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L’Enseignement Mathématique (2) 53 (2007), 155-178

REMARQUES SUR LES VALEURS MOYENNES
DE FONCTIONS MULTIPLICATIVES

par Gérald TENENBAUM

ABSTRACT. By a self-contained approach, we show that a real-valued multiplicative
function whose square has a mean value must itself have a mean value, and we provide
a sufficient condition for the vanishing of the latter. This partially extends a theorem
of Elliott.

1. INTRODUCTION

La valeur moyenne d’une fonction arithmétique réelle f: N* — R est
définie, lorsqu’elle existe, comme la limite

1
M cae lim — 3
(fy:=lim — % fm)
n<x
Pour I/ C R, &« > 0, k € N*, désignons par M(I) la classe des fonctions

arithmétiques multiplicatives a valeurs dans 7, par £%(J) la sous-classe de
M(I) constituée des fonctions f telles que

e X0

1 . 1/ex
171, = timsup( § 1Al <o,

RLX

et notons RXI) la sous-classe de AT comprenant les fonctions f telles
que f* posséde une valeur moyenne.
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Un cas particulier, représentatif du cas général, d’un trés élégant résultat
d’Elliott [5] peut étre énoncé comme suit. Ici et dans toute la suite, 1a lettre p
désigne un nombre premier.

THECREME A (Elliott). On a RAHRT) « RYR™). De plus, si f € R*(R1)
et si la série

5 (fp) —1)°

p

(1.1)

P
diverge, alors M(f) = 0.

Le théoréme principal d’un récent travail de Mauclaire [13] énonce que,
pour toute fonction f de M(R™), si (a) toutes les fonctions # =+ f(dn)
(d > 1) appartiennent a RIRM), si l'on a

®) Zzﬂi?z < o0,

p w»zl

et si (c) la série (1.1) diverge, alors il existe un sous-ensemble E de N*
de densité 1 tel que la fonction 1gf% soit de valeur moyenne nulle. En
fait, ce résultat découle immédiatement du Théoreme A, méme en élargissant
I’hypothese (a) au seul cas d = 1 et en supprimant la condition (b). En effet,
si f =20 et M(f) = 0, I'ensemble des entiers #n tels que f(n) > & est de
densité nulle pour tout £ > 0.

Elliott donne dans [6] (Theorem 19.1) une ncuvelle démonstration du
Théoreme A. Les approches de [5] et [6] présentent des différences signi-
ficatives mais s’appuient essentiellement toutes deux sur la caractérisation
donnée par Elliott dans [3] des fonctions de L2R) possédant une valeur
moyenne supérieure!) non nulle — un critére dont la condition nécessaire a
été retrouvée par une autre méthode dans un travail subséquent de Daboussi
et Delange [2]. Un autre élément essentiel des deux preuves réside dans
I’obtention d’une propriété de régularité locale pour la fonction sommatoire
de f, soit

(1.2) M@, )= 3" fm) x320.

1<n<x

Dans [5], le résultat est issu d’un lemme de [4] reposant sur un théoreme de
théorie probabiliste des nombres dii a Levin, Timofeev et Tuljaganov [12].

1y Cette notion est définie en (2.1) infra. Voir le théoréme 17.1 de [6].
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Dans [6], Hliott a recours, via un principe de dualité, a la résolution d’une
¢quation fonctionnelle approchée — voir notamment les chapitres 6 et 10
de [6]. Enfin, dans tous les cas, la forme duale de 1'inégalité de Turan-Kubilius
joue un rdle essentiel.

Nous nous proposcns ici de donner une version plus générale du
Théoréme A, dans laquelle I’hypotheése de positivité pour f est reldchée.
Notre énoncé pourrait probablement €tre retrouvé comme conséquence des
résultats exposés dans [6]. Nous nous sommes principalement attaché ici a
présenter une démonstration simple et autonome ou 1’existence d’une valeur
moyenne pour f* est exploitée directement dans le calcul de la valeur moyenne
de f — ce qui a constitué notre motif initial de curiosité.

Comme dans toutes les approches, le point le plus difficile consiste a
établir 1a nécessité de la convergence de la série (b). A cette fin, nous mettons
en évidence, par une méthode directe adaptée de [9], une nouvelle propriété
de régularité locale pour les fonctions x = M(x; f) lorsque f € R*(R):
1"évaluation est moins précise que celles de [4] ou [6], mais valable dans un
domaine plus vaste. Ce résultat, d’intérét propre, fait 1’objet du lemme 2.1
infra.

