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L'Enseignement Mathématique (2) 53 (2007), 155-178

REMARQUES SUR LES VALEURS MOYENNES

DE FONCTIONS MULTIPLICATIVES

par Gérald Tenenbaum

ABSTRACT. By a self-contained approach, we show that a real-valued multiplicative
function whose square has a mean value must itself have a mean value, and we provide
a sufficient condition for the vanishing of the latter. This partially extends a theorem
of Elliott.

1. Introduction

La valeur moyenne d'une fonction arithmétique réelle /: N* —> R est

définie, lorsqu'elle existe, comme la limite

M(/):~ lim - V f(n).
*-+oc X *•—'

n^.x

Pour I c R, a > 0, k N*, désignons par JA(I) la classe des fonctions

arithmétiques multiplicatives à valeurs dans î, par Ca(J) la sous-classe de

A4(î) constituée des fonctions / telles que

/1 \ lia
i|/Ha limsup - l/C^M < oo

et notons 1Zk(I) la sous-classe de M(I) comprenant les fonctions / telles

que fk possède une valeur moyenne.
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Un cas particulier, représentatif du cas général, d'un très élégant résultat

d'Elliott [5] peut être énoncé comme suit. Ici et dans toute la suite, la lettre p
désigne un nombre premier.

On a K2(R+) C Kl(R+). De plus, si f K2(R+)

(/(p) -- l)
Z_* p

p r

Le théorème principal d'un récent travail de Mauclaire [13] énonce que,

pour toute fonction / de A4(R+ si (a) toutes les fonctions n m- f(dn)
(dfr 1) appartiennent à 7v2(R+), si l'on a

a» LL
P y

et si (c) la série (1.1) diverge, alors il existe un sous-ensemble E de N*
de densité 1 tel que la fonction 1e/2 soit de valeur moyenne nulle. En

fait, ce résultat découle immédiatement du Théorème A, même en élargissant
l'hypothèse (a) au seul cas d — 1 et en supprimant la condition (b). En effet,
si / ^ 0 et M(f) — 0, l'ensemble des entiers n tels que f(n) > s est de

densité nulle pour tout s > 0.

Elliott donne dans [6] (Theorem 19.1) une nouvelle démonstration du

Théorème A. Les approches de [5] et [6] présentent des différences
significatives mais s'appuient essentiellement toutes deux sur la caractérisât!on

donnée par Elliott dans [3] des fonctions de £2(R) possédant une valeur

moyenne supérieure1) non nulle — un critère dont la condition nécessaire a

été retrouvée par une autre méthode dans un travail subséquent de Daboussi

et Delange [2]. Un autre élément essentiel des deux preuves réside dans

l'obtention d'une propriété de régularité locale pour la fonction sommatoire
de /, soit

(1.2) C*>°)-

Dans [5], le résultat est issu d'un lemme de [4] reposant sur un théorème de

théorie probabiliste des nombres dû à Levin, Timofeev et Tuljaganov [12].

Théorème A (Elliott).
et si la série

(1.1)

diverge, alors M(f) — 0.

Cette notion est définie en (2.1) infra. Voir le théorème 17.1 de [6].
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Dans [6], Elliott a recours, via un principe de dualité, à la résolution d'une

équation fonctionnelle approchée — voir notamment les chapitres 6 et 10

de [6]. Enfin, dans tous les cas, la forme duale de l'inégalité de Turân-Kubilius

joue un rôle essentiel.

Nous nous proposons ici de donner une version plus générale du
Théorème A, dans laquelle l'hypothèse de positivité pour / est relâchée.

Notre énoncé pourrait probablement être retrouvé comme conséquence des

résultats exposés dans [6]. Nous nous sommes principalement attaché ici à

présenter une démonstration simple et autonome où l'existence d'une valeur

moyenne pour /2 est exploitée directement dans le calcul de la valeur moyenne
de / — ce qui a constitué notre motif initial de curiosité.

Comme dans toutes les approches, le point le plus difficile consiste à

établir la nécessité de la convergence de la série (b). A cette fin, nous mettons

en évidence, par une méthode directe adaptée de [9], une nouvelle propriété
de régularité locale pour les fonctions x M(x ; / lorsque / ?72(R+) :

l'évaluation est moins précise que celles de [4] ou [6], mais valable dans un
domaine plus vaste. Ce résultat, d'intérêt propre, fait l'objet du lemme 2.1

infra.
Bien que certains éléments de notre démonstration soient, inévitablement,

analogues à leurs pendants dans la preuve du critère de [3], nous ne

faisons pas directement appel à ce résultat. Les simplifications apportées
ici sont essentiellement dues au lemme 2.1 et au résultat taubérien énoncé

au lemme 2.4, qui dispense, dans le cas d'une fonction positive ou
nulle, d'un nouvel appel à un résultat de régularité locale, pour lequel le

lemme 2.1 serait d'ailleurs inadapté — voir, par exemple, le chapitre 10

de [6], Lorsque / prend des valeurs des deux signes, nous exploitons le
résultat obtenu pour |/|, mais une seconde estimation relative au comportement

local des moyennes demeure nécessaire. Nous pouvons alors nous
contenter de faire appel à la technique légère de Hildebrand dans [10],
qui fournit, dans un cadre moins général mais avec des détails

techniques beaucoup plus simples, une estimation analogue à celles d'Elliott
dans [6].

