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THE COMBINATORIAL COST

by Gabor ELEK *)

ABSTRACT. We study the combinatorial analogues of the classical invariants of
measurable equivalence relations. We introduce the notion of cost and 3-invariants (the
analogue of the first I*-Betti number introduced by Gaboriau [3]) for sequences of
finite graphs with uniformly bounded vertex degrees and examine the relation of these
invariants and the rank gradient resp. mod p homology gradient invariants introduced
by Lackenby ([5], [6]) for residually finite groups.

1. INTRODUCTION

1.1 GRAPH SEQUENCES

Let G = {G,}%, be a sequence of finite simple graphs satisfying the
following conditions:
¢ SUDj <, MaAXev(o,y deglx) < oo, That 1s, the graphs have uniformly
bounded vertex degrees.
« |V(G,)| — o0 as n —+ 00.
In the sequel we refer to such systems as graph sequences. Now let
H = {H,}3%, be another graph sequence such that V(H,) = V(G,) for
any n > 1. Then # - G if there exists an integer L > 0 such that for any
n>1and x,y € V(H,), dg(x,y) < Ldg (x,y), where dg, resp. dy, denote
the shortest path metrics on G, resp. on H,. Thatis, if x and y are adjacent
in the graph H, then there exists a path between x and y in G, of length
at most L. We say that ¢ and # are equivalent, G ~ M, if H < § and
G < H . The edge measure of G is defined as

B
@8 = e

*) The author is supported by OTKA Grants T 049841 and T 037846,



226 G. ELEK

and the cost of ¢ is given as

c(6): ﬁfg e(H).
Clearly, ¢(&) > 1 for any graph sequence & . Originally, the cost was defined
for measurable equivalence relations by Levitt [7]. In our paper we view graph
sequences as the analogues of L-graphings of measurable equivalence relations
(see [4]).

Recall that a graph sequence G = {G,}3%, is a large girth sequence if
for any & > 1, there exists n; such that if » > a; then G, does not contain a
cycle of length not greater than k. Large girth sequences are the analogues of
L-treeings [4]. Our first goal is to prove the following version of Gaboriau’s
Thearem [2], (see also [4], Theorem 19.2).

THEOREM 1.1. If G = {G.}3%, is a large girth sequence, then
e(g) = o).

1.2 J-INVARIANTS

In the proof of Theorem 1.1 we shall use the F-invariants which are the
analogues of the first 7 -Betti numbers of measurable equivalence relations [3].
First recall the notion of cycle spaces.

Let G(V.E) be a finite, simple, connected graph and K be a commutative
field. Let x(G) be the vector space over K spanned by the edges and let
Cr(G) € ex((), the cycle space, be the subspace generated by the cycles of
G. Then dimg Cx(G) = |E] — |V] + 1. Now let § = {G,}°, be a graph
sequence. Let CA(G,) be the space spanned by the cycles of G, of length not

greater than g. Here we use the usual convention that (x,y) = —(y,x) and we
associate to the cycle (x1,x2....,x,.x1) the vector (Zf;ll(x,‘:x%l)wém(xmxl)).
Set

|EG,)| — dimg CAG,)

1.
V(G|

sH(G) 1= lim inf
P O

The Sg-invariant of G is defined as
Br(G) = iI;f sL(G).

In Section 2 we shall prove that if G =~ #, then Sg(G) == Sg(H). This
immediately shows that

Br(GY+1 < e(G).
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1.3 RESIDUALLY FINITE GROUPS
Let I' be a finitely generated group and
reniehe..., (o l.={1}

be a nested sequence of finite index normal subgroups. Following Lackenby [5]
we define the rank gradient of the system {T'.{T,}3%;}

o dTy
th grad {1 {50} = lim S0

where d(I';) is the minimal number of generators for I',,. In another paper [6],
dp(T's)
ir: T
dp(ly) = dimeHl(l“me). Here we denote by F, the finite field of p
elements. Note that &,(I'y) < d(I',). The mod-p-homology gradient of the

system {T,{[,}2¢ 1 is defined as

Lackenby investigated the behaviour of the sequence { }:;1 where

o dy @
p-grad {I {,; }2, } = liminf ;rp: Lyl

Let § be a symmetric generating system for I' and let G = {G,}5%, be the
graph sequence of the Cayley-graphs of I'/T’, with respect to §. We have the
following theorem :