Bien que certains éléments de notre démonstration soient, inévitablement,
analogues a leurs pendants dans la preuve du critere de [3], nous ne
faisons pas directement appel a ce résultat. les simplifications apportées
icl sont essentiellement dues au lemme 2.1 et au résultat taubérien énoncé
au lemme 2.4, qui dispense, dans le cas d'une fonction positive ou
nulle, d’'un nouvel appel a un résultat de régularité¢ locale, pour lequel le
lemme 2.1 serait d’ailleurs inadapté — voir, par exemple, le chapitre 10
de [6]. Lorsque f prend des valeurs des deux signes, nous exploitons le
résultat obtenu pour |f], mais une seconde estimation relative au comporte-
ment local des moyennes demeure nécessaire. Nous pouvons alors nous
contenter de faire appel a la technique 1égére de Hildebrand dans [10],
qui fourmt, dans un cadre moins général mais avec des détails tech-
niques beaucoup plus simples, une estimation analogue a celles d’Elliott
dans [6].

THEOREME 1.1. Or a RYHR) ¢ RYR). De plus, si f € R¥R) et si la
série (1.1) diverge, alors M(f) = 0.

Sous des conditions sensiblement plus fortes, nous obtenons une forme
effective du résultat.
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THEOREME 1.2. Soit f € R*RT) telle que M(f*) # 0. On suppose en
outre que S f(p¥*/p* < 0 et
2

(13) S Jplogp<x 2D,

PEx

Alors on a

2
> fimy «xexp{mzqq’)zpl)} Ui Bl

RELX pPEX

Posons () = [T(n)[/nlm oli 7 désigne la fonction de Ramanujan.
Nos deux théoremes s’appliquent au cas f = 7y, qui constituait la motivation
initiale d’Elliott dans [5]. Nous retrouvons ainsi [’estimation effective donnée
dans [7] pour la fonction sommatoire de 7. L'existence de M(TO) # 0 résulte
d’un célebre théoreme de Rankin [15]; la convergence de Zp ’['o(p)4 /p et la
validité de (1.3) découlent des inégalités de Deligne [1]

(1.4 O n@P<2 (@P22).

Pour établir la divergence de la série (1.1) lorsque f = 79, nous notons, ainsi
qu’il est établi par exemple dans [6] a partir du théoreme de Rankin et d’un
résultat de Moreno et Shahidi [14] concernant la valeur moyenne de it
que
2 2
- 1
3 1@ =~ 11 _ 1og, x4+ 0.

pPEx P

Compte tenu de (1.4), nous obtenons immédiatement la majoration de [7]

(1.5) Zm(n)« )1;18 & 22

Ainsi qu’il est souligné dans [7], un cas particulier de la conjecture de Sato-
Tate implique

wailogzx X —r 20).

Il est donc cohérent de conjecturer que l’exposant % de (1.5) peut étre

remplacé par 1 % = 0, 15117 et que cette valeur est optimale. Dans [16],
Rankin montre que 1’on peut choisir pour exposant 7 = %Lm % \/% = 0,06517.
Notons qu’il s’agit du meilleur résultat déductible de la seule donnée des
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moments logarithmiques d’ordre 2 et 4 de 7(p), respectivement égaux a 1
et 2. En effet, si 9, désigne la mesure de Dirac au point a, la mesure
de probabilité du = {58 457 + 1502 vérifie [APdp = 1, [du = 2 et
fxdpg=1~r.

Nous pouvons améliorer cette estimation en tenant compte des résultats de
Kim et Shahidi [11] (voir page 194), selon lesquels les moments logarithmiques
d’ordre 6 et 8 de m(p) valent respectivement 5 et 14. Nous montrons au
paragraphe 4 que cela implique

(1.6) Z@ < {1 — s} logy x + O(1)
pEx
avec
_ 33 1:2-7v21 [1
UD s=F~ g5 56~ V21)

10247v21 1 e
S TEVECE V21) 72 0,11852.,

De plus, cette majoration est optimale sous la seule donnée des moments
d’ordre 2, 4, 6 et 8 Elle fournit immédiatement le résultat suivant.

COROLLAIRE 1.3. Avec la notation (1.7), on a

(18) > <
nLx

X
(logxy

x322).

2. DEMONSTRATION DU THEOREME 1.1

2.1 LEMMES
Pour chaque fonction arithmétique f, nous posons, avec la notation (1.2),

(2.1 M(f) = lim sup M(x; f)/x.