Théorème 1.1. On a 1Z2(R) c 7Zl(R). De plus, si f e 7Z2(R) et si la
série (1.1) diverge, alors M(f) — 0.

Sous des conditions sensiblement plus fortes, nous obtenons une forme
effective du résultat.
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Théorème 1.2. Soit f 1Z2(R+) telle que M(/2) 7^ 0 .On suppose en

outre que ]T fip'f fp2 < 00 et
p

(1-3) ^/(p)l°gp < a (A > 1).

A/ors oä a

v>,)«,«Xp{ vTVLAij i?»-

Posons to(ä) |r(«)|/«11/2 où r désigne la fonction de Ramanujan.
Nos deux théorèmes s'appliquent au cas / — tq, qui constituait la motivation
initiale d'Elliott dans [5]. Nous retrouvons ainsi l'estimation effective donnée

dans [7] pour la fonction sommatoire de to - L'existence de ïvKrff) 7^ 0 résulte

d'un célèbre théorème de Rankin [15]; la convergence de Ylpro(p)4 ip2 la

validité de (1.3) découlent des inégalités de Deligne [1]

(1-4) 0<r0(p)<2 (p> 2).

Pour établir la divergence de la série (1.1) lorsque / — ro, nous notons, ainsi

qu'il est établi par exemple dans [6] à partir du théorème de Rankin et d'un
résultat de Moreno et Shahidi [14] concernant la valeur moyenne de r(n)4,

que
{r0(p)2 ^ l}2" J ~ l°g2-y -f Q(i) •

p

Compte tenu de (1.4), nous obtenons immédiatement la majoration de [7]

a.5) a s 2).
n^.x

Ainsi qu'il est souligné dans [7], un cas particulier de la conjecture de Sato-

Tate implique
To(p) 8

> ~ — log, x (x -y 00).
' p 3-n L

p^-X

Il est donc cohérent de conjecturer que l'exposant 4- de (1.5) peut être
g

remplacé par 1 — — f» 0,15117 et que cette valeur est optimale. Dans [16],
3tt '

_
4 9/2Rankin montre que l'on peut choisir pour exposant r : - — — y - ?» 0,06517.

Notons qu'il s'agit du meilleur résultat déductible de la seule donnée des
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moments logarithmiques d'ordre 2 et 4 de ro(p), respectivement égaux à 1

et 2. En effet, si Sa désigne la mesure de Dirac au point a, la mesure
de probabilité dß — ^<\,Y73 ~f Ö2 vérifie f x2d/j, — 1, f x4dß — 2 et

fxdß — 1 — r.
Nous pouvons améliorer cette estimation en tenant compte des résultats de

Kim et Shahidi [11] (voir page 194), selon lesquels les moments logarithmiques
d'ordre 6 et 8 de ro(p) valent respectivement 5 et 14. Nous montrons au

paragraphe 4 que cela implique

(1.6) <{l-s}log2x+CKl)

avec

-f meve
*°îi,'*#!

De plus, cette majoration est optimale sous la seule donnée des moments
d'ordre 2, 4, 6 et 8. Elle fournit immédiatement le résultat suivant.

Corollaire 1.3. Avec la notation (1.7), on a

(1-8) 5ZTo^)<7r^77 (x^2).

2. DÉMONSTRATION DU THÉORÈME 1.1

2.1 LEMMES

Pour chaque fonction arithmétique /, nous posons, avec la notation (1.2),

(2.1) lim sup M(x\ f)jx.
X--ÏQC

La partie la plus difficile de la démonstration consiste à établir que, si

/ ä2(R+) et M(f) fi 0, on a nécessairement

v—v -r—* f(jf )2* EE%r < *> •

Ainsi qu'il a été noté dans l'introduction, nous obtenons (2.2) grâce à un

argument de régularité locale pour les moyennes M(x ; / différent de ceux

qui sont employés dans [4] ou [6],
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LEMME 2.1. Soient A > 0 et f G 1Z2(R+). Si M(f) > 0, il existe des

constantes B > 0, ci > 0 et C2 > c\ telles que

M(z; /)M(x; f)> mm J >B (x>l).
z

Démonstration. Comme j|/j|2 < oo, on a d'une part/(«) •< \/^ ^ 1)
et d'autre part, pour a G] 1,2],

n° Ji tl+* o - 1

Notons, à fins de référence ultérieure, que, par une application convenable de

l'inégalité de Holder, cela implique, pour tout a G]0.2[,

(2-4) EE f(puy
< oo.

pu
P y>2 r

Posons S(x~,f) T2p^x{f(p') -* 1 }fp- Nous établissons dans un premier
temps que, pour tout a G [1,2[ et L — L(a) ^ 0 convenablement choisi, on a

(2.5) S(x]fa) < L (x ^ 2).

