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RIEMANNIAN HOLONOMY AND ALGEBRAIC GEOMETRY

by Arnaud Beauville

ABSTRACT. This survey paper is devoted to compact Riemarmian manifolds with
special holonomy. To any Riemannian manifold of dimension n is associated a closed
subgroup of SO(n), the holonomy group; this is one of the most basic invariants
of the metric. A famous theorem of Berger gives a complete (and rather small) list
of the groups which can appear. Surprisingly, the compact manifolds with holonomy
smaller than SO(n) are all related in some way to algebraic geometry. This leads to
the study of special algebraic varieties (Calabi-Yau, complex symplectic or complex
contact manifolds) for which Riemannian geometry raises interesting questions.

Introduction

This survey is devoted to a particular instance of the interaction between
Riemannian geometry and algebraic geometry, the study of manifolds with
special holonomy. The holonomy group is one of the most basic objects
associated with a Riemannian metric; roughly, it tells us what are the geometric

objects on the manifold (complex structures, differential forms, which are

parallel with respect to the metric (see 1.3 for a precise statement).

There are two surprising facts about this group. The first one is that,

despite its very general definition, there are few possibilities - this is Berger's
theorem (1.2). The second one is that apart from the generic case in which
the holonomy group is SO(n), all other cases appear to be related in some
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way to algebraic geometry. Indeed the study of compact manifolds with
special holonomy brings into play some special, and quite interesting, classes

of algebraic varieties: Calabi-Yau, complex symplectic or complex contact
manifolds. I would like to convince algebraic geometers that this interplay
is interesting on two accounts: on the one hand the general theorems on
holonomy give deep results on the geometry of these special varieties; on the

other hand Riemannian geometry provides us with good problems in algebraic

geometry - see 4.3 for a typical example.

I have tried to make these notes accessible to students with little knowledge
of Riemannian geometry, and a basic knowledge of algebraic geometry. Two

appendices at the end recall the basic results of Riemannian (resp. algebraic)

geometry which are used in the text1).

1.1 Definition

Perhaps the most fundamental object associated to a Riemannian metric

on a manifold M is a canonical connection on the tangent bundle T(M),
the Levi-Civita connection. A connection gives an isomorphism between the

tangent spaces at infinitesimally near points; more precisely, to each path 7 on

M with origin p and extremity q, the connection associates an isomorphism
: Tp{M) —> Tq{M) ("parallel transport"), which is actually an isometry with

respect to the scalar products on TP(M) and Tq(A4) induced by the metric
(see Appendix A for more details). If S is another path from q to r, the

isomorphism associated to the path composed of 7 and S is

Let p M; the above construction associates in particular to every loop 7
at p an isometry of TP(M). The set of all such isometries is a subgroup Hp of

1. Holonomy

This text is an updated version of the "Emmy Noether lectures" which I gave at Bar Han

University (Fall 1998). I want to thank the Emmy Noether Institute for the invitation, and Mina
Teicher for her warm hospitality.
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the orthogonal group O(TP(M)), called the holonomy subgroup of M at p. If
q is another point of M and 7 a path from p to q, we have Hq — Hp pf1,
so that the Hp 's define a unique conjugacy class H c O(n) ; the group H is

often called simply the holonomy group of M. Similarly the representations of
the groups Hp on TP(M) are isomorphic, so we can talk about the holonomy

representation of H.
There is a variant of this definition, the restricted holonomy group, obtained

by considering only those loops which are homotopically trivial. This group
actually behaves more nicely : it is a connected, closed Lie subgroup of

SO(TP(M)). To avoid technicalities, we will always assume that our varieties

are simply-connected, so that the two notions coincide. We will also usually
consider compact manifolds: this is somehow the most interesting case, at
least for the applications to algebraic geometry.

1.2 The theorems of De Rham .and Berger

With such a degree of generality we would expect very few restrictions,

if any, on the holonomy group. This is far from being the case : thanks to

a remarkable theorem of Berger, we can give a complete (and rather small)
list of possible holonomy groups. First of all, let us say that a Riemannian

manifold is irreducible if its holonomy representation is irreducible.

Theorem (de Rham). Let M be a compact simply-connected Riemannian

manifold. There exists a canonical decomposition M —f []Ms where each

Mi is an irreducible Riemannian manifold. Let p — (pi) be a point of M, and
let Hi c OiTpfMù) be the holonomy group of Mi at pi ; then the holonomy

group of M at p is the product Yl.Hi> acting on Tp(Mi) — [J Tpi (Mi) by the

product representation.

The reader fluent in Riemannian geometry may replace compact by
complete. On the other hand, both completeness and simple connectedness are

essential here. The proof is far from trivial, see [R] or [K-N], IV.6.

We are thus reduced to irreducible (compact, simply-connected) Riemannian

manifolds. Among these are some very classical manifolds, the symmetric

spaces; they are of the form G/H, where G is a compact Lie group and H is

the neutral component of the fixed locus of an involution of G. These spaces

are completely classified, and their geometry is well-known; the holonomy

group is H itself. Excluding this case, we have
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Theorem (Berger). Let M be an irreducible (simply-connected) Rie-

mannian manifold, which is not isomorphic to a symmetric space. Then the

holonomy group H of M belongs to the following list :

H dim(M) metric

SO(n) n generic

U(m) 2m Kähler

SU(m)
{m>3)

2m Calabi-Yau

Sp(r) 4r hyperkähler

Sp(r)Sp(l)
(r>2)

4r quate rnion- Kähler

G2 7

Spin(7) 8

We have deleted SU(2) (— Sp(l)) and Sp(l)Sp(l) (— SO(4)) so that

a given group appears only once in the list. We should point out that a

third exceptional case, Spin(9) c SO(16), appeared in Berger's list, but was
eliminated later (see [B-G]). The original proof [Be] rests on a rather involved

case-by-case analysis; a more conceptual proof was given later in [Si], based

on the fact that Hp must act transitively on the unit sphere of TP(M). A
simpler proof appears in [O].