Ko O30

La partie la plus difficile de la démonstration consiste a établir que, st
feR¥RYY et M(f)+# 0, on a nécessairement

(2.2) Zzﬂi?z < 00,

P =2

Ainsi qu’il a été noté dans 1'introduction, nous obtenons (2.2) grace a un
argument de régularité locale pour les moyennes M(x; f) différent de ceux
qui sont employés dans [4] ou [6].
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LEMME 2.1. Soient A >0 et [ € RIRTY). Si M(f) > 0, il existe des
constantes B > 0, ¢1 > 0 ef ¢2 > ¢ telles que

Moo Fy A gy MR . g

x = 1.
gl x 21

Démonstration. Comme || fil, < oo, on a d’une part f(n) < /n (n 2 1)
et d’autre part, pour & €]1,2],

fm? M [ 1
23 e dt ;
(@3) ; PR 1 e % -1

Notons, a fins de référence ultérieure, que, par une application convenable de
I’'inégalité de Holder, cela implique, pour tout « <]0,2[,

f(pb‘)(k
(2.4) 33 <.
P w22 P
Posons S(x;f) 1= > - {f(p) — 1}/p. Nous établissons dans un premier
temps que, pour tout e € [1,2[ et L = L{«x) 2 0 convenablement choisi, on a
(2.5} SC )<L x22).

Notons P (#) le plus grand facteur premier d’un entier n avec la convention
Pt(1) = 1. Pour prouver (2.5), nous observons d’abord que, pour tout entier
k = O et tout nombre réel x > 3,

( )(2 ( )2 f2 ol Lowex /2
LTINS )

Agnaxtt] agatt! PH(my<x
PH(m<x

<« {(k + Dlogx}or? exp{wﬂ - /D A~/ pitY 1°3x}
PEx

& (k+ 1)%/2 g~ U—a/Dkgo

En sommant sur & ¢ N, il vient

H (1 w’,wf(‘j;)a) & logx.

pEx

Cela implique bien (2.5) en prenant les logarithmes et en utilisant la conver-
gence de la série 3, F()* /p*, dont le terme général est < f(p)* /p>~.

Ensuite, nous montrons que toute fonction f de R*(R1) telle que
M(f?) + 0 satisfait une forme faible d’une estimation classique de Halberstam
et Richert [&], soit

(2.6) M f) < x8N2 v »0,
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A cefte fin, nous écrivons
Mg plogx< S fmflogn+ 2L < 3T fomfp*) logp”) +x 3 1%,
i E— nex

Auvude (2.4 1a dernidre somme est < ) logx. Pour majorer la premiere,
nous introduisons un parametre H 3> 1 et scindons la sommation selon
que I’on a ou non f(p¥) < H. Grice aux estimations » v 108(PY) K Z,
Mz )&z (z 2 1), 1l suit

i 1 Fr
en X fonfe togpt < Y Ty 5 SEDOEED

mp X X P 2
fp"y=H
«erg(xﬁlogxw;wx Z JM-,
pEX E
floy=H

ou nous avons traité la contribution des p¥ avec v 2 2 par 'inégalité de
Hdolder en appliquant (2.4).
A ce stade, nous utilisons I’hypothése f € R*(RT) sous la forme

2 2, AL 2 for
2o Mz Y feM(EL) ez Y T @z,
VZIpLz P VZEpEz P
D’ou ) .
)
JIdpLs
fipy-H

et donc, en multipliant par logz, en spécialisant z :== x1/2 (k 2 0) et en
sommant sur k,

lo logx

3 J@logp . log G 1)
P H

pPEx

fo-H

Cela implique (2.6) en reportant dans (2.7) et en choisissant H ;== g~ N2
Nous obtenons done, sous 1’hypothése M(x; f) > Ax,
28) S f) » ~K

ou K est une constante positive dépendant a priori de f et A.
Donnons-nous alors un parametre @ > O et posons

Call) = %a(ﬁ-f’z e D) a(l —1).
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Ainsi, ¢, est décroissante sur [0, 1], croissante sur [1,o0[ et ¢4(1) = 0. Choi-
sissons alors a@ = 6(1+/2), de sorte que @a(l) 2 1, (2 D3 V2) > 1.
On vérifie également que w,(t) — ¢ -+ 1 est croissante pour ¢ 2= 2. 1l suit

110,121 + (¢ — Dlp (@) < @D t=0).

Nous déduisons donc de (2.8) et (2.5) que, sous [’hypothese M(x; /) > Ax
nous avons

f(p)wl ©a f(p) e Bl ] g
S e Y L BV 20 (3) sax.
PEX DX PEX
<12 fz2

Comme x peut étre pris arbitrairement grand, nous obtenons

(2.9) Z Z f® -

ﬂm<lQ}) fim=2 2

»

Nous sommes a présent en mesure d’aborder la phase essentielle de la
preuve. Gtant donné x =2 1 tel que M(x; f) = Ax, nous introduisons une
nouvelle fonction multiplicative f, définie par

£ {O siprxouv > 2ouf(p)$[22]
AP ) =

f@) siv=1p<xet J<fPIL2
Il est clair que O < f, < f.