Notons P+(«) le plus grand facteur premier d'un entier n avec la convention

p+(l) -r i. Pour prouver (2.5), nous observons d'abord que, pour tout entier
k ^ 0 et tout nombre réel x ^ 3,

v f(nr < f y /U)2]a/2f V e"* 1"0,/2

Z-rf
W

1 Z_* Ä J \ é—M ^1— 1 / log AC

**<»<**+* P+(nKx

P~*~(n)^.x

« {(k A 1)logexp|—(1 - a/2)* + (1 - a/2) ]T p^+i/ los*j
p^x

<(k+ Vf'2 e"(1"^2)*log^.

En sommant sur £ G N, il vient

Cela implique bien (2.5) en prenant les logarithmes et en utilisant la convergence

de la série T2p f(p')2a fp2, dont le terme général est <C f(p)2fa?~a.
Ensuite, nous montrons que toute fonction / de 7?2(R+) telle que

M(/2) ^ 0 satisfait une forme faible d'une estimation classique de Halberstam

et Richert [8], soit

(2.6) M(x-, f)<x QS(x'fh'2 (x ^ 2).
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A cette fin, nous écrivons

M(x-J) logx < /(«){ log « -r ^ f(-m^f(-PU^> lo§(P") +XY1 '

n-^jc mp" ^'.X n^-x

Au vu de (2.4), la dernière somme est -C qS(x'P logx. Pour majorer la première,

nous introduisons un paramètre iï > 1 et scindons la sommation selon

que l'on a ou non f(p") H. Grâce aux estimations Ylp»Zz log(p") -C z,

M(z,f) < z (z > 1), il suit

m v « mfj < » E
wp" ^ pi'

^
ÂP")>H

^»##1»«n* E 77^.
Ap)>H

où nous avons traité la contribution des p" avec v ^ 2 par l'inégalité de

Holder en appliquant (2.4).

A ce stade, nous utilisons l'hypothèse / - 772(R+) sous la forme

z»mz;/)S E /(Aw(|vîjs's E fe>D.

D'où

vp / *—^ p
\/z<pZz \Sz<P<-Z

E — «è-' p H
sfKp^z
Jip)>H

et donc, en multipliant par logz, en spécialisant z x1'2* (£ ^ 0) et en

sommant sur £,

p H
pZx

Ap)>H

Cela implique (2.6) en reportant dans (2.7) et en choisissant H :

Nous obtenons donc, sous l'hypothèse M(x;/) ^ Ax,

(2.8) S(x]f) > —A'

où A" est une constante positive dépendant a priori de f et A.
Donnons-nous alors un paramètre a > 0 et posons

pa(t) \a{?12 ~ 1) + ß(l - 0

-S(x-f)/2
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Ainsi, (pa est décroissante sur [0,1], croissante sur [l,oo[ et p>a( 1) — 0.
Choisissons alors a 6(1+s/2), de sorte que y?0(i) 1, P>a(2) — 2(3 — s/2) > 1.

On vérifie également que (pa(t) — t + 1 est croissante pour t "+ 2. Il suit

l[0,l/2](£) + (t — l)l[2,oc[(0 ^ +Jf) (t ^ 0)

Nous déduisons donc de (2.8) et (2.5) que, sous l'hypothèse M(x\/) ^ Ax,
nous avons

V I 4 v • V EÂM iaK.
p^x

^
p<-x

^ P<x P

ÂpKl/2 Ap)>2

Comme x peut être pris arbitrairement grand, nous obtenons

(I« v C
i—é p t—é p

ßp)< 1/2 y 2 f
Nous sommes à présent en mesure d'aborder la phase essentielle de la

preuve. Étant donné x + 1 tel que M(x ; /) ^ Ax, nous introduisons une

nouvelle fonction multiplicative fx définie par

0 si p > x ou i/ ^ 2 ou f(p) ^ [|,2],
f(p) si v — 1, p +. x et J ^ f(p) ^ 2.