THEOREM 1.2. ¢(§) —1 <1k grad {T. {T,}2%,}.
If T' is even finitely presented, then we have the inequality
B(G) = B[ < p-grad {T AT, }51} = 8r,(6) < o(§) - 1,

where {)’(12)(1") is the first I?*-Betti number of I' (see [8]).

1.4 HYPERFINITE GRAPH SEQUENCES

One of the key notions in the theory of measurable equivalence relations is
hyperfiniteness. We introduce a similar notion for graph sequences. We shall
prove the following analogues of Proposition 22.1 and Lemma 23.2 of [4].

PROPOSITION 1.3.

1. If H = {H.}5%, is a hypetfinite graph sequence then c(H) = 1.

2. For any graph sequence G = {G,}% | there exists a hyperfinite graph
sequence H = {H,}>%, such that H < G .
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Finally we prove the analogue of the theorem of Connes, Feldman and
Weiss ([4], Theorem 10.1).

THEOREM 1.4. Let T’ be a finitely generated residually finite group with
a nested sequence of finite index normal subgroups T, (V2 T, = {1}. Then
the associated graph sequence G is hyperfinite if and only if U is amenable.

2. J-INVARIANTS

PROPOSITION 2.1. Let G =~ H be equivalent graph sequences and K be
a field. Then Bg(G) = Orx(H).

Proof. Suppose that # C G, thatis for any »n > 1, E(H,) € E(G,). Let
L > 0 be an integer such that dg (x,y) < Ldg (x,y). We define a K-linear
transformation between quotient spaces:
& ex(H,)/CUH) — ex(G/CHG)
by extending the inclusion ¢: E(H,) — E(G,).

LEMMA 22, If (; is surjective then q > L.

Proof. Let e = (x,y) € E(G,), then there exists a path P between x
and y, in H, of length not greater than L. The cycle ¢ = P je represents
an element in CZ(G,) and

le] € [c] % [ex(H))] .

Hence the lemma follows. []

By the lemma it follows that si(H, > sL(G, if ¢ > L, thus
Ax(H) 2 B3x(G).

Now we define another K -linear transformation:

¥ k(G [CUG — ex(H) /CE U,

by mapping the basis vector e = (x,y) € E(G,) to a path in f, of length not
greater than [ connecting x and y. If e € H,, then let 'z;;(e) = e. Obviously,
zw is surjective therefore s4(G,) > S‘}(L(Hn) and consequently Sg(G) > Sg(H).

Hence if G ~ #H, H © G then Fx(G) = Fx(H). Now we consider the
general case, where #{ is an arbitrary graph sequence such that # =~ &.
Then let 7 = € U #, that is V{J,) = V(G,), E(J,) = E(G,) U E(H,).
Clearly, J ~ G ~H and # C 7, ¢ € 7. Thus by our argument above,
Bp(H) =05l T y= Be(9): [
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PROPOSITION 2.3. Ler G = {G,}% be a graph sequence. Then
B(6) < Dr(G) < e(G)— 1.

Proof. Let H =~ G, then 3x(G) = Ax(H) < e(H) — 1. Therefore
Br(G) < e(G) 1.

LEMMA 24, dimg C§(G,) < dimp, CFQP(G,,).