Nous avons

/ M(r e 578D, H(Wﬁ;p))

n=l DEX

et, grace a l'encadrement u — § u* < log(l +u) < u (0L u=< 1) nous en
déduisons, en vertu de (2.3), (2.5), (2.8) et (2.9,

f (ﬂ’ﬁ”)dt = logx.
1

Montrons que cette estimation persiste lorsque 1'intégrale est restreinte a un
domaine du type x7 < t < x/% pour une constante convenable 7 €]0, 1[.
A cette fin, nous ufilisons d’une part la majoration M(Z; f;) < t, qui fournit

At M r i
/ (Iéj;)dt % nlogx,
1

et d’autre part 1'inégalité
M(t; £ < M@ DV 20
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ou W(t,x) désigne le nombre des entiers x-friables n’excédant pas ¢. En
insérant la majoration uniforme

W, x) « 2N 15 x>0y,
établie dans [17] (théoréme 111.5.1), nous obtenons
> M f)

aliw

dt « e~/ Jogx.

Cela implique bien, pour un choix convenable du parameétre 7,

174
s MI
(2.10) / (32’ fx)dt = logx.

Pour § > 0, désignons par E(d; x) ’ensemble des nombres réels ¢ de
[x”_.,xlm] tels que M(t; f,) > ot. Il découle de (2.10) que 1’on a, pour une
constante convenable ¢ = 0,

myy
Mt ol dt

logx«i{/ (zfx)dzéo‘gx{»(?/ —.
7 ) 7 B b

Ainsi, lorsque ¢ est suffisamment petit,

dz 1 ds
»— —» 1.
Es;x 1logr = logx Jgs.y 1

En vertu de la majoration

MGg; f)—Mu; [ < \/(1 o DM 2 & \/'u;-(l o Y3 ),
valable pour tous % 2 v 2 1, nous avons, pour x assez grand,
[CEG X et < %xlf"f? — (1,1 +1/logx] C EG/2; %).

I1 existe donc au moins r 3 (logﬁc)2 intervalles disjoints [z, + #;/ logx]
dont la réunion est incluse dans E(4/2; x). Une forme forte du théoréme des
nombres premiers nous permet d’en déduire que, pour tout z € {xz-*" 4 55! ”] ;

nous avons .
> len,
z/peE(3/2 ;%) P

et donc, compte tenu de (2.9),

z/pgE(3/2:5)
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Or, nous avons trivialement

Mz fyz Y Amfez Y. FeMep; )

mpz Z/pEE(3 /2 )
m<p

5
BN f(p)gZ >z

7/ pEE(3/2 ;)

Nous avons donc établi le résultat annoncé avec ¢p = 2/, ¢2 = 3/7. ]

LEMME 2.2. Soit f & R¥R1). Si M(f) > 0, alors

(2.11) Zzﬂi?z < 00,

P oez2

Démonstration. Comme dans [4], nous faisons appel a la forme duale de
I'inégalité de Turdn-Kubilius (voir par exemple [17], théoreme I11.3.2). Notant
Jip la fonction multiplicative définie par

(n) sl i,
Foalm = {f il
0 sipla,
nous avorns
i 7 X 1 1/p 2 2
@12 3 p|f )M(};;f@]) ~—PMe pl <@ @z,
pYEX

Cr, pour tout z = 1, nous pouvons écrire

B
M@ fo) =M@ )~ S fm) 2 Mz )~ _\/;

nLz
n=0 mod p

ol, la somme en s ayant été majorée par l'inégalité de Cauchy-Schwarz,
B est une constante convenable. D’aprés le lemme 2.1, il existe une suite
infinie & de valeurs de x et une constante ¢ > 0, telles que

M@/p”, fY=x/p* @eX, p”<x%).
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La méme évaluation est donc valable pour M(x/p”; fi,) des que p > po
si pp est choisi assez grand. Il s’ensuit que

sz(ﬁ)

P>pn L,>2 P>Po v>2
p <x

7w1<<1 (KEX).

En faisant tendre x wvers 'infini tout en restant dans ', nous obtenons la
convergence de la sous-série de (2.11) correspondant a p > pg.
Lorsque p < po, nous observons que, pour x € X, x° < z € x2,

cE M) =Y (S f[p])

w20

<<Z2;3M(Z f )] SZf(p

y>0

P 2M; M

Maintenant, pour z:= x©1%/2 et = > 0 assez petit, il suit

>3 f(p i < Y f@'PM (i ;fﬁ,]) <Mz ) <z.

PP LAY pPrEAt

Cela montre que chacune des sommes intérieures de (2.11) est convergente et
acheéve ainsi la démonstration. L]

Désignons par P~ (#) le plus petit facteur premier d’un entier naturel #,
avec la convention P (1) = oo

LEMME 2.3. Soit f € RY¥R™1). Si M(f) # 0, il existe un nombre réel vy,
tel que, pour tout entier D fixé satisfaisant a P~(D) > vy et x assez grand,
on ait

S ()

R
(n, D)1

Démonstration. On a M(f?) = M(f)* > 0 d’aprés 1'inéealité de Cauchy-
Schwarz. La relation

> Fm? =M x4 0@ (&= 00)

RLX

implique immédiatement f(n)? = o(n) lorsque 7 — oo. D apres le lemme 2.2,
il existe donc un nombre réel yo tel que
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w2 g b 1
(2.14) sup > P < 5.
w2zl
Définissons une nouvelle fonction multiplicative Ap par
f@*Y sipiD,
hp(p”) = { .
o 0 siplD.