Il est clair que
Nous avons

Mb/.) __ _ TT/i

fx(pu)

^-ECr-riiiCbf)^ ^ fi "y pn+1

et, grâce à l'encadrement u -- | m2 ^ log(l t«) ^ « (0 ^ w ^ 1), nous en
déduisons, en vertu de (2.3), (2.5), (2.8) et (2.9),

—d? x log*.
'1 î2

Montrons que cette estimation persiste lorsque l'intégrale est restreinte à un
domaine du type xn + t + x}'n pour une constante convenable p e]0,1[.
A cette fin, nous utilisons d'une part la majoration M(t\ fx) <i, qui fournit

Mb/.),.
2 dt < 7] log X

J1 ^

et d'autre part l'inégalité

W ; fx) + M(t ; f/)l/2 W,*)1/2
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où dUL a) désigne le nombre des entiers a-friables n'excédant pas t. En

insérant la majoration uniforme

W;x) « «1/(2log*) (t ^ x ^ 2) 5

établie dans [17] (théorème III.5.1), nous obtenons

M(S''Jx)àt « e-1/(4?i) logx.

Cela implique bien, pour un choix convenable du paramètre rj,

fxWv M(t ; fx)
(2.10) / v

2
df xlogA.

Jx'i £

Pour S > 0, désignons par E(ô ; a) l'ensemble des nombres réels t de

[xn,xll'n~\ tels que M(t; fx) > St. Il découle de (2.10) que l'on a, pour une

constante convenable C > 0,

fl/"
M(t]fx)^ < dlogA c f dr

V JE(d-.x)

Ainsi, lorsque S est suffisamment petit,

d? 1 f df
» ; / — » 1

•

<m-x) log^-/£(<);*)

En vertu de la majoration

M(w ; /) - M(v ; /) < v^(l tw - v)M(w ; /2) < -/«;( 1 +w v),

valable pour tous w ^ v ^ 1, nous avons, pour x assez grand,

f £(<) ; x) et t ^ ~ x1'*1 ==> [hî -f f/ loga] c £"(<) /2 ; a)

Il existe donc au moins r >• (loga)2 intervalles disjoints [tj,tj-j~tjf log a]
dont la réunion est incluse dans E(S/2; a). Une forme forte du théorème des

nombres premiers nous permet d'en déduire que, pour tout z Ix2'7',
nous avons

pz/pE(â/2 ;x)

et donc, compte tenu de (2.9),

E — »i-
z/p£E(âf2;x) P
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Or, nous avons trivialement

M(z fx(m)f(p) > f(p)M(zjp ; £)
mp^.z
m<p

z/p£E(â/2 ;x)

p
z/pE(â/2 ;x)

Nous avons donc établi le résultat annoncé avec c\ 2/:q, C2 : 3j:q.

LEMME 2.2. Soit / e 772(R+). Si M(/) > 0, akrs

(2.11) 2_2_ <0°-
P ^>2

Démonstration. Comme dans [4], nous faisons appel à la forme duale de

l'inégalité de Turân-Kubilius (voir par exemple [17], théorème III.3.2). Notant

/[p] la fonction multiplicative définie par

/&>](«)
fin) si p
0 si p

nous avons

(2.12) Y,Pl
P"

i Up
g1

M(x] /)

Or, pour tout zfl, nous pouvons écrire

M(z ; f\p\) M{z; /) - Y! f(-n) ^ M(-z ; /
n^.z

n=0 mod p

où, la somme en n ayant été majorée par l'inégalité de Cauchy-Schwarz,
B est une constante convenable. D'après le lemme 2.1, il existe une suite

infinie X de valeurs de x et une constante s > 0, telles que

M(xjpl/ ;/) x xjpu (a g X, pu < xz).
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La même évaluation est donc valable pour M(x/pv ; f^f) dès que p > po
si po est choisi assez grand. Il s'ensuit que

P>P0 2 P>P°

P" *ZX"

En faisant tendre x vers l'infini tout en restant dans .-Y, nous obtenons la

convergence de la sous-série de (2.11) correspondant à p > po-

Lorsque p fpo, nous observons que, pour x .Y, x°l ^ z ^ xD,

z « M(z,f '• /w)
j/>0

« «Äfc; «fc fa*«
i/>0 ^

Maintenant, pour z : — ./C1+C2h'2 et c > 0 assez petit, il suit

P" ^Xx° p"^:xi

Cela montre que chacune des sommes intérieures de (2.11) est convergente et

achève ainsi la démonstration.

Désignons par P~{n) le plus petit facteur premier d'un entier naturel n,
avec la convention p~(l) — oo.

Lemme 2.3. Soit f 7Z2(R+). Si M(f) fi 0, il existe un nombre réel y<)

tel que, pour tout entier D fixé satisfaisant à P~(D) > yo et x assez grand,
on ail

E«*n(n^rP\D JW) fF
(n,D)=1

Démonstration. On a M(/2) ^ M(/)2 > 0 d'après l'inégalité de Cauchy-
Schwarz. La relation

y: fin)2 — M(f2)x + o(x) (x -* -oo)

H^-X

implique immédiatement/(«)2 o(n) lorsque n —r oo. D'après le lemme 2.2,

il existe donc un nombre réel yo tel que



G. TENENBAUM

(3.14)
i»>Ä I/>1

Définissons une nouvelle fonction multiplicative ho par

f/(p»32 Ap\D,
hD(p ^ ^i 0 si p | D.