Proof. Let ¢} be the number of cycles in G, of length not greater

than q. Let pz: Z% — ZFG)| be the homomorphism that maps @fil s; to
Z?iISj[Cj], where s; € Z and [¢] is the integer vector generated by the
i-th cycle ¢;. Similarly, we define PF, F;g 3 FEJE(G“)g. Let mq: 7o —» F;g,
70 ZIEGH s FE,E(G"H be the residue class maps. Then w2 o pz = pr, © 71.
Therefore,
rankgz Im pz > dimFP Im gy, .

Clearly, rankz Im pz = dimg CS(GH) and dimg, Im pp, = dimg, lep(Gn). Thus
our lemma follows. L]

By our lemma, Zo(G) < 5, (G) hence we finish the proof of our
proposition. [

QUESTION 2.5. Does there exist a graph sequence G for which
BolG) # Br(G) or Br,(G)#c(G)—17

Finally we prove Theorem 1.1.

Proof. let G = {G,}3%, be a large girth graph sequence. Then by
definition Hg(G) = e(G) — 1. That is, e(G) —~ 1 < ¢(G) — 1, hence our
theorem follows. [

3. RESIDUALLY FINITE GROUPS

The goal of this section is to prove Theorem 1.2. Let I' be a finitely
generated residually finite group with a not necessarily symmetric generating
system S. Let T>Ty > To ..., [}1-;T,= {1} be a nested sequence
of finite index normal subgroups and § = {G,}5%; be the graph sequence,
where G, is the (left) Cayley-graph of the finite group I'/T’, with respect
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to S. Note that if §’ is another generating system and # = {H,}5%, is the
associated graph sequence then # =~ G .

PROPOSITION 3.1.  ¢(G) ~ 1 < rk grad {T', {T',}5%,; }.

Proof. First note that by the Reidemeister-Schreier theorem the groups
I',, are fimtely generated as well [9], moreover if T 1s a finite generating
system of I',, then

dG?r_n(‘xﬁy) g LdGE(‘x‘y)

for any x,y € T',,, where G5 resp. Gl;" are the Cayley-graphs with respect to
S resp. to T, and the Lipschitz constant £ depends only on § and 7.

LEMMA 32 For any k > 1,

Proof. We use an idea resembling an argument in the proof of Theo-
rem 21.1 of [4]. et T be a generating system of I'; of minimal number
of generators. For simplicity we suppose that 7 C §. Consider the following
graph sequence: H = {H,}%,, V(H,) =T/T,. If n <k let H, = G,. Set
S = Iy/T, and let H], be the Cayley-graph of S, with respect to 7. Now
enumerate the vertices of V(H,\S,, {x1.x2....x,}. For each x; consider
the set of shortest paths in G,, from x; to the set §,. Pick the mimmal path
with respect to the lexicographic ordering. The edges of H, shall consist of
H! and the edges of the minimal paths. Define a map =: V(H,) -+ S, in the
following way. For each x; € V(H,)\S, let =(x;) € §, be the endpoint of the
minimal path from x; to S, and let #(x) = x if x € §,. By the lexicographic
mimmality, the unmion of the paths form a subforest in G, having exactly
[V(H\Ss| edges.

We claim that # ~ §. Since H < &, we only need to prove that
G < H. Let n>k, x.y € V(G,). Consider the shortest G,-path from x to
v, {x0.x1....%}, x = x, x = y. Let us consider the sequence of vertices
{mxo), w(x1), .. . wx)}.