Ferivons alors la relation de convolution sp = f% « gp ol gp est la fonction
multiplicative définie par les identités formelles

{ (.20 f@* )™t sip| D,

2.15 Pagt s
(2.15) > gz i § piD.

=0

Ainsi, pour tout diviseur premier p de D, la série de gauche admet pour série
majorante la série a coefficients positifs ou nuls

1 ) .
L Zyglf(p”)zz" - Z(Zﬂp )ZZU) )

k20 pzl

Il résulte donc de (2.14) que

(2.16) Z iSJDIEﬂ)[ _ HZ igD;i?”)[ & &

nxl piD v 20

Désignons par @p(x) le nombre des entiers premiers a D n’excédant pas x
et notons Hp la fonction sommatoire de #p. Nous avons

(2.17) Z S < /OpHp(x) @2z 1).

n<x

(,D)=1

Il résulte immédiatement de (2.16) que
(218)  Hp@) = gp(k) > fim? ~ M(fHGD)x (¥ - o0)

k<x mexlk
avec la notation
gp(i) 1
G(D) = Z - S

Nous avons par ailleurs, d’aprés un résultat classique de crible (voir par
exemple [17], théoréme 1.4.3),

(2.19) Dp(x) & xH(l - %) (x = D).

piD

Cela implique bien 1’évaluation annoncée. [
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Nous utilisons également le résultat taubérien suivant, dont une version
plus faible suffirait d’ailleurs & notre application. Nous donnons la courte
démonstration pour la commodité du lecteur.

LEMME 2.4. Soit {a,}, une suite indexée par les nombres premiers, i
valeurs réelles positives ou nulles, et telle que a, = o(p) (p — o0). Si le

prodiutit
Ala) = H(l e }%)
r

converge pour tout o > 1 et si la limite a = lim, ,14 A(o)/( (o) existe et
est non nulle, alors le produit infini |],(1 +ap/p)1~1/p) converge vers a.

Démonstration. On a ap = % p pour p assez grand. Comme nous
pouvons traiter trivialement toute partie finie du produit, nous pouvons supposer
sans perte de généralité que cette inégalité est réalisée pour tout p. Posant
by .= —loga, b, = {(wl)‘*"wla;’ ~ 1V si m=p” avec v 2 1 et by 1= 0
si m n’est pas une puissance de nombre premier, nous déduisons alors des
hypotheses effectuées que la série

B(a) = Zzz = mlogam&Z]og{(l & %) (1 _ 1)}
nz1 P

converge pour tout & > 1 et vénhe

(2.20) lim B(o) = 0.
On a
’ ap(logp)’p” p°logpy _ (0¥ — o) -K
Bloy=3 T - > >
) >P: 7 +aP e 7 - 1P (P (0 =17

pour une constante convenable K. D’aprés un théoréme de Landau (voir par
exemple [17], théoréeme [1.7.6), nous obtenons

B’(a)me{aplogpw logp}mo( 1 ) @~ 14,
r

et donc

aylogp 1
ay + p* g1

(221 (7~ 1),

P
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Cette derniere relation implique a son tour

2
Zﬂmzo(aplogp)mo( . ) (0 = 14),

I3 e D e P s
gl (ap -+ p7) — dp P g 1
et done, griace a (2.21),
| 1
Zap 2 Ca = 1) .
p® o 1

P

Nous pouvons alors déduire du théoréme de Karamata que 1’on a

Zapmllogpmo(logx) (x — 20),
PEX

et, de nouveau grice a la relation a, = o(p),

b,logn g |
(2.22) Z ng = Z Z o Z logp = o(logx) (x - o0).
HEX pzlpgaliv

Cr, le théoréme de Tauber sous forme intégrale (voir par exemple [17],
théoreme 11.7.4) stipule que, sous 1’hypothese (2.20), la relation (2.22) équi-
vaut a

REMARQUE. Le théoréme taubérien de Hardy-Littlewood-Karamata im-
plique facilement que, pour toute suite {c,}, majorée ou minorée, la relation

_ ¢
llI]il 2 =b
ey 1o > P
implique la convergence vers & de la série Zp cp/p. Ce résultat, qui
aurait été suffisant pour notre application, est par exemple établi dans [18]
(Exercice I1.7.8) lorsque la suite est bornée et la méme technique fonctionne

sans changement sous une hypotheése unilatérale. Au vu de la relation

(1) )% o)

nous voyons done que la conclusion du lemme 2.4 est acquise si nous disposons
de 'information supplémentaire que la série Zp(ap — 1Y% /p* converge. Notre
énoncé permet de s’affranchir de cette derniere condition.
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2.2 COMPLETION DE L’ ARGUMENT
Soit f € RZ(R). Si M(f]) = 0, alors f € RYR) et M(f) = 0. Nous
pouvons done supposer dans la suite que ['on a

(2.23) M(f) > 0.

