xy — x} = .
@19 =0,

where 1 < j <k, 1 <1<Kp, 1<a<i &=4¢exn, =

k
Suppose first that # = 0, ie, > ) = n. In this case the last equations
J=1
in (8) should be disregarded. This situation corresponds to a local complete
intersection evolving in time, and it is possible to give a simple proof of the
lemma from general transversality arguments. Nevertheless, for completeness

and for comparison purposes with the case & > 0, we provide full details.

Ly gt (RDF =3 RID 5 RIP o (RMF1
; ), ‘
(B v s lif) = ({’1?13‘5%}; s 3 {1}1355( ):}} s wy DR oo
k\
(0 8%, v — w1, 1~ v1).

We observe that L, . 1s a linear map between spaces of the same

k

£

k
dimension. If (¢1...., vp) € kerly,  p,, then vy € [} T, M;. From
iz |

seees TpM; C
J= 1

J

_ k
Tp M, one has G,(p.) = [Tp M1~ C [ﬂ ij%} , and so
jo]
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- @ Gup) = @[TPGMQP [ e
5 | ] E
Hence o € ﬂ = {0}, and since v = vy = = w the map L, ,,
ol
is an 1somorphlsm
We write X = (x1,....x), V= (.....7), and
LPI Pk(ll '''' UE) = A(pl"' ';pk)vz

where A is an invertible (#k x fk) matrix varying smoothly with (p1,..., pz).
Cne can then easily check that any local solution of the system of ordinary
differential equations

{Xmm Weillyos i},
1) = g;
where & is given by the right hand side of (8), satisfies (7). This proves the
lemma under the assumption F = 0.

It remains to deal with the case 7 > 0. All three sets of relations in (8)
are now in force. We proceed in an analogous manner by defining the map

E’Pls Bi (Rn)k s RED o o0 RIR o (Rn)kwl % R?
that sends (#q.....#) into
\ . 1+ By
((‘?}13 gl.}: S— <'U1_*.§f ):x“ o D <l!k:§k:}} AU <‘1}k; g,i( ):‘,

W~ Uy s Uk — V1, (U1, I]\ _.,('zsl_./,r]fﬂ}).

Cnce again, ﬂpl .p: 18 @ linear map between spaces of the same dimension.
If (#1.....2p lies in the kemnel of Lp ..p; then

[{‘ITM] [@gﬂpﬂ} [ ik [j Gipp).

e

But, as observed before,

@ Gulps) © L:l TPJMj] -

ezl

sothat o = 0, 2 = «+» = 73 = 0 and ﬁp _.p: 1s injective. As in the previous
case, Lpl _____ P 18 represented by an invertible matrix A(py,...,p) and a local

solution of the system
{rmm W@, ... .x®)b,
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where & 1s given by (8), safisfies (6). This concludes the proof of Lemma 2.

To continue with the proof of Theorem 2 we observe that the local
solutions given by lemma 2 can be extended to a maximal one, by the
usual continuation argument. To be precise, there exist 7 € (—1,20), smooth
curves x;: [«1,T) = M;, 1 <j<k, jo€{l,....k} and £, € [-1,T) such
that, for all te 1,1,

xi(1) € 1int My, x(—1) = gj
HE@®) =) +1a;, 1 <j<k,
dfi1OW(D € G @) & & Grnp®) © R™.

lim #,, =T, lim x;(Z,) exists and belongs to JM;, .

9

Our next task is to estimate |dfy (x (O} (1] for 1 € (—1,7) fixed. Since
this is a local question we may assume, as we did in the proof of Lemma 2,
that x;(s) € R" for s near ¢. Since f; is an isometric immersion we must
estimate |x; ()].

Suppose first that 3 = 0, so that R* = G1(p1) & -+« & Ge(pr) for every
choice of points p; € intM;, and choose {5}-, 1<j<k 1< <UD}
to be a frame that, when properly ordered, i1s an adapted basis realizing
DIS (G1(x1(2)), . . .. Gelxp())). Next, we write

K1) 03]
(10) mwiy bk > opE
gz ] ]

for appropriate coefficients c¢§*, 1 <j <k, 1 <« < I /). From (8 we have
(11) X, =X+ b b= fig) — folgi)-

From (10) and (11) we obtain a linear system of s equations in the #
unknowns ¢;*, by taking inner products with 5}% and 5}-,, J # Jo, respectively:

4} i)
DG T A G =0 LIS,
12y -
(12) 553 KB
i Fi
D)+ 3 A = 0,
cpzz] op

where, in the last set of equations, j€ {1,..../.....k} and 1 << I ).
Reordering the equations if necessary, the system can be written in the form
MpC = B (notation as in §2). The s-dimensional vector C formed by the
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coefficients of xJ’,-D(I), relative to the adapted basis B, satisfies C = (MB)WIB.
Since the operator norm of (1"\/IB)wwl 18 }\gl,

(13) [ Y @t <o I et

(Notice that b; = 0, so it is legitimate to include the index j, in the summation
on the right hand side of (13).)
By the Cauchy-Schwarz inequality (13) implies

k

1 1
(14) [ 3T @ o [ S apl]t
L= e <) Fial
Expanding the quadratic form given by [x}hlz and (10), and recalling the
definition of Ag from §2, we have

(15) i =P < As 30 @)

Since the adapted basis {gj(r)} realizes DIS (gl(xl(t)),,..._.,gk(xk(r))), (14
and (15) imply that |xz ()| can be estimated from above by

rp—

k
(16)  [DIS {Gioa@), ... . Gr@)] [ > = mp g — flgn)l*] -
J=1
In particular,

I

Length o100 = [ ol
1

j:w..] lsisk

Letting n — o0 we have, in view of the last relation in (9),

di (g;. OM;,) << lim sup Length xj 114

B O

k
ST+ n—-mp| fap —folgp)l’]? . [ sup DIS (Gi(py), ..., Gu(pw)] -

Juxl 1<tk

It now follows from (2) that dj(g;.d0M;) < (I 4+ Ddy(q;. M), so that
T > 0. Hence the middle equation in (6) is valid for ¢ = 0, and so is (5).
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This proves the theorem under the assumption that the sum of the codimensions
of all submanifolds is equal to #.

Next, we indicate how the above arguments need to be modified in the
case 3 > 0. Locally, we may regard f; as the inclusion map. We also have
the situation covered by (9). For t € (—1,7T) fixed we write

1) &K
(17) o) = > ofE e D oREy ‘dea
oxmm ] cxu]

for appropriate coefficients ¢;*, d,, where 1 <j <k, 1 <a <), 1 <m=<
A and {#"} is an orthonormal basis of [G1{x1(t)& B Gr()]~ . Again, 51’-
is chosen so that, with an appropriate ordering, {5},, l<j<k; 1<1<p}
constitutes an admissible basis of Gi(x1()) &+« & Gpxp(®)) that realizes
DIS(G1(x1(5). . . ., Gelxe(@)).

From (11), (17), the third relation in (9) and x’lwxj’h = a = —b1, we have:

1) &R
> et "wmec (2,60 = 0,1 < 1 < Kjo).
()lwl (iw
(18) 1) &K
Z C(z ga él\ sy 1 o Z C(k 51} _ ‘51:,! )
] ceal

‘di"l"l'm <b13:’7 b 1 gmgﬁ

(In the second set of equations, j € {1.....jo.....k}, 1 <1< )
We write the above nx n system in the unknowns ¢f*, dy, 1n matrix form
as AC = B. We claim that, as in the case 4 = Q,

k
1
(19) Bl < [>_uplpf]* .
=1
To see this we first take j > 1 and estimate from the second set of equations
in (18) using the Cauchy-Schwarz inequality :
(20) ST e <iglpf. 2<j<k.
1<K )

In order to deal with the case j = 1, we let IT be the orthogonal projection
onto G1(x1(£)) & -+« & Grxp(t)). From the last equation in (18),

(1) S (b = |0 — Dby P < IDIT — Dby
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If jo = 1 one has By = 0 and (19) follows from (20). On the other hand, if
Jo # 1 the second set of equations in (18) implies, with j = 1,

(22) STobLgY = 3 ({Ib ) < (D
1<K 1<k
The estimate in (19) now follows from (20)-(22).

After rearranging the rows if necessary, we may assume that the matrix A
above i1s a 2 % 2 matrix of blocks. The off-diagonal blocks are O, and along
the diagonal one has the matrix My and the identity matrix fz.4.

It follows that the operator norm |A~'], which is the reciprocal of the
smallest eigenvalue of A, is at most Agl (recall Ay < 1 from (1)). From
(19) and C = A~ !B one then has an estimate on the Fuclidean norm of the
vector C':

£ 1
(23) Icl< e [ D 1ppit]E

=1

Next we expand the quadratic form given by |x} () ? and (17). Using the fact
that the largest eigenvalue of A is max{l.Ag} < Ag by (1), one has

24) K1 < AglCP

From (23) and (24) one derives the same estimate as in (16). From this point
on the proof proceeds exactly as in the previous case J = 0. This concludes
the proof of Theorem 2.