Let y1.¥2.....¥rr, be a set of coset-representatives with respect to 1%.
Let ¢ be the maximal word-length of the representatives with respect to S. Then
dg,(m(x),x) < t for any x € V(G,). Therefore, dg (m(x), 7lx;p1) < 2f 4 1.
That is, dy (7(x), 7(xip1)) < L(2t + 1), where L is the Lipschitz-constant
defined before the statement of our lemma. Consequently,

dg,(x.y) < L2t + Ddg,(x,y)
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and therefore H ~ G .
For the edge measure of # we have

T:T.|—|T,:T,| -+ |EH
e(%)mhminfi ab = 1T Tl + | EC ”)i.
P X El—‘il—‘ni

The vertex degrees of H! are not greater than 2|T| = 2d(I'y), also |S,| =
T : T'y]. Thus

dl'y) £

1550 T

() Se(H) <

Hence the lemma follows. L]
Proposition 3.1 is a straightforward consequence of Lemma 3.2. L]

Let {T.{I',}22,}.5. G be as above. Moreover suppose that T is finitely
presented. This means that if @: Fg ~+ I' 1s the natural map from the
free group generated by § to I' then ker® is generated by the relations
{R1, R, ... . R} as a normal subgroup, that is, if () = 1 then

. oy .~ .AJWI A,
'U_"WHUR-;' s Wik Fs

Let S be the usual covering CW-complex constructed from {R:}_,, the
1-skeleton of X 1s the Cayley-graph of I' and for each v € I" and 1 <7 <[,
we add a 2-cell o, ; such that

3;
66*;,5 e Z(Qjﬁf" ijwlﬂf) T
j=1
where R; = aga,..1...aa, W, = aa;.1...4xa1, wy = 1. Then T is simply
connected with a natural T -action. Clearly, ﬁl(E/Fn) == I',. Recall that the

group homology space Hi(I'y, K) is isomorphic to the CW-homology space
Hl (z/rn K)

LevMA 33, We have

_ dimg HiE/T,. K)
lim
A 2t EF : Fni

= (x(G).
Proof. Consider the homology complex

C:ET,, K) 25 CLE/T . K) 25 CoE /T, K.
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Observe that
C1(Z/T,, K) = ex(G,)  and  dimg Co(E/T, K) = |[V(G,)| -

Let r be the maximal word-length of a relation R;. Then 8)2(C2(§/1“MK)) is
generated by cycles of length at most . On the other hand, for any ¢ > r,
the g-cycles are in fﬂz(Cg(i/FmK)) if n 1s large enough.

Therefore C,?(Gn) = f)z(Cz(g/TmK)) if n is large enough. Consequently,

|B(G,)| — dimg $(C2E /T, K)) =~ V(G
1R BN ‘

s2(G) = lim inf
FLo 0%
On the other hand,
dimg Hy(3/T,, K)  dimgkerd; — dimg Im &
IT: T, - IT: T,

|BG )|~ dimg §2(CoE/T,, K)) — V(G| + 1
- IT: T, '

Hence the lemma follows.  []
Now we prove the second part of Theorem 1.2.

PROPOSITION 3.4. Let T' be a finitely presented residually finite group,
{I‘,, {Fn}ml}:Ss G be as above. Then

Bo(8) = By < p-grad {T.{T,}3%,} = 8r,(6) < ()~ 1,
where ‘{)’(12)(1") is the first 12 -Betti number of I' (see [8]).
Proof. By lLemma 33, d,(G) = p-grad {I‘,,{Fn}‘;:il}. Also,

dimg H(Z/T,, Q)
[P0, '

F0(G) = liminf
A S )
By the Approximation Theorem of Liick

i dimo H\(E/T,, Q)

al
= (D).
L T T @)

Hence our proposition follows. [

QUESTION 3.5. 1. Does there exist a finitely presented residually finite
group U and a system {F_, {Fn};ﬁl} such that

G # p-grad {T AT, 5} or p-grad {T T}, } # e(§) ~ 17
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2. Does there exist a finitely generated residually finite group I' and a system
{F, {r, ;’le} such that

o(G) — 1 # 1k grad {T, {T,}7%1 } 7

4. HYPERFINITE GRAPH SEQUENCES

We say that a graph sequence § = {G,}%%, is hyperfinite if for any ¢ > 0
there exists K. > 0, positive integers {k,}:c; and a sequence of partitions
of the vertex sets V(G,)

A UAT U UAL = V(G

such that

« Forany n>1, 1 <i<k,, |A7] < K..