Par une simple application de 1'inégalité de Cauchy-Schwarz cela implique
que ¢ = M(f*) > 0.
Une sommation d’Abel standard permet d’écrire

2
S oo
ne 7~ 1

nzl

Il s’ensuit que

1 s
Jim ST 7@ p =e,

p w220
et done, en vertu du lemme 2.2,
. ! ¥ >2f(Py)2/Py .
lim —— (1»»&()2 TN sl {1»»&» il >0,
ol AR ) 11 L+ /@R /p

De plus, la relation

S fnf =extow) (- o0)

nEX

implique immédiatement f(n)* = o(n) lorsque n — oo. Nous pouvons donc
appliquer le lemme 2.4 2 la suite {f(p)*},, d’on

2 !
(2.24) H(lw}@) NaH(lw—) (x — 20).
P P psx P

Fitablissons d’abord 1’existence d’une valeur moyenne pour f lorsque la
série (1.1) converge.

Sous cette hypothése supplémentaire, nous déduisons de (2.24) et de
I’estimation

2 1 2 1 2 1 2 2
(225) log{(wf(p) )(w _)} _ %O({f(p) 2} D) )
P P p P

la convergence de la série

2
(2.26) ZM .
> P
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Pour chaque y 2 2, introduisons alors la fonction multiplicative f,
définie par

(2.27) S = [ re".

Plin
PEY

Ona f,=g,%1 ou g, est la fonction multiplicative définie par

o —fiprh sip<y,

ﬁ("):m{ .
e 0 SLp>y.

Comme la série

9] . Fo —ferh
ol H(l + 3 L )

nzl Py vzl

est convergente, f, possede, pour chaque y fixé, une valeur moyenne

R 0 ) (B ) a2

Rzl Py v 20

L’identité f(p) — 1 = %{f(p)2 — 1} %(f(p) — 1) montre alors que la
série

(2.29) Z M
P p

est également convergente, ce qui implique a son tour la convergence de M( f)
vers une limite non nulle lorsque y — co.

1l reste & majorer [M(x; f) — M(x; fy)l A cette fin, nous introduisons la
fonction multiplicative ¢y, duale de f,, définie par
1 sipsy,
J@¥) sip>y.
La fonction f, est dans R2(R) pour chaque y fixé, et vérifie

2
M =T (1-35) S <1,

ry. Pz P

o) = {

en vertu des diverses convergences établies plus haut. En notant que ['on a

B leym = 117 <\l fifm] + 15| < | fm)] + )
uniformément pour # 2 1, vy = 2, d’ol

[fm = ] < ([f] + 1Am]) [eym — 172,
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et, en appliquant 1’inégalité de Holder avec exposants 3/2 et 3,

(230) |M(x; f)— Mx; )l < M, | f— ny)
€M P2 AP OME |y — 1P
L 2PME; gy — 115

Considérons alors les fonctions additives

dm = {f) -1, aym= > logfp").

pYiin pYlin. p>y
P>y (f™)>1/2
avec une détermination quelconque du logarithme complexe définie sur R*.
Si 4, (m < 1/4, alors expyy(n) = py(n). 11 est donc clair que, pour ¢ €10, 1[,
on a
hon< g et

Pmlse = |Jp,m—1]Ke.
Nous pouvons donc €crire, pour tous v = 2 et & €]0, 1[,

(231 AMAfx; [wym 1E / )«53,2}:
M( 2) 1/4 f

ou nous avons majoré la fonction indicatrice de 1’ensemble des entiers # tels
que Jgym — 1] > & par <« dmY* + oy (m]/e et appliqué 1'inégalité
de Holder avec exposants 4 et 4/3. Une simple application de (2.18) avec
D =[], <peyp fournit, pour y fixé et x — oo,

xnﬂ«x

@30 Mz e -1 < 3 S+ R
ooy LT FDR/p

mx p<y
Dplmrp <y

1 wf(p)zfp

ou la constante implicite est indépendante de y. De plus, en utilisant systémati-
quement 1’approximation log z = z~1+0(|z~1]%) lorsque z € R~[~1/2,1/2]
et en tenant compte des convergences des séries (1.1), (2.11) et (2.26), nous
déduisons de 1’inégalité de Turdn-Kubilius que

s 12 -
@) M) «x{z Bl 'y el }

P>y p P>y p
vzl piEx
2
J@) — 1P f -1
& X{ Z T fi o Z T o xgy 5
Py YLPEA

izl
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oll &y = o(1) lorsque y — 0. On a clairement M(#,) < &, pour tout y. En
faisant tendre x, puis y vers 1'infini et ensuite & vers O dans (2.31), nous
obtenons bien 1’existence dune valeur moyenne pour f.