4. PROOF OF THEOREM 1

In this short section both the statement and the proof of Theorem 2 are
used to prove Theorem 1. In actuality, Theorem 1 1s valid in the more general
geometric context of complete isometric immersions:

THEOREM 3. For 1 < j<k<n, 2 < k< n,le fj: (M,g) —+ R* be
an isometric immersion where M; is connected, 1 < dimM; = m; < n 1,
codimM; = n — m;, codimM + -+ -+ codimM; < n, and g; is complete.
Consider the Gauss map G;: My — G(n— my, m), G(p) = [d]f,—(p)TPMG]L. If
Jor all E; € G{My, 1 < j <k, the subspaces E\,...,Ey of R" are in direct

sum then fi(M) DY DMy # & . Moreover, fi(My) 0« D il M) reduces
to a single point if codim M + -« «« + codim M = #.
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To show existence in Theorem 3, fix points gy € My, ....qx € My and
assume, by contradiction, that Mj M- M Mg = ©. Exhaust each M; by
a sequence of compact submanifolds with boundary Mj I — o0. We may
assume ¢; € Mj for every I. The claim is that Theorem 2 applies to the
immersions f;: (M;_.,gj) -~ R® 1 <7<k, if [ is large enough. Indeed, the
hypotheses in Theorem 1 certainly imply that if V; € Qj(intj\/[j-) the subspaces
Vi.....V; of R® are in direct sum. Note that the denominator in (2) remains
the same as [ —» oo, but the numerator tends to infimty, since all induced
riemannian metrics g; are complete. It remains to argue that the left hand
side in (2) does not tend to infimty with /. According to Lemma 1, if
DIS of a sequence of direct sums tends to infinity then, after passing to
convergent subsequences in the appropriate Grassmanians, the summands tend
to subspaces which, when taken together, are #of in direct sum. But this would
be an outright contradiction to the central hypothesis in Theorem 3 namely,
that for all V; € m the subspaces Vp,...,V; of R” are in direct sum.
This settles the issue of existence in Theorem 3.

Finally, we prove that the intersection set in Theorem 3 reduces to a
single point if the sum of all codimensions is #. Since the configurations of
normal spaces have uniformly bounded distortion, the estimate given by (16),
in the proof of Theorem 2, shows that |[x}(#)| is uniformly bounded for every
j (notice that the special property in (9) enjoyed by the index j; was used
only later in the proof). Since all manifolds A; are complete relative to the
induced metric one has I = o0, regardless of the imitial choice of points
(g1.....qx) € My > «+« % M. Hence each such choice yields an element
in M) 0 (M) by considering the maximal extension of the local
solutions given by Lemma 2, and then setting # = 0.

Since [dfl(1191)17},11‘14’1]L B b [dﬁ(pk)TPkMk]4 = R® for all choices of
D € M;, the set M) M- - N (M) 1s discrete. By the arguments in the first
paragraph this intersection is also non-empty. For p € fi(M) 7 (M), the
subset (0, of Mj x +++ x M consisting of all (gi1.....gx) giving rise to the
point p according to the procedure indicated at the end of the last paragraph 1s
non-empty and open. Indeed, to show O, # @ if p € MDD f(Mp) one
starts with any (g1,....4x) such that all f(g;) are sufficiently close (or equal)
to p. Since the trajectories have uniformly bounded speed (by the estimate
given by (16)) and fi(My) M-+« N falMy) 1s discrete, the images fi(xi(#)) of
the solutions will necessarily pass through p at time ¢ = 0. The fact that
©, is open is a consequence of the discreteness of the above intersection,
together with the continuous dependence of solutions of ordinary differential

equations upon the coefficients and the initial conditions, over bounded time
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intervals. Here one should note that the solutions of (8) are independent of
the choice of frames, since they uniquely solve (6). Furthermore, the sets (J,
are pairwise disjoint, by the uniqueness of solutions of initial value problems
for ordinary differential equations with smooth coefficients. Hence,

My % oo % My = @
PEAMD - k(M)

where, as observed, the sets (J, are non-empty, open and pairwise disjoint.
Connectedness of M x -+« X M now implies that there is only one such
set, thus showing that fj(M1) Y-« fi(Mg) reduces to a single point. This
concludes the proof of Theorem 3.
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