Which groups in this list do effectively occur for some compact, simply-
connected, non-symmetric manifold That O(n) and U(m) occur is classical

and easy : one starts from an arbitrary Riemannian (resp. Kählerian) metric on

M and perturbs it in the neighborhood of a point. The other groups required
much more efforts. The case of SU(wî) is a direct consequence of the Calabi

conjecture, proved by Yau [Y] ; examples with H — Sp(r) were found in
1982 [Bl], again using Yau's result (these cases will be studied in §2 and 3

below). Examples in the last cases, G2 and Spin(7), were found only recently
[J 1, J2]. As for Sp(l)Sp(r), no example is known, and in fact it is generally

conjectured that they do not exist - we will discuss this in §4.
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1.3 THE HOLONOMY PRINCIPLE

Before describing the subgroups which appear in the list, let us discuss the

geometric meaning of such a restriction on the holonomy. We say that a tensor
field 0 on M is parallel if for any path 7 from p to q, the isomorphism

<p1 transports 0(p) onto 0(q) (this is equivalent to ¥0 — 0, see App. A).
This implies in particular that 0(p) is invariant under the holonomy subgroup

Hp. Conversely, given a tensor 0(p) on TP(M) invariant under Hp, we can

transport it at q by any path from p to q and obtain a tensor 0(q) independent
of the chosen path; the tensor field 0 thus constructed is parallel. We have

thus established:

Holonomy principle. Evaluation at p establishes a one-to-one

correspondence between parallel tensor fields and tensors on TP(M) invariant
under Hp.

In the next sections we will illustrate this principle by going through
Berger's list. Let us start with the two simplest cases:

a) H — SO(ä) means that there are no parallel tensor fields (apart from
the metric and the orientation). Such a metric is often called generic.

b) U(m) is the subgroup of SO(2m) preserving a complex structure J
on R2m which is orthogonal (that is, J G SO(2m), J2 — — 1). Therefore the

manifolds with holonomy contained in U(m) are the Riemannian manifolds

with an almost complex structure J (that is, an endomorphism of the tangent
bundle with square —1) which is orthogonal and parallel. This is one of the

classical characterizations of Kahler manifolds.

We claimed in the introduction that compact manifolds with special

holonomy are related to algebraic geometry. Indeed compact Kahler manifolds
share many properties with projective manifolds, in particular the Hodge

decomposition of the cohomology spaces. Actually for a long time the only
known examples of compact Kahler manifolds were deformations of projective

ones, like complex tori or K3 surfaces ; Kodaira asked whether every compact
Kahler manifold was obtained in this way. This has been recently answered

negatively by C. Voisin [V2],
We will discuss the groups SU(m), Sp(r) and Sp(l)Sp(r) in the next

sections. We will not discuss the exotic holonomies G2 and Spin(7) here;
I refer to [J3] for a readable account.
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2. CALABI-YAU MANIFOLDS

We now consider manifolds with holonomy contained in SU(m). We can
view SU(wî) as the subgroup of U(m) preserving an alternate complex m-form
on Cm ; therefore a manifold X with holonomy contained in SU(m) is a Kahler
manifold (of complex dimension m) with a parallel form of type (m, 0). This

means that the canonical line bundle Kx — Qf is flat; in other words, the

Ricci curvature (which for a Kahler manifold is just the curvature of the line
bundle Kx) is zero. Thus the manifolds with holonomy SU(m) are exactly
the Ricci-flat Kahler manifolds.

It is easy to see that a parallel form is closed, hence in this case

holomorphie; thus the canonical bundle Kx of X is trivial (as a holomorphic
bundle)2). Conversely, Calabi conjectured in [C] that a compact, simply-
connected Kahler manifold with trivial canonical bundle admits a Ricci-flat
metric. This was part of a more general conjecture, for which he proposed a

heuristic argument. It took 20 years to turn this argument into a complete proof ;

this was done by Yau [Y]. These manifolds are nowadays called Calabi- Yau

manifolds. To summarize :

The compact (simply-connected) complex manifolds which admit a metric
with holonomy contained in SU(m) are the Calabi-Yau manifolds.

This fact has strong implications in algebraic geometry, in particular thanks

to the following result:

Proposition (Bochner's principle). On a compact Kähler Ricci-flat manifold,

any holomorphic tensor field (covariant or contravariant) is parallel.

The proof rests on the following formula, which follows from a tedious

but straightforward computation ([B-Y], p. 142): if r is any tensor field,

A(j|rj|2) !|Vrj|2.

Therefore A(||r|| is nonnegative, hence 0 since its mean value over X is 0

by Stokes' formula. It follows that r is parallel.

2) Recall that our manifolds are assumed to be simply-connected.
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As a consequence we get

Proposition. Let X be a compact Kähler manifold, of dimension m >3,
with holonomy group SU(m). Then X is projective, and H°(X, Off) — 0 for
0 < p < m.

Proof Let x X, and V Tx(X). Using the Bochner and holonomy
principles, we see that the space H°(X, can be identified with the

SU(V)-invariant subspace of APV*. Because SU(V) acts irreducibly on APV*,
the invariant subspace is zero unless p — 0 or p — m. Since H°(X. Q^) is

zero, X is projective (App. B).

Manifolds with holonomy Sp(r), called hyperkähler manifolds, have very
special properties; we will study them in detail in the next section. Since the

only groups in Berger's list which are contained in SU(m) are of the form

SU(/?) or Sp(q), we get the following structure theorem:

Theorem. Any (simply-connected) Calabi-Yau manifold is a product
Ui Vi x UjXj, Where

a) each Vj is a projective Calabi-Yau manifold, with Qy.) — 0 for
0 < p < dim(V,-) ;

b) the manifolds Xj are irreducible hyperkähler.

(There is a more general statement for non simply-connected manifolds, see

for instance [Bl].)

Further developments

Calabi-Yau manifolds have been at the center of a flurry of activity in the

last 15 years, principally under the influence of mathematical physics. The

keyword here is mirror symmetry, a (conjectural) duality between families of
Calabi-Yau manifolds. I will not try to be more precise, because this goes
far beyond the scope of these notes. A good introduction to the beginning of
the story is given in [VI]. The current main trends are the Strominger-Yau-
Zaslow conjecture [S-Y-Z] and the Kontsevich homological mirror symmetry
conjecture [Ko]. Both give an important role to the (real) symplectic aspect.
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3. SYMPLECTIC MANIFOLDS

3.1 HYPERKÄHLER VERSUS SYMPLECTIC

The group Sp(r) is the quaternionic unitary group, that is, the group of
H-linear automorphisms of Hr which preserve the standard hermitian form

ip(X, z') — ZiZ'i. Viewing H' as R4' realizes Sp(r) as a subgroup of the

orthogonal group SO(4r). The manifolds of dimension 4r with holonomy
Sp(r) are called hyperkähler manifolds.