Écrivons alors la relation de convolution ho — f2 * go où go est la fonction
multiplicative définie par les identités formelles

(2.15) V &W
*

si I P-
1 si v\ D.v>0

Ainsi, pour tout diviseur premier p de D, la série de gauche admet pour série

majorante la série à coefficients positifs ou nuls

i EJi/<r>^ *

Il résulte donc de (2.14) que

9o(n)\ T-r v- \9d(P1")\
(a.® E^f-iie < oo.

P
rC? 1 p\D f^0

Désignons par <£>£>(;*;) le nombre des entiers premiers à D n'excédant pas x
et notons Ho la fonction sommatoire de ho. Nous avons

(2.17) Y, M < sJ®d(x)Hd(x) (x^l).
n^x

(n,D)= 1

Il résulte immédiatement de (2.16) que

(2.18) Hd(X) Y m(k) Y f(jn)2 ~ M/2)G(D)x (a -» .00)

k-g.x m-^-x/k

avec la notation

9D(n) TT 1

G(0):-E^-i1
Nous avons par ailleurs, d'après un résultat classique de crible (voir par
exemple [17], théorème 1.4.3),

(2.19) *D(.)«,nM) (x>D).
p\D

P

Cela implique bien l'évaluation annoncée.
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Nous utilisons également le résultat taubérien suivant, dont une version

plus faible suffirait d'ailleurs à notre application. Nous donnons la courte
démonstration pour la commodité du lecteur.

Lemme 2.4. Soit \a-p\p une suite indexée par les nombres premiers, à
valeurs réelles positives ou nulles, et telle que ap — o(p) (p ~~ï oo Si le

produit

m - H(I< J)
p

converge pour tout o > 1 et si la limite a := lim<r.H,i+ A(o')/Ç(o') existe et

est non nulle, alors le produit infini ^(1 4- ap/p)( 1 — 1/p) converge vers a.

Démonstration. On a ap -fi \p pour p assez grand. Comme nous

pouvons traiter trivialement toute partie finie du produit, nous pouvons supposer
sans perte de généralité que cette inégalité est réalisée pour tout p. Posant

b\ — loga, bn {(—1 — \}/v si n — pu avec v tp 1 et bn 0
si n n'est pas une puissance de nombre premier, nous déduisons alors des

hypothèses effectuées que la série

«'"***£*# - pli1 - p)}
n-S 1 P

converge pour tout o > 1 et vérifie

(2.20) lim B{o) — 0.
<T 1

On a

p», -, _ V aP(-lo%P~)2P<X V P'Qogp? ^ C(o)2 COX'V) ^ K
* KU) ^ (P* + O,? ^ (p- - 1)2 - C(^)2 " (<7 - l)2

pour une constante convenable K. D'après un théorème de Landau (voir par
exemple [17], théorème II.7.6), nous obtenons

«fei-
^lOp+p* pr-lJ \o - 1 /

et donc

(2.21) EaplogP ^
1

ap -t p<7 a—I
(<7 1 ~t~)
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Cette dernière relation implique à son tour

v 4logp _ v <Kap\°gp)
m J_J_l ^^ p^iOp + p°") ^ Clp -h pf \ (7 — 1 /

et donc, grâce à (2.21),

per (J_1
P

Nous pouvons alors déduire du théorème de Karamata que l'on a

——- logp — o(logx) (x oo).
p<-x

P

et, de nouveau grâce à la relation ap — o(p),

x~~*.bn\osn v~^ lcip — 1

(2.22) yy yy yy ^— îogp — o(iog^) (x -» oo).
n^x

n
u^\p^.xlf" P

Or, le théorème de Tauber sous forme intégrale (voir par exemple [17],
théorème II.7.4) stipule que, sous l'hypothèse (2.20), la relation (2.22) équivaut

à

y^ o.
éi *

Remarque. Le théorème taubérien de Hardy-Littlewood-Karamata
implique facilement que, pour toute suite {cp}p majorée ou minorée, la relation

lim V ^ b
ex—>1+ * pcr

P

implique la convergence vers b de la série YLpcpiP- Ce résultat, qui
aurait été suffisant pour notre application, est par exemple établi dans [18]
(Exercice II.7.8) lorsque la suite est bornée et la même technique fonctionne

sans changement sous une hypothèse unilatérale. Au vu de la relation

£X"
nous voyons donc que la conclusion du lemme 2.4 est acquise si nous disposons
de l'information supplémentaire que la série Y\p(ßp — 1 )2 jp2 converge. Notre
énoncé permet de s'affranchir de cette dernière condition.
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2.2 Completion de l'argument

Soit / G E2(R). Si M(|/|) — 0, alors / G E^-R) et M(f') — 0. Mous

pouvons donc supposer dans la suite que l'on a

(2.23) M(\f |)>0.
Par une simple application de l'inégalité de Cauchy-Schwarz cela implique

que c M(/2) > 0.
Une sommation d'Abel standard permet d'écrire

/o#Y i^-L rv (rj -4 14-)
4^ n? <7—1
n>\

Il s'ensuit que

> 0.