« If EY is the set of edges (x,y) € E(G,) such that x € A;, y € 4;, x #,
then

e B
lim inf -
it WG]~

Now we prove Proposition 1.3.

Proof. Suppose that G = {G,}2%; is hyperfinite. Let H° = {H{}3%,
be the following graph sequence. The vertex set of H is V(G,), E(H))
1s the union of £; and a spanning ftree for each connected component
of the graphs spanned by the vertices of A7, 1 < i < k,. Clearly,
HE ~ G and [E(HD| < |ES] + |VIG,)| thus e(H) < 14 ¢. Therefore
c(G) =1,

Now we show that for any graph sequence G = {G,}3%,. H = {H,}2%,
is hyperfinite where H, is a spanning tree of G,. We actually show that a
sequence of trees 7 = {T,}°%, is always hyperfinite. Let ¢ be an integer and
consider a maximal g-net L} ¢ V(T;). Thatis, if x # y € L} then dr,(x,y) > ¢
and for any z € V(7,) there exists x € L} such that dr(x,2) < q. Now for
each x € V(T,) let #(x) be one of the vertices y € L} closest to x. Then
Uyﬂgfrwl(y) is a partition of V(7). Clearly |7~ '(y)| > ¢ for any y € L}
Obviously the 7 subgraph spanned by the vertices in 7~ (y) is connected,
Thus

Bl < VTl = V@) - LD
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Here we used the fact that a connected graph has at least as many edges as

V()

the number of its vertices minus one. Cbviously, |L}] < , therefore

E(".
lim Pl L
i ] = W

Consequently, the graph sequence 7 is indeed hyperfinite. ]

Finally, we prove Theorem 1.4.

Proof. First let T' be a residually finite non-amenable group with a
symmetric generating system S and a nested sequence of finite index normal
subgroups I't> 'y > T2 > ..., [ Tx = {1}. Let G, be the Cayley-graph
of T'/T,, with respect to S and (% be the Cayley-graph of the group T". Since
I' is non-amenable, it has no Feglner-exhaustion, consequently there exists a
real number & > O such that for each finite subset F ¢ I' the number of
edges from F to the complement of F is at least §|F]. Fix an integer m > 0.
If n is large enough then for any subset M ¢ I'/T',, |M| < m the number of
edges from M to its complement must be at least §|M|. This follows easily
form the fact that for any » > 0, the r-balls in G, and in GE are isometric.
This implies that & is not hyperfinite.

Now let I, {I", }3%,,.S. G be as above, but let I" be amenable. The following
lemma is a straightforward consequence of Theorem 2 of [1].

LEMMA 4.1. For any w > 0, there exist L, > 0, M,, > 0 and a sequence
of family of subsets
Witk W.CVG) if nzM,

such that for any 1 < i < k,,

« Wil £ Lo,

C AU W 2 - wlw),

« the number of edges from W to its complement is at most w|Wi]|,
and

¢ UL Wil 2 (= w)l VG-

Now let Z = Wi\ Uﬁ;i W: and consider the partition of V(G,),

VG =1 2 Ul 2L,
where 7T are arbitrary subsets of size at most L. Let EY be the set of
edges (x.y) € G, such that their endpoints belong to different subsets in the
partition. There are three kinds of edges in EY :
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« Edges with an endpoint in 7°. The number of such edges is at most

2ISI(1 = (1 — w|V(G,)|.

* Edges from Z. to the complement of W!, for some 1 < i < k,. The

number of such edges is at most 2|Sjw(l — w) V(G|

* Edges from Z! to W\Z' for some 1 < i < k,. The number of such edges

is at most 2|Sk(1 — w) V(G

Hence

. Toed 5 o e
lim inf <2 T o] st iffoeda Thudl], s )

Therefore ¢ is hyperfinite.  []
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