There are two ways of making this definition explicit. We can characterize

Sp(r) as the subgroup of orthogonal transformations of R4r which are linear
with respect to the complex structures I.J.K (here (1,I,J,K) is the standard

basis of H over R, with IJ ~~JI — K). By the holonomy principle,
hyperkähler manifolds are therefore characterized by the existence of 3

complex structures I.J.K, with IJ — —JI — K, such that the metric is Kahler
with respect to each of these. Actually any pure quaternion al J-bJ f-cK with
a2 -p b2 c2 — 1 defines such a structure, so hyperkähler manifolds admit a

family of complex Kähler structures parametrized by the sphere S2 (hence
their name).

A second way to look at Sp(r) is to give a special role to one of these

complex structures, say I, and to view H as C(J) (and C as R(/)). We identify
Hr with C'TrtCJ — C2r. The hermitian form ip can be written as hJ-pJ, where
h is the standard (complex) hermitian form and (p the standard C-bilinear
symplectic fonn on C2r. Therefore Sp(r) is the intersection in SO(4r) of the

unitary group U(2r) and the complex symplectic group Sp(2r, C) (incidentally,
this implies that Sp(r) is a maximal compact subgroup of Sp(2r, C), which
is the reason for the notation).

In terms of holonomy, this means that once a preferred complex structure
has been chosen, a hyperkähler manifold can be characterized as a Kähler
manifold with a parallel non-degenerate 2-form of type (2.0). As above this
2-form must be holomorphic, hence it is a (complex) symplectic structure, that

is a closed3), holomorphic, everywhere non-degenerate 2-form. Conversely, let
X be a compact Kähler manifold of (complex) dimension 2r, with a complex
symplectic structure p ; then X is a Calabi-Yau manifold (because pr does

not vanish), hence admits a Ricci-flat metric, for which the form p is parallel.
If moreover we require the holomorphic 2-form p to be unique up to a scalar,

the holonomy of X is exactly Sp(r). We will call such a manifold Kähler
symplectic, to emphasize that we have chosen a particular complex structure.

3 The closedness condition is automatic for compact Kähler manifolds.
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3.2 The two standard series

A typical example of a Kahler symplectic manifold is a K3 surface, that
is a compact (simply-connected) Kahler surface with trivial canonical bundle.

Note that in the statement of Berger's theorem I have deliberately chosen

to view the group SU(2) as symplectic (— Sp(l)) rather than unitary: we

will see that the theory of K3 surfaces is an accurate model for the study of
complex symplectic manifolds. For a long time no other example was known,
and it was even conjectured that such manifolds do not exist (see [Bgl]).
In 1982 Fujiki gave an example in dimension 4, which I generalized in any
dimension - in fact I constructed two series of examples [Bl]. Let me explain
these examples.

Start from a K3 surface S, with a holomorphic nonzero 2-form p. The

product Sr admits a natural symplectic form, namely prf p + -f pr* p ;

but there are others, since we may take as well any expression Ai pr] p -f-

\rpr* p with Ai,... Ar in C*. A natural way to eliminate those is to
ask for &r -invariant 2-forms, which amounts to considering instead of Sr the

symmetric product Sr/&r.
Unfortunately this quotient is singular as soon as r is greater than 1 ; but

it admits a nice desingularization, the Douady space 5^ which parameterizes
the finite subspaces of S of length r (when S is projective this is known
as the Hilbert scheme; the fact that it is smooth is proved in [F]). We can
view as the space of finite subsets E c S with a positive multiplicity
m(p) assigned to each point p of E, m such a way that m(P) — r-
The natural map s: 5^ -a which associates to a subspace Z of S its set

of points counted with multiplicity turns out to be holomorphic ; it induces an

isomorphism on the open subset of 5^ parameterizing those subspaces

which consist of r distinct points.

It is then easy to show that the 2-form pr] p + • •. + pr* p, which lives

naturally on 5^, extends to a symplectic form on 5^, unique up to a scalar,

and that is simply-connected. Moreover 5^ is Kahler as a consequence
of a general result of Varouchas [Va]. In other words, the Douady space 5^
is a (2r) -dimensional irreducible symplectic manifold.

We can perform the same construction starting from a 2-dimensional

complex torus T : the Douady space F^ is again symplectic, however it is

not simply-connected. In fact it admits a smooth surjective map S: —> F,
which is the composite of e\ F^ -¥ T^ and of the sum map F^ F. The
fibre Kr-i S (0) is a simply-connected, irreducible symplectic manifold
of dimension 2r — 2.



106 A. BEAUVILLE

Thus we get two series of examples in each dimension. The first thing to
look at, for algebraic geometers, is their deformations : there are some obvious

ones obtained by deforming the surface S (or T), but it turns out that we get
more than those. In fact, in the moduli space parameterizing all deformations

of the manifolds we found, those of the form 5^ for some K3 surface S

form a hypersurface, and similarly for Kr (this is, of course, for r > 2).
This is seen as follows. First of all, the universal deformation space of

a symplectic manifold X is smooth, of dimension dim FT1 (X, Tx). This is a

general result for Calabi-Yau manifolds, due to Tian and Todorov (see [T]) ;

in the particular case of symplectic manifolds it had been proved earlier by

Bogomolov [Bgl]. Since X is symplectic, the tangent sheaf Tx is isomorphic
to qJj-, hence

dim Hl(X, Tx) - dim Hl(X, Q^) b2(X) 2 ;

the last equality holds because X is irreducible and therefore H2,0 and H0,2

are one-dimensional. An easy computation gives b2(S^) b2(S) A 1 and

b2(Kr) — b2(T) 4-1 for r > 2, hence our assertion.

We will say that a symplectic manifold is of type or Kr, if it can be

obtained by deformation of or Kr. As an example, we proved in [B-D]
that the variety of lines contained in a smooth cubic hypersurface V of P5

is of type 5^, but it is not isomorphic to 5^ if Y is general enough.

3.3 Other examples

Shortly after the two series were discovered, Mukai showed that they fit
into an elegant construction which looks much more general [M], He proved
that the moduli space of stable vector bundles on a K3 or abelian surface S,

with fixed rank and Chern classes, is smooth and admits a symplectic form.
The idea is quite simple. The smoothness follows from a standard obstruction

argument: one shows that the obstructions to deform E infinitesimally are

the same as the obstructions to deform detJF, which vanish. Now the tangent

space to the moduli space at E is Hl(S,£nd(E)), and the symmetric form

{u, v) Tr(uv) on £nd(E) gives rise to a skew-symmetric pairing

H\S, Znd(E)) m H1(S, Snd(E)) —-+ H2(S, Os) C

which is non-degenerate by Serre duality, and provides the required symplectic
form.