P

et donc, en vertu du lemme 2.2,

r * T1 f/ \2 / <r\ TT f 1 •
iPU [

äo^rK1 Aji:/(p)2/p
De plus, la relation

/(«)2 — <?.* -h o(jç) (* -4- oo)
në-x

implique immédiatement f(n)2 — o(n) lorsque n —> oo. Nous pouvons donc

appliquer le lemme 2.4 à la suite {f(p)2}p, d'où

(2.24)
1

(*^oo).
pë-X, ^ Pëx ^

Etablissons d'abord l'existence d'une valeur moyenne pour / lorsque la
série (1.1) converge.

Sous cette hypothèse supplémentaire, nous déduisons de (2.24) et de

l'estimation

ftxS,:iog{(i,rpi)(I.
la convergence de la série

mm î*
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Pour chaque y 2, introduisons alors la fonction multiplicative fy
définie par

on
p1' H n

p^y

On a fy — gy* 1 où gy est la fonction multiplicative définie par

ffW-fdT-1) si p^y,
9y(P — { n[ 0 si p > y.

Comme la série

\9y(n)I tj(, sr^ |/(P")-/(P"-1)
1 p<yy 1

est convergente, fy possède, pour chaque y fixé, une valeur moyenne

(2.28) i)E/("k>
p/ P"

1 p^y r i/>0 ^

L'identité f(p) — 1 — \ {/(p)2 — 1} — \ (f(p) — l)2 montre alors que la2 W Vr 2 -* J 2
série

ti29) Vt1p
est également convergente, ce qui implique à son tour la convergence de M(fy)
vers une limite non nulle lorsque y —> oo.

Il reste à majorer \M(x ; f M(x ; fy)\. A cette fin, nous introduisons la

fonction multiplicative <py, duale de fy, définie par

'1 si p ^ y,

/(p") si p > y.
La fonction fy est dans 7Z2(R) pour chaque y fixé, et vérifie

p<y y

en vertu des diverses convergences établies plus haut. En notant que l'on a

fy(P")

fy(n) \py(n) - 1|1/2 < \j\f(n)fy(n) \ + \fy(rï)\ < \f(n)\ + \fy(n)\

uniformément pour n ^ 1, y ^ 2, d'où

|/(«) -^(«)| < (|/(«)| + l/yOOl) Wy(n) - 1|1/2 ;
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et, en appliquant l'inégalité de Holder avec exposants 3/2 et 3,

(2.30) |M(x ; /) - M(x ; fy)\ < M(x ; \f ~fy\)

<M(x; \ff/2 + \fyf/2)2ßM(x] l^-if/2)1/3
< X2^M(X; |^- 1|3/2)1/3.

Considérons alors les fonctions additives

<^(«) : =r { /(p") _ 1 }25 -^(ä) : — log/(p")}
p"\\n
p>y \jip")\>\/2

avec une détermination quelconque du logarithme complexe définie sur R*.
Si 'ây(ri) <1/4, alors expipy(n) — <fy(n). Il est donc clair que, pour s ]0.1[,
on a

'ây(n) < - et \ipy(n)\ < e => |ipy{n) — 1| < s.

Nous pouvons donc écrire, pour tous y ^ 2 et e ]0,1[,
(2.31) M(x\ \(py^l |3/2) < s3/2x

M(x]^'\1/4 i2
i- < M(X] -ây) 4 > M(X] \(py^l \y '4,

où nous avons majoré la fonction indicatrice de l'ensemble des entiers « tels

que |ipy(ri) — 1| > e par -C 'dy(n)1'4 4- >/\ipy(n)\/s et appliqué l'inégalité
de Holder avec exposants 4 et 4/3. Une simple application de (2.18) avec

D Wy^^p^yP fournit, pour y fixé et x —> oo,

(2.32) M(x; [y-,-l]2)« Y^-FT .l,2l Oïï'lt « *^ m 11 i ^mijp II i ^mijp
p\m=?p-£y

où la constante implicite est indépendante de y. De plus, en utilisant systématiquement

l'approximation logz — z— 1 -\~0(\z~ 112) lorsque z R\[—1/2.1 /2]
et en tenant compte des convergences des séries (1.1), (2.11) et (2.26), nous
déduisons de l'inégalité de Turân-Kubilius que
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où cy — 0(1) lorsque y —y oo. On a clairement M(f)y) -C cy pour tout y. En

faisant tendre x, puis y vers l'infini et ensuite a vers 0 dans (2.31), nous
obtenons bien l'existence d'une valeur moyenne pour /.