Supposons a présent que la série (1.1) diverge. Nous devons montrer que
J/ est de valeur moyenne nulle.

Considérons d’abord le cas f 2= 0. Nous raisonnons par |’absurde et
établissons que I’hypothese (2.23), 1.e. M(f) > 0, conduit 2 une impossibilité.

Sait D = D, = Hyﬂ{pgyp. Notons Sp(x) 1’ensemble des entiers
n’excédant pas x dont tous les facteurs premiers divisent . Nous avons

STRm= > fem > fim

nlx i Spix) n<x/m
(R D)1
famy 1-1/p '
il Mgl ! (Hf(p)z/p) e
mES o) W< pLy "

d’aprés le lemme 2.3. 11 suit

_ [y 1=1/p
Mpy< I > Iz (wf(p)z/p)

y<pLy v20

LN { 1-1/p )”2
< 10+ ) (i)

W<pLy

Considérons alors la fonction

. . W i 1 1 1 ? 'H:"z ! ('H:"W 1)2
AP(ﬂ") - IOg(l B p) e 5 10%(1 o p) - 5 lOg(l £y p) T T ’

On a

w — D{p + ) + %) — 4p}

Ap(p + w)(p -+ w?) ’
donc }«;('u;-) est du signe de 1 -1 sur l'intervalle [O,,/p]. En particulier,
Apla) £ Ay(1) < 0 pour O < w < /p. BEn appliquant cette inégalit€ avec
w = f(p), nous obtenons

ApGw) =

{fip— 112
e L),

M)« eXP(“"“ Z ”

MLPpEY

Le résultat annoncé découle de cette majoration en faisant tendre y vers
I'infini.
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Nous sommes a présent en mesure de traiter le cas général. Si 1'on a
2
(234) Z Jf@) -1 _
7 P
ce qui précéde implique M(|f]) = 0 et donc M(f) = 0. Nous pouvons

donc supposer dorénavant que la série (2.34) converge. L'inégalité de Turan-
Kubilius (2.12) implique alors

(235) p foM(Z: 7) - x 2 1),
p<x

puisque 1’on a M(x/p; fp1) = M(x/p; f)+ O /p*?) pour tout p < x
Supposons momentanément que, pour chaque « > 0 et chaque v 2 2, 1l
existe un xg = xp(cx, ) tel que

(236) (|M(x; £l > ax et x > xo(cz_.,y)) = minM(x/p; IMG; f) > 0.
Py
Nous déduisons alors de (2.35) que I’on a, pour x > xo(y) et |Mx; f)] > ax,

i
(237) Zp‘M ) -t é22p‘if(p)EM(§;f)w
Py

Py

p
2

+2) p ‘(If(p)i - om(Z:7)

PEY
T
«ﬁw&fZ—(mp)E = .
PEY P
D’oli, dans les mémes conditions,
— 1)2
Mx f)2 Z (f(p )
PEY P
2
i X &
- ;p‘{f( -1l oM (S r) + rom(si 1)
<y
M(x; f) x AL
<23 pfpy - M= f
p% p (p )
+ 2Zp‘f(p>M f)-
p<y P

PoX
[fp)i>2
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ou la dernieére estimation résulte de la convergence de la série (2.34). Comme
la série (1.1) diverge, cela implique immédiatement lim sup [M(x; f)|/x = 0
et donc M(f) = 0.

I1 reste a établir (2.36). Comme annoncé dans I'introduction, nous utilisons
a cette fin un argument trds simple di a Hildebrand [10].

Nous allons en fait montrer que, pour tout £ > 0, on a, pour § = §(g) > 0
convenable et x assez grand,

(2.38) sup |[Mx; Hl/x— [Mz; /7] € e

A—drdx

Cela implique bien le résultat souhaité puisque les moyennes locales Mt ; f)/t
varient d’au plus | f(m)|/n < 1//n dans chaque intervalle [a,n -+ 1[.