If we want to exploit this construction to give new examples of symplectic
manifolds, we need to fulfill the following requirements:
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a) Our moduli space M should be compact. This is achieved by including
in M stable sheaves, and choosing the polarization so that all semi-stable

sheaves are actually stable. I refer for instance to [H-L] for the details.

b) M should be simply-connected, and satisfy dim H°(M. — 1. This
was proved in [OG1], Observe that both properties are invariant by deformation,
and also under birational equivalence. O'Grady deforms S to a surface Se

admitting an elliptic pencil, with a suitable polarization; then a detailed analysis
shows that the moduli space is birational to for some r.

So M is a symplectic manifold, but the proof actually gives more: Huy-
brechts has proved that two birational symplectic manifolds are deformations

of each other - we will discuss this in detail in 3.5. Therefore the moduli

space M is of type 5^, and thus does not provide any new example.

When Huybrechts' result appeared, it implied that all examples of Kahler
symplectic manifolds known at the time were of type 5^ or Kr. Since then

two new examples have been constructed by O'Grady ([OG2], [OG3]) of
dimension 10 (resp. 6), by desingularizing a singular moduli space of vector
bundles on a K3 (resp. an abelian surface). Unfortunately, it is shown in

[K-L-S] that the moduli spaces considered by O' Grady are the only ones
which admit a symplectic resolution.

It remains an intriguing and very interesting problem to construct more

examples. As we will see in the next sections, we know a lot about the

geometry of Kahler symplectic manifolds; it is somewhat embarrassing to
have so few examples.

3.4 The period map

For K3 surfaces the theory of the period map gives us a fairly complete
picture of the moduli space, thanks to the work of Shafarevich and Piatetski-

Shapiro, Burns and Rapoport, Todorov, Looijenga, Siu - I refer to [B2] for
a survey. The idea is to encode a K3 surface S by its Hodge decomposition
(see App. B)

H2(S, C) H20 © Hw © H°>2,

which is determined by the position of the line H2,0 in H2(S. C) (we have
B0,2 — H2-0, and H11 is the orthogonal of H2,0 ÇfifH0'2 for the intersection

product). The point is that H2(S. C) depends only on the topology of S, while
H2-0 depends heavily on the complex structure: we have H1(> — C<p, where

ip is the De Rham class of a non-zero hoiomorphie 2-form on S (unique up
to a constant).
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To be more precise, we denote by L a lattice isomorphic to H2(S, Z) (this
is the unique even unimodular lattice of signature (3,19), but we will not
need this). A marked K3 surface is a pair (S, a) of a K3 S and a lattice

isomorphism a: H2(S,Z) L. The first (easy) result is that there is an

analytic manifold Ml which is a fine moduli space for marked K3 surfaces :

that is, there is a universal family u\ M -r Ml of marked K3 over Ml,
such that any family S —> T of marked K3's is the pull-back of u through
a classifying map T —y Ml- The bad news is that Ml is not Hausdorff -
a rather surprising fact that we will explain later (3.5).

The advantage of working with Ml is that we can now compare the Hodge
structures of different surfaces. Given (S,a), we extend o to an isomorphism
H2(S, C) -4 Lq and put4)

The map p is called the period map, for the following reason: choose a basis

(ei,... ,022) °f T*, so that Lc C22. Put qv — V(e,-), viewed as an element

of H2(S, Z) ; then

The numbers ffip are classically called the "periods" of p.
Since p is holomorphic we have p A p — 0 and fsp A p > 0. In other

words, p(S, <7) lies in the subvariety Q/, of P(Lc), called the period domain,
defined by

Theorem. 1) p: Ml Ql is étale and surjective.

2) If p(S.o) — p(S',a'), the surfaces S and S' are isomorphic.

Note that this does not say that p is an isomorphism (otherwise Ml
would be Hausdorff!): the same K3 with different markings can have the

same period. There is a more precise statement which describes exactly the

fibres of p (see for instance [P], p. 142, prop. 2).

p(5, (7) - o(H2>°) a([p]) P(Lc).

ql {[*] e P(Lc) I x2 — 0 xx > 0}.

4) We denote as usual by P(V) the space of lines in a vector space V, and by [u] S P(F)
the line spanned by a nonzero vector v of V.
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Corollary. Every K3 surface is a deformation of a projective one.

Proof Write p — a + iß, with a, ß H2(S, R). The condition \ip\ Q,l
translates as a2 — ß2 > 0, a.ß — 0. It follows that the classes [p] with

a,ß H2(S, Q) are dense in Q/,. The corresponding surfaces are dense in

Ml ; they have H1-1 — (CatBCß)- defined over Q, hence they are projective

(App. B).

Note that we only need an easy part of the theorem, namely the fact that

p is étale.

We want to apply the same approach for any Kahler symplectic manifold X.
We still have the Hodge decomposition

H2(X, C) - H2'0 © Hu © H0'2 with H2'0 - Cp

What seems to be lacking is the quadratic form, but in fact it is still there :

I showed in [Bl] that the point [9?] P(H2(X,C)) must lie in a hyperquadric,
which is rational over Q ; this implies that there exists a canonical quadratic
form q: H2{X,T) -a Z. It has the following properties (see [Bl] and [H]) :

a) q is non-divisible, non-degenerate, of signature (3. hi — 3) ;

b) there exists a positive integer dx such that a2r — dx q(ofr for all

a H2(X, Z) ;

c) q(p) — 0, and q(ip + tp) > 0.

We can now mimic the K3 case. Let L be a lattice; we define as before the

moduli space Ml of pairs (X, o), where X is a Kahler symplectic manifold
and a : H2(X; Z) —» L a lattice isomorphism. We still have a natural structure
of analytic (non-Hausdorff) manifold on Ml (it is however no longer a fine

moduli space in general). To each element (X,a) of Ml we associate

p(W; o) a(H2fi) o([p]) P(LC) •

As above, if we choose a basis (e\of L*, the element p(X.a) is

given by the "periods" p, with 7,- — 'o(ßi).

By property c) of q, p(X.a) lies in the subvariety Q,i of P(Lc) defined

by

- {M G P(LC) I q(x) ~ 0 q(x + X) > 0}.

Theorem, p: Ml &l is étale and surjective.

The fact that p is étale follows from the (easy) computation of its tangent

map. The much more delicate surjectivity has been proved by Huybrechts [H].
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Using the easy part of the theorem and the same argument as for K3
surfaces we obtain:

Corollary. Every Kähler symplectic manifold is a deformation of a
projective one.

On the other hand, the answer to the Torelli problem is negative, at least

for the manifolds Kr (3.2, see [N]). An interesting question here is to find
some additional data which together with the Hodge structure determines the

isomorphism type of the manifold.