Supposons à présent que la série (1.1) diverge. Nous devons montrer que

/ est de valeur moyenne nulle.

Considérons d'abord le cas / ^ 0. Nous raisonnons par l'absurde et
établissons que l'hypothèse (2.23), i.e. M(f) > 0, conduit à une impossibilité.

Soit D — Dy U^<p<yP- Notons Sd(x) l'ensemble des entiers

n'excédant pas x dont tous les facteurs premiers divisent D. Nous avons

]£/(«) Ç f(rn) fin)
n<;X m<=„SD(x) n^x/m

(n,D)=\

* r n (rbsfe)'"
mSD{x) *><P<yX •J-ftY/

d'après le lemme 2.3. Il suit

t i l fp
ya<P<-y

< n
yo <p^y

Considérons alors la fonction

f(p)\( 1-1 fp
p l 1 -rfipfjp

1/2

1/2

w x /1
1 /, l\ 1

1 O w-\ (U'«l)2
Xfkui) —logjl -j !- g logp

\ 1 / -y;2 \
S — - log( 1 A« —

2 \ P t
On a

A'(-y?)
(-y; - l){(p + w)ip + -y;2) - 4p2}

p '
4p(p + w)ip + w2)

donc X'piyxi) est du signe de 1 —y; sur l'intervalle [0. >fp\. En particulier,
Xp(w) f Àp(l) < 0 pour 0 ^ w f sfp. En appliquant cette inégalité avec

-y; —fip), nous obtenons

à/)<- v iTrnu
jo <p^y

Le résultat annoncé découle de cette majoration en faisant tendre y vers

l'infini.
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(2.34)

Nous sommes à présent en mesure de traiter le cas général. Si l'on a

(|/(P)| - l)2E P
OQ

ce qui précède implique — 0 et donc M(f — 0. Nous pouvons
donc supposer dorénavant que la série (2.34) converge. L'inégalité de Turân-
Kubilius (2.12) implique alors

(2.35) M(x;f)
P^sx p

puisque l'on a M(x/p ; f\p]) — M(xjp ; /) + OLr/p3'2) pour tout p ^ x.
Supposons momentanément que, pour chaque a > 0 et chaque y ^ 2, il

existe un xq — xo(a,y) tel que

(2.36) |j.M(x ; / )| > ax et x > Ao(a%)>)j => minM{xjp ; f)M(x ; / > 0.

Nous déduisons alors de (2.35) que l'on a, pour x > xo(y) et \M(x ; /)| > ax,

(2.37) Vp
p-^y

M{ - M(x]f)
P

M(x ; /
p^y P

«E «I/»)! »«(L/)
p^y

< x1 -h*2 y
p^y

(|/(P)| - D2

P

D'où, dans les mêmes conditions,

(f(p) - l)2
M(x]f)2 ]T

p-^y
P

Up
p-^y

{/(p) - f(p)Mß ; /] +/(p)M^ ; /]

<2^p/(p)2
p-^y

P

M(x\f) Mfï
P

i Vp/ipWg:/) M(x;/)
P

p^x
ÏAP)\>2
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où la dernière estimation résulte de la convergence de la série (2.34). Comme
la série (1.1) diverge, cela implique immédiatement lim sup |M(x ; f)\/x — 0

et donc M(/) — 0.

Il reste à établir (2.36). Comme annoncé dans l'introduction, nous utilisons
à cette fin un argument très simple dû à Hildebrand [10].

Nous allons en fait montrer que, pour tout s > 0, on a, pour ô — ô(s) > 0

convenable et x assez grand,

(2.38) sup
xl~ß<z<x

\M(x;f)\/x \M(z] f)\/z\ < e.

Cela implique bien le résultat souhaité puisque les moyennes locales M(t ; f)jt
varient d'au plus \f(n)\/n -C 1 fsfh dans chaque intervalle [«. n~\~ 1[.

