
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 53 (2007)

Heft: 1-2

Artikel: Riemannian holonomy and algebraic geometry

Autor: Beauville, Arnaud

Bibliographie

DOI: https://doi.org/10.5169/seals-109541

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-109541
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


RIEMANNIAN HOLONOMY AND ALGEBRAIC GEOMETRY 123

denote by Hp q c Hp+q(X, C) the subspace of de Rham cohomology classes

of forms of type (p,q); we have Hqp — Hp-Q The fundamental result of
Hodge theory is the Hodge decomposition

Hn(Xt C) - © Hp q

p-\-q=n

together with the canonical isomorphisms H?q —-4 Hq(X. Of-). In particular,

H2(X} C) - H-° é H11 ® H0'2,

with H20 ^ H°(X,Qx)> embedded into H2(X, C) by associating to a

holomorphic form its De Rham class.

To any hermitian metric g on X is associated a real 2-form uj of type (1,1),
the Kahler form, defined by uj(V,W) — g(V,JW) for any real vector fields

V, W ; the metric is Kahler if u is closed. Then its class in H2(X, C) is called a

Kahler class. The Kahler classes form an open cone in — Hl,lCH2(X, R).
Let L be a line bundle on X. The Chern class c\(L) H2(X, C) is integral,

that is comes from H2(X. Z), and belongs to H1,1. Conversely, any integral
class in H1,1 is the Chern class of some line bundle on X (Lefschetz theorem).

If L is very ample, its Chern class is the pull-back by of the Chern
class of öp(l), which is a Kahler class, and therefore ci(L) is a Kahler class.

More generally, if L is ample, some multiple of ci(L) is a Kahler class, hence

also ci(L). Conversely, the celebrated Kodaira embedding theorem asserts that

a line bundle whose Chern class is Kähler is ample. As a corollary, we see

that any compact Kähler manifold X with H°(X. Qjj-) — 0 is projective : we
have H2(X, C) — H11, hence the cone of Kähler classes is open in H2(X. R).
Therefore it contains integral classes; by the above results such a class is

the first Chern class of an ample line bundle, hence X is projective. More

generally, the same argument shows that X is projective whenever the subspace
H1-1 of H2(X, C) is defined over Q.
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