3.5 BlRATIONAL SYMPLECTIC MANIFOLDS

The fact that the moduli space Ml of marked K3 surfaces is non-Hausdorff

goes back to a famous example of Atiyah [A]. Start with a family /: X —> D
of K3 surfaces over the unit disk, such that the total space X is smooth, the

surface Xt is smooth for t f= 0 and Xq has an ordinary double point s : near
s we can find local coordinates (x,y,z) such that/(jr. y, z) — .x2 4-y2-fz2. Pull

back / by the covering t m- t2 of the disk ; we obtain a new family y -+ D,
where now y has an ordinary double point ,\;2 4~ y2 E2 — t2. Blowing up s

in y we get a smooth threefold y with a smooth quadric Q as exceptional
divisor; we can now blow down Q along each of its two rulings to get smooth
threefolds y', y", which are small resolutions of y : the singular point s
has been blown-up to a line.

The two fibrations y' ~f D and y" D are smooth; their fibres at 0

are both isomorphic to the blow up of Xç, at s. By construction they coincide
above D — {0}, but it is easily checked that the isomorphism does not extend

over D.

D D
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The local systems H2(y't,Z)tD and H2(y'/. Z)t£> are constant, and

coincide over D — {0} ; choosing compatible trivializations we get two non-

isomorphic families of marked K3 surfaces on D, which coincide on D — {0}.
The corresponding maps D -4 Ml coincide on D — {0}, but take different
values at 0. In other words, the marked surfaces y^ and y'f give non-

separated points in the moduli space Ml (every neighborhood of one of
these points contains the other one).

To explain the analogous construction for higher-dimensional symplectic
manifolds, let us first describe, in the simplest possible case, the elementary

transformations discovered by Mukai [M], We start with a symplectic manifold
X, of dimension 2r, containing a submanifold P isomorphic to P' The 2-form

<p restricted to P vanishes (in fancy words, P is a Lagrangian submanifold);
therefore we have a commutative diagram of exact sequences

0 Tp Tx\p Np/x 0

0 >- Np/x ^ ^ >• 0

in which all vertical arrows are isomorphisms. In particular, Np/x is isomorphic
to Qp.

Mow blow-up P in X :

E C ^ x

" v

P C ^ X.

The exceptional divisor E is by definition the projective normal bundle5)

P(Np/x), which by the above remark is isomorphic to the projective cotangent
bundle Pr*(P) ; thus we can view E as the variety of pairs (p. h) with p P,
h P* (the space of hyperplanes in P) and p h. This is clearly symmetric:
E is also isomorphic to PT*(P*), and in fact, using a classical contractibility
criterion (due to Fujiki and Nakano in this context), we can blow down E onto
P* and get a new symplectic manifold X', called the elementary transform

of X along P. The map X --•> X' is a typical example of a birational map

5) We use the standard differential-geometric notation: if F is a vector bundle on a variety
B, we put P(F)= UfcgsP(Ffc) (see footnote 3
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between symplectic manifolds which is not an isomorphism. Note that it is

not known whether X' is always Kahler.

Now suppose we deform X in a family X D. We have an exact

sequence of normal bundles

The class of this extension lives in Hl{P. Q}>) ; a straightforward computation
shows that it is the restriction of the tangent vector in the deformation space
of X provided by the deformation X --¥ D (remember that this tangent vector

belongs to Hl(X, Tx) X Hl(X, Qj)). Choose X so that this tangent vector
does not vanish on P, for instance is a Kahler class in Hl(X, Qj). Then the

above extension is the non-trivial Euler extension

where P P(V). So we get an isomorphism Np/X X V* Ce Op{-1).
Thus if we blow-up P in X, the exceptional divisor £ is isomorphic to
PCNp/x) — P x P*. As before we can blow-down £ onto P* and get a

manifold X' with a smooth map X' D, whose fibre at 0 is isomorphic
to X'. Again the two families coincide above D — {0}. Therefore if X' is

Kahler, X and X' (with appropriate markings) give non-separated points in
the moduli space Ml-

This example, due to D. Huybrechts, was the point of departure of his

investigation of birational symplectic manifolds. The outcome is

Theorem (Huybrechts, [H]). Let X, X' be two birational Kühler
symplectic manifolds. There exist smooth families X D and X' -~r D which

are isomorphic over D— {0} and such that Xq is isomorphic to X and X/}

to X'.

As before it follows that X and X', with appropriate markings, give non-
separated points in the moduli space Ml • Conversely, Huybrechts also proves
that if (X. a) and (X', a') are non-separated points in Ml, the manifolds X
and X' are birational.

Corollary. Two Kühler symplectic manifolds which are birational are
diffeomorphic.

It is interesting to compare this statement with the following result of
Batyrev [Ba] :
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Proposition. Two Cakibi-Yau manifolds which are birational have the

same Betti numbers.

The proof is (of course) completely different: it proceeds by reduction to
characteristic p. Note that the two Calabi-Yau manifolds need not be diffeo-
morphic, as shown by an example of Tian and Yau (see [Fr], example 7.7).

3.6 Further developments

Kahler symplectic manifolds have been much studied in the recent years;
there are two directions which I would like to emphasize. The structure of
the cohomology algebra has been studied by Verbitsky; we will follow the

elegant presentation of Bogomolov [Bg2].

Proposition. Let X be a Kähler symplectic manifold of dimension 2r,
and let A be the subalgebra of H*(X.Q) spanned by H2(X. Q). Then

H* (X, Q) — A ©A-1-, and A is the quotient of S*H2(X, Q) by the ideal

spanned by the elements xr+1 for all x H2(X. Q) with q(x) — 0.

Let Q be the quadric q(x) — 0 in H2(X, C). Since the period map is

étale (3.4), we know that there is an open subset V of Q such that every
element of Y is the class of a 2-form on X, holomorphic with respect to

some complex structure on X. This implies that ar+1 0 for a £ V, and

therefore for all x Q by analytic continuation.

The rest of the proof is purely algebraic. Given a vector space H over Q
with a non-degenerate quadratic form q, we consider the algebra Ar(H.q)
quotient of S*H by the ideal spanned by the elements xr"'rl for all x H
with q(x) — 0. Using the representation theory of 0(H. q), one proves that

Ar(H,q) is a Gorenstein algebra; more precisely A2r(H, q) is one-dimensional,
and the pairing Alr(H. q) x A2r~l(H, q) —> A2r(H. q) ~ Q is non-degenerate for
each i.