Pour montrer (2.38), nous commençons par observer que, par une

manipulation analogue à (2.37), nous avons pour tout x ^ 1

El
p^x

|Afe/)|
P

< r2

d'où, pour tout £ [l,x], par une application standard de l'inégalité de

Cauchy-Schwarz,

£ b E |a#4
£,<p^x' S.<p^.x

\M(x;f)\
P

M[X-

r "biSJyÇ<p^.x

Choisissons £ xexp(-~^ où 'â est un paramètre de [1, | log2 x] qui sera

précisé plus loin. Nous avons classiquement Yj$<p^x ^fp — '&-t 0(\j\J\o%x).
Nous pouvons donc déduire de ce qui précède que

(2.39) \M(x \ /)| | Y. |M(-;
i<p^x

Ecrivons la somme en p sous la forme

f-x/n ^
\M{n ; / )| ^ f

1

m
l Jx/(n+l) J •/{

\M(x/t]f)\ dt + R

oïl Rn - I 1)
1 .fin) 8» 1 > et
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X
R < - + Y \M(n-f)\Rn

l^n<_x/ £

La dernière somme peut être évaluée par sommation d'Abel en notant d'une

part que | \M(n -f- 1 ; /)| s» |M(n ; /)| | Ci |/(«)| et d'autre part que

Y Rn<^em^ (l<N^x/0,
N-^.n<x/$

d'après le théorème des nombres premiers. Nous obtenons

R<&xe-^ Y 1^1 <x.

et donc, en reportant dans (2.39),

jr fx- \M(s; f)l / x \

Soit alors z [x^^.x]. Choisissons |i de sorte que z/|î ~ x/% et

appliquons (2.40) avec z et |i à la place de x et |. Si rd\ est défini

par ma zexP(-^i)j nous avons :d\ — 'd — log(l -h Pour le choix
'd \ log(l/S), nous obtenons donc

\M(z]f)\ j* t Ctf-UxVs)J i 5 ioga/5) Vy^yItO(vl)

_
z /*/< |M(s;/)| / Z x

^ il 52log(z/5) Vy^2

En soustrayant cette formule de (2.40), il vient

|M(x;/)| |M(z;/)| 1 logCr/z)ds 1

x z 'd Ji s\og(x/s)\og(z/s) ' sß
dlogjc 1 1

C d log C
' sß ^ yiogl/d

Cela implique bien (2.38) et achève ainsi la démonstration.
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3. DÉMONSTRATION DU THÉORÈME 1.2

D'après l'estimation classique, déjà mentionnée plus haut, de Halberstam

et Richert [8] (la fonne simplifiée du théorème III.3.5 de [17] suffit ici), nous
déduisons de l'hypothèse (1.3) et de la relation (2.11) la majoration

^/(«)«iesw (x^l)
n-^x

avec

M 1 v-/W - 1 4äW'-«lr-r- Ep ' 2p
p^x p-^X

Le résultat annoncé découle donc de la convergence de la série (2.26) qui,
sous nos hypothèses, est conséquence de (2.25) et (2.24).

4. DÉMONSTRATION DU COROLLAIRE 1.3

Soit dp une mesure de probabilité générique sur [0.2] et {ojjfèo la suite
de ses moments. Posons sq 52 1, 54 2, — 5, 5g — 14. Dans un

premier temps, montrons que, le nombre s étant défini par (1.7), on a

(4.1) SUp <71 1—5.
<x2k=sk (ia<4)

A cette fin, nous recherchons une mesure extrémale sous la forme

dp* — ciSa + ßdb + là2

avec les contraintes 0 ^ a, b ^ 2, 0 ^ oc,ß,i ^ 1, ci + ß i 1 — 1- Une

résolution par calcul formel (effectuée par Mario Sigalotti et Paolo Mason,

que l'auteur prend plaisir à remercier ici) montre qu'une solution du système

f y2kdp*(y) 52* (0 < k < 4)
Jo

est donnée par

102-7x/2f q __
102 -P 7v/2l

_ _
1

a 2ÏÔ ' •'
210 ' 7 ~ 35 '

a= ^(6«*/2Ï), b= ^jl-(6 + V2Ï).

En résolvant alors un système linéaire 5x5, nous obtenons l'existence d'un

polynôme réel P(y) A/y-7 tel que
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P(ct2) — a, P(b2) b, P(4) 2, 2aP(a2) - 2bP(b2) ~ 1.

Un examen de la concavité permet d'établir aisément que l'on a

(4.2) y^P(y2) (0<y<2).
Par intégration sur [0.2], nous obtenons, pour toute mesure

a\ < ^ AyS2y aa + ßb -t 2a; s= 1 ~ s,
o</<4

où l'égalité découle du fait que la relation P(y2) y a lieu d/P -presque
partout.

Cette estimation implique bien (4.1) puisque le membre de gauche est égal

au premier moment de d/P. La majoration (1.6) est, quant à elle, obtenue en

intégrant (4.2) relativement à la mesure de répartition logarithmique normalisée
des ro(p) (p ^ x) sur [0.2] et en exploitant les estimations de [11] sous la

forme

V—, T()(p)2k
y — — S2k log2 x + 0(1) (0 ^ k ^ 4. jr -¥ oo

Le fait que de telles formules asymptotiques résultent de la seule connaissance

de l'ordre du pôle des séries de Dirichlet Yln>i To(n)2kinS en s — 1 peut, par
exemple, être établi en faisant appel au lemme 2.4. Nous omettons les détails.
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