Pour montrer (2.38), nous commengons par observer que, par une mani-
pulation analogue a (2.37), nous avons pour tout x > 1

e
PEx

d’oli, pour tout £ € [1.x], par une application standard de 1’inégalité de
Cauchy-Schwarz,

MG £ Z = >

e

“<p<x f<pdx ¥ P
: / 1
- ¥ u(Zi)|+olx/ T 3).
E<psx A\f E<px

Choisissons ¢ := x™P=? ol 9 est un parametre de [1, % log, x] qui sera
précisé plus loin. Nous avons classiquement » ., 1/p = 4+ O(1/y1ogx).
Nous pouvons donc déduire de ce qui précede que

X
(2.39) |Mufnm_§j‘( ‘%OCT,
ECpEx ) \/5)
Ecrivons la somme en p sous la forme

logt
l<n<x/g {1 g

. x/n
ol Ry = 3 imepeafininy L = -I;C;(R“H) dt/logt (n>1) et
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x
R a5+

P | 2 M IR

legnax/é
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[.a dernicre somme peut étre évaluée par sommation d’Abel en notant d’une

part que ‘[M(n 415 )] - [M(n;f)[‘ < | f(m)] et d’autre part que

> R eV <N <9,

d’apres le théoréme des nombres premiers. Nous obtenons

o g f IO X Ef(n) E
R Vi E —
EHoxe . v
l<n<x/E

et done, en reportant dans (2.39),

B s
(2.40) [Mx; )] = 5/1 5% log(x/s)

Soit alors z € [xl“"’”&,,x]. Choisissons £ de sorte que z/&

x EM(s;f)EdMO( X )

X/E &t

appliquons (2.40) avec z et £; a la place de x et £. Si ¥ est défini
par ¢; = z%-¥) nous avons ¥ = ¥ — log(l + de”? —4). Pour le choix

oF % log(1/4), nous obtenons donc

P fm |M(s ; f)i N O(
irom b Feeas™

T N
3 f Szlog(z/s) ks O(‘/})

En soustrayant cette formule de (2.40), il vient

IM(z; f)] =

M@ O] IME; Pl 1 f log(x/2)ds
s & =
3 Z i

slogx 1 1

= g S
dlogé " g V1og1/d

Cela implique bien (2.38) et acheve ainsi la démonstration.

slog(x/s)log(z/s) -
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3. DEMONSTRATION DU THEOREME 1.2

D apres 'estimation classique, déja mentionnée plus haut, de Halberstam
et Richert [8] (la forme simplifiée du théoréme I11.3.5 de [17] suffit ici), nous
déduisons de ’hypothese (1.3) et de la relation (2.11) la majoration

S fim < xe @1

nEx

avee

p 2p

pPEx PEx

L.e résultat annoncé découle donc de la convergence de la série (2.26) qui,
sous nos hypothéses, est conséquence de (2.25) et (2.24).

4. DEMONSTRATION DU CORCLLAIRE 1.3

Soit dyz une mesure de probabilité générique sur [0,2] et {5;};20 la suite
de ses moments. Posons sp = S, = 1, 54 = 2, 55 = 5, 553 = 14. Dans un
premier temps, montrons que, le nombre s étant défim par (1.7), on a

4.1) sup g1 =1 —.8.
aopesy (LSS

A cette fin, nous recherchons une mesure extrémale sous la forme
du® = ady + By + o2

avec les contraintes 0 < a.b < 2, 0< a, 3, v <1, o+ 3+~ = 1. Une
résolution par calcul formel (effectuée par Mario Sigalotti et Paolo Mason,
que ’auteur prend plaisir a remercier ici) montre qu’une solution du systeme

2
/ Vit = 0<k<d
0
est donnée par

L 102-7V21 o 1024 7WET
= a0 0 P70 0 7T ase

1 1
a = 1\/3(6%'@); bm\/g(ﬁiwzw\/(i).

En résolvant alors un systéme linéaire S5 x 5, nous obtenons [’existence d'un
polyndme réel P(y) = 3 ...y Ay’ tel que
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P =a, P®)=b, P& =2, 2aP @) =2bF®") = 1.
Un examen de la concavité permet d’établir aisément que 1'on a

(4.2) YSPYH  0Ly<2).
Par intégration sur [0,2], nous obtenons, pour toute mesure i,

F1 % Z Angjm(l’am%Mjﬁbw%«zf}fm 13,
0< <4

ol 1’égalité découle du fait que la relation P(y?) = y a lieu du* -presque
partout.

Cette estimation implique bien (4.1) puisque le membre de gauche est égal
au premier moment de dz*. La majoration (1.6) est, quant a elle, obtenue en
intégrant (4.2) relativement a la mesure de répartition logarithmique normalisée
des 7o(p) (p < x) sur [0, 2] et en exploitant les estimations de [11] sous la
forme

TO(p)Zk

= Sy logy x 4+ O(1) OLEkLd x> 0).
pPEX

Le fait que de telles formules asymptotiques résultent de la seule connaissance
de I’ordre du péle des séries de Dirichlet »° . , 1o)X /n® en s =1 peut, par
exemple, etre établi en faisant appel au lemme 2.4. Nous omettons les détails.
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