Put H — H2(X.Q). By the geometric property above we get a ring
homomorphism Ar(H,q) —> H*(X, Q). Its kernel is an ideal of Ar(H,q);
if it is non-zero, it contains the minimum ideal A2r(H,q), so the map
S2rH2(X, R) -4 HAr(X, R) is zero - which is impossible since J2r f 0 for a

Kähler class uj. Hence A is isomorphic to Ar(H, q) ; since the restriction
of the intersection form on H*(X. Q) to A is non-degenerate, we have

H*(X, Q) sA fA1.
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Another exciting recent development is the construction by Rozansky and

Witten of invariants of 3-manifolds associated to any compact hyperkähler
manifold ([R-W] ; an account more readable for an algebraic geometer appears
in [K]). By the advanced technology of 3-dimensional topology, defining such

invariants amounts to associate a complex number (a "weight") to each trivalent
graph, in such a way that a certain identity, the so-called IHX relation, is
satisfied. The weights associated by Rozansky and Witten to a hyperkähler
manifold are sort of generalized Chern numbers, which certainly deserve

further study. Some explicit computations have been done by Hitchin-Sawon

[H-S] and Nieper [Ni].

4. Quaternion-Kahler manifolds

4.1 The twistor space

The group Sp(l) is the group of quaternions of norm 1 ; it acts on H'
by homotheties. Since H is not commutative, Sp(l) is not contained in the

unitary group Sp(r), but of course it commutes with Sp(r). A manifold of
dimension 4r is said to be quaternion-Kahler if its holonomy subgroup is
contained in Sp(r)Sp(l) C SO(4r). As usual our manifolds are assumed to be

compact and simply-connected ; since Sp(l) Sp(l) — SO(4) we always suppose

r > 2.

Despite the terminology, which is unfortunate but classical, a quaternion-
Kähler manifold has no natural complex structure: the group Sp(r)Sp(l) is

not contained in U(2n).
The complex structures I.J,K are not invariant under Sp(l), and therefore

they do not correspond any more to parallel complex structures. What remains

invariant, however, is the 3-dimensional space spanned by I.J and K ; it gives
rise to a 3-dimensional parallel sub-bundle E c £nd(T(M)). The unit sphere
bundle Z c E is called the twistor space of M\ the fibre of p: Z —> M at

a point m M is a sphere S2 of complex structures on Tm(M), as in the

hyperkähler case. The link between quaternion-Kähler manifolds and algebraic

geometry is provided by the following result of Salamon [S] :

Proposition. Z admits a natural complex structure, for which the fibres
of p are complex rational curves.

The construction of this complex structure is quite natural. Since E is
parallel, it inherits from the Levi-Civita connection on T(M) a linear connection,
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which is compatible with the metric. It follows that the corresponding
horizontal distribution (App. A) induces a horizontal distribution on the fibration

p: Z —) M, that is a sub-bundle H c 7ÏZ) which is supplementary to the

vertical tangent bundle T(ZjM).
Let z Z, and let m — p(z) • The fibre p"'"l(rn) is canonically isomorphic to

the standard sphere S2, and therefore the vertical tangent space Tz(Z /M) has

a well-defined complex structure. The space Hz projects isomorphically onto

Tm(M), on which z defines by definition a complex structure. The direct sum

of these complex structures define a complex structure on 7ÏZ) — T(Z/M)@H.
A non-trivial calculation shows that it is integrable.

As an example, for the quaternionic projective space M — HP', the

twistor space Z is CP2'""1"1 ; the fibration p: Z M is the natural quotient

map WfC* —> W/H*, with IV C2r+2 - {0} Hr+1 - {0}. Its fibres are

(complex projective) lines in cP2r+1.

The behaviour of the complex manifold Z depends heavily on the sign of
the scalar curvature k of (M,g). This turns out to be a constant: in fact, Berger
proved that a n-dimensional quaternion-Kähler manifold (M,g) satisfies the

Einstein condition Ric(; — (I refer to [Bs], Ch. 14.D for a discussion of
the proof). The case k 0 gives the hyperkähler manifolds (§3). In the case

k < 0 there seems to be no natural Kahler structure on Z ; actually no compact
example is known. We will therefore concentrate on the case k > 0, where

some nice geometry appears. Let me recall that a (compact) complex manifold
X is Fano if its anticanonical bundle K%1 is ample (App. B). We will call a

quaternion-Kähler manifold positive if its scalar curvature is positive.

Proposition. If M is positive, Z is a Fano manifold and admits a
Kähler-Einstein metric.

The metric on Z is obtained in the same way as the complex structure,

by putting together the standard metric of the sphere S2 on T{ZjM) and the

metric of M on H (with the appropriate normalization).
The space Z has one more property, namely a (holomorphic) contact

structure. We will now explain what this is.

4.2 Contact structures

Let X be a complex manifold. A contact structure on X is a corank 1

sub-bundle H of the (holomorphic) tangent bundle T(X), so that we have an
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exact sequence

where L is a line bundle. Moreover the following equivalent properties must
hold:

a) The 2-form dO, restricted to H, is non-degenerate at each point6).

b) dim(X) is odd, say — 2r --f-1, and the form 0 f\(dB'f is everywhere f 0.

c) The L-valued alternate form (U, V) 0([U, V]) on H is non-degenerate
at each point.

Let L" be the complement of the zero section in L*. The pull-back of the

line bundle L to L* has a canonical trivialization, so p*9 becomes an honest

1-form on L'. Put uj — d(p*9). This 2-form is equivariant with respect to
the natural action of C* on L" by homotheties, that is A*uj — Auj for every
A C*.

Proposition ("contactization")- The 2-form uj is a symplectic structure

on L". Conversely, any C* -equivariant symplectic 2-form on L* defines a
unique contact form 0 H°(X,Qx ® L) such that uj — d{p* 9).

The form uj is closed, and using b) above we easily see that it is non-
degenerate. For the converse, consider the "Euler field" £ on L " corresponding
to the C* -action. The 1-form i(f)uj vanishes on £ and is equivariant, therefore

it is the pull-back of a form 0 XffX, Qj ® L). Since uj is equivariant, its

Lie derivative Ltuj equals uj\ using the Cartan formula Le — di(£) + i(0 d
we find uj — d(p*0). It is then an easy exercise to prove that $ is a contact

form, using for instance condition a).

Example. Let M be a complex manifold, and X — Pits (hoiomorphie)

projective cotangent bundle. Recall that the cotangent bundle T'*(M) has

a canonical symplectic structure uj ~ dq, where q is the tautological 1-form

on T*(M) : the value of q at a point (m, a) of T*(M) (m e M,a T^(M))
is the pull-back of a(m) by the projection T*(M) M. By construction q is

equivariant with respect to the action of C* on T* (M) by homotheties, and

so is a;. By the proposition we see that q is the pull-back of a contact form

on X.

6 The form cl0 is defined locally using a trivialization of L ; it is an easy exercise to check
that conditions a) and b) do not depend on the choice of the trivialization.
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Going back to quaternion-Kahler manifolds, the link with contact structures
is provided by the following theorem. Part a) is due to Salamon [S], part b)
to LeBrun [L].

Theorem (LeBrun, Salamon). a) The twistor space of a positive
quaternion-Kähler manifold is a Fano contact manifold, admitting a Kahler-
Einstein metric.

b) Conversely, a Fano contact manifold which admits a Kahler-Einstein
metric is the twistor space of a positive quaternion-Kähler manifold.

The key point is that the horizontal sub-bundle He T(Z) (4.1) is

holomorphic; this is proved by a local computation, and so is the fact that H
defines a contact structure.

Thus the classification of positive quaternion-Kähler manifolds is essentially
reduced to a problem of algebraic geometry. We are now going to explain a

conjecture describing this classification.

4.3 Homogeneous contact manifolds

We have already mentioned that the only known examples of positive
quaternion-Kähler manifolds are symmetric. More precisely, for each simple
compact Lie group K there exists a unique quaternion-Kähler symmetric
quotient of K ; the corresponding twistor space is homogeneous under the

complexification G of K. These spaces have been classified by Wolf [W].
The twistor spaces admit the following simple description:

Proposition. Let G be a complex simple Lie group, g its Lie algebra.
There is a unique closed orbit X0 for the adjoint action of G on P(g) ;
Z0 is a Fano manifold, and admits a G-invariant contact structure.

Note that the closure in P(g) of any adjoint orbit contains a closed orbit,
necessarily equal to Z0. Hence X0 is the smallest orbit in P(g).

Proof. I will give the proof because it is quite simple, though it requires
some knowledge of algebraic groups. Let I be a closed orbit in P(g), and

let v be a vector of g whose class [a] e P(g) belongs to X. Since X is

projective, the stabilizer P of [?.] contains a Borel subgroup B of G ; this

means that v is an eigenvector of ß in g. Since g is simple, the adjoint
representation of G in g is irreducible, so B has exactly, up to a scalar, one

eigenvector ("highest weight vector") vp, & ; thus X is the G-orbit of [ ivg].
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It does not depend on the particular choice of B because all Borel subgroups
are conjugate.

The pull-back of X0 in g — {0} is an adjoint orbit of G ; using the Killing
form we can view it as a coadjoint orbit in g*. Every such orbit admits a

symplectic form, the Kostant-Kirillov structure, which is C* -equivariant and

G-invariant. Using contactization we see that X0 carries a G-invariant contact
structure.

For classical Lie algebras, the contact manifold X0 and the corresponding
quaternion-Kähler manifold M0 are :

0 x* Mp

sl(n) pr*(p*—i) G(2, Cn)

o(n) G«o(2,CB) G+(4. RB)

sp(2n) Cp2»—i G( 1, HB) - HP«1

We have described the map Xsp(2n) M?p(2«) in 4.1. X0(n) is the

grassmannian of isotropic 2-planes in Cn and M0(n) the grassmannian of
oriented 4-planes in R« ; the map X0(n) M0(n) associates to a 2-plane
P c Cn the real part of ?© P. As in 3.4 we view Xs^n) — PT*(Pn_1) as

the space of flags D c H c Cn, where D is a line and H a hyperplane;
choosing a hermitian scalar product on CB, this is also the space of pairs of
orthogonal lines in Cn. The map XSf(ny —ï Mst(n) associates to such a pair the

2-plane that they span.

In view of the LeBrun-Salamon theorem (4.2), every positive quaternion-
Kähler compact manifold will be symmetric if every Fano contact manifold

admitting a Kahler-Einstein metric is homogeneous. It is tempting to be a

little bit more optimistic and to conjecture

Conjecture (C). Every Fano contact manifold is homogeneous.

We will give some (weak) evidence for the conjecture. Let X be a compact
complex manifold, of dimension 2r + 1, with a contact structure
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The form 0/\(d$f defines a nowhere vanishing section of Kx®Lr+1 ; therefore

we have Kx — L~~r~"1, and X is Fano if and only if L is ample.

Proposition. Let X be a Fano contact manifold. If the line bundle L
is very ample, X is homogeneous, and more precisely isomorphic to Xg for
some simple Lie algebra g.

Proof Let G be the group of automorphisms of X preserving the contact

structure; its Lie algebra g consists of the vector fields V on X such that

[V,H] c H. Let us prove that the space of global vector fields H°(X, T(X))
is the direct sum of g and H°(X,H). Let V be a vector field on X. The

map W i~¥ 0([V,W]) from H to L is Ox -linear, hence by property c) of
contact structures (4.2), there exists a unique vector field V' in H such that

0([V, W]) — 0([V', W]) for all W in H. This means that [V — V', W] belongs
to H, that is that V —V' belongs to g. Writing V — V' + (V — V) provides
the required direct sum decomposition.

The map V (-> V' provides a C-linear retraction of the inclusion of sheaves

H c—» T(A4) ; therefore the exact sequence

splits as a sequence of sheaves of vector spaces (not of Ox-modules). In
particular, the sequence

0 —y H°(X,H) —H°(X, T(X)~) —-—+ Lp(X, L) —y 0

is exact, and 0 induces an isomorphism of g onto H°(X,L). This isomorphism
is equivariant with respect to the action of G.

We will therefore identify H°(X,L) with g. The diagram of App. B
becomes

p i

\t y

X X _ P(0*)

Let Leg. The action of G on L defines a canonical lift V of the vector
field V to L". By construction we have (ji, V) — p(V), where p is the

1-form p'*0 on L* (4.2). Since p is preserved by G, the Lie derivative Lyp
vanishes. By the Cartan homotopy formula, this implies that

{dp, V) - d(i(V)p) -i(V)u,
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where u dq is the symplectic form on L' (this relation means by definition
that ij, is a moment map for the action of G on the symplectic manifold L*

For £ eL*, v Tc(L' this formula reads (Tt(p) • v,V) — uj(v, F(£))-
When V runs through g, the vectors V(fi) span the tangent space to the orbit
G£ at £ ; thus the kernel of TtQT) is the orthogonal of TfiGQ with respect
to uj. In particular, if T*(p) is injective, the orbit G£ is open, and therefore
the orbit of x — p(f) is open in X.

Now if L is very ample, p is an embedding, hence all the orbits of G are

open - this is possible only if G acts transitively on X. Since X is projective
this implies that G is semi-simple, so we can identify g* with g, and p(X)
with a closed adjoint orbit in P(g). It easily follows that g is simple and

von-=x9.

This result is improved in [B3], at the cost of assuming the Lie algebra g
reductive - this is not too serious since it is always the case if X admits a

Kähler-Einstein metric. The main result of [B3] is

Theorem. Let X be a Fano contact manifold, such that

a) the rational map <pL\ X --> P(H°(X,L)*) is generically finite (that is,

dim <pi(X) — dimX);
b) the Lie algebra g of infinitesimal contact automorphisms of X is

reductive.

Then g is simple, and X is isomorphic to X0.

Idea of the proof. In view of the above proof, a) implies that G has an

open orbit in L*. The image of this orbit in g (identified with g* thanks

to b)) is invariant by homotheties; this implies that it is a nilpotent orbit (if
a matrix N is conjugate to XN for every À C*, we have TrNp — 0 for
each p, so N is nilpotent). Thus the image of tp is the closure ofa nilpotent
orbit in P(g). Then a detailed study of nilpotent orbits leads to the result.

4.4 Further developments

More generally, we can ask which projective varieties admit contact structures.

We have seen two examples, the projective cotangent bundles PT*(M)
(4.2) and the homogeneous spaces X0 (4.3). Remarkably, Conjecture (C)
implies that they are the only ones, thanks to the following result:
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Theorem ([KPSW]+[Dm]). A projective contact manifold is either the

projective cotangent bundle of some projective manifold, or a Fano manifold
with &2 1.

The result is proved in [KPSW] under the assumption that the canonical

bundle is not nef; then Demailly proved that this is always the case for a

contact manifold, as a consequence of a more general integrability theorem.

Appendix A

Connections

Let M be a differentiable manifold, E a vector bundle on M, Diffl(E)
the vector bundle of differential operators of order <1 on A. A connection

on E is a linear map V: T(M) ~~s T>ijfl(E) which satisfies the Leibniz rule

Vv(fs)=jVv(s)+(Vf)s

for any vector field V, function / and section s of E defined over some

open subset of M.
The connection extends naturally to the various tensor, symmetric or

exterior powers of E, covariant or contravariant. For instance, if b is a

bilinear form on E and u an endomorphism of E, we have

S7v(b)(s.t) — Vb(s,t) - b(Vvs,t) - b(s, Vvt)

¥v(u)(s) - Vv(u(s)) u(Vvs)

for any local sections s,t of E. We say that a section s of £ (or of one of
its associated tensor bundles) is parallel if Vvs — 0 for any vector field I7

on M.
Let /: Af — M be a differentiable map. There exists a natural connection

/*V on f*E, characterized by the condition (f*V)v,(f*s) —f*(Vvs) for any
section s of E and vector fields V on M, V' on AF such that / projects
V onto V. In particular, for any path 7: [0.1] M, we get a connection

on "fE, or equivalently a first order differential operator sEd<dt of "EE. Let

p — 7(0) and q — 7(1) ; given a vector vp Ep, there exists a unique section

t <—¥ v(f) of "EE such that "^d/dtv(t) — 0 and v(0) — vp. The map vp >-> v(l)
defines the parallel transport isomorphism : Ep Eq. Observe that a

section s of £ is parallel if and only if p-fsip)) s(q) for every path 7
(this implies 5(7(0) — v(f), hence V^s -0).
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The tangent vector v(0) TVp(Ep) is said to be horizontal; it is easy to
show that the horizontal vectors form a sub-bundle H of T(M), the horizontal
distribution of V, which is a supplement of the vertical sub-bundle T(E/M).

Suppose now E — T(M). The connection is said to be symmetric (or
torsion-free) if VvW — VWV — [V, W] for any vector fields V.W on M.
Let g be a Riemannian metric on M; a simple-minded computation shows

that there exists a unique symmetric connection V on T(M) for which g is

parallel It is called the Levi-Civita connection of (M,g).

Appendix B

Ample une bundles, Hodge theory

Ample une bundles

Let I be a compact complex manifold and L a line bundle on I; we

suppose H°(XtL) / 0. For iel, let pi(x) denote the subspace of global
sections of L which vanish at a. It is either equal to H°(X,L) or to a

hyperplane in H°(X,L). In the first case x belongs to the base locus Bi of
L, that is the subvariety of the common zeros of all sections of L. The map
x pi{x) defines a morphism X — Bi — P(H°(X.L))*, which we consider

as a rational map X — > P(H°(X, L))*. We say that L is very ample if -pi is

an embedding (this implies in particular Bi — 0); it amounts to saying that
there is an embedding of X into some projective space P such that L is the

restriction of the tautological line bundle öp(l). We say that L is ample if
some (positive) power of L is very ample.

Consider the dual line bundle p: L* —> X. To any £ L* associate the

linear form /*(£): 5 ^ (s(p(£))?£) on F/°(X,L). We have a commutative

diagram

L* —H°(XfL'f
p i

x ^ p(h°(x;lt).

Hodge decomposition

Let I be a compact Kahler manifold. Recall that a differentiable form on
X is of type (p.q) if it can be written in any system of local coordinates

(Zi, zn) as a sum of forms a(z, z)dzil A A dztp A dip A A dZjq. We
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denote by Hp q c Hp+q(X, C) the subspace of de Rham cohomology classes

of forms of type (p,q); we have Hqp — Hp-Q The fundamental result of
Hodge theory is the Hodge decomposition

Hn(Xt C) - © Hp q

p-\-q=n

together with the canonical isomorphisms H?q —-4 Hq(X. Of-). In particular,

H2(X} C) - H-° é H11 ® H0'2,

with H20 ^ H°(X,Qx)> embedded into H2(X, C) by associating to a

holomorphic form its De Rham class.

To any hermitian metric g on X is associated a real 2-form uj of type (1,1),
the Kahler form, defined by uj(V,W) — g(V,JW) for any real vector fields

V, W ; the metric is Kahler if u is closed. Then its class in H2(X, C) is called a

Kahler class. The Kahler classes form an open cone in — Hl,lCH2(X, R).
Let L be a line bundle on X. The Chern class c\(L) H2(X, C) is integral,

that is comes from H2(X. Z), and belongs to H1,1. Conversely, any integral
class in H1,1 is the Chern class of some line bundle on X (Lefschetz theorem).

If L is very ample, its Chern class is the pull-back by of the Chern
class of öp(l), which is a Kahler class, and therefore ci(L) is a Kahler class.

More generally, if L is ample, some multiple of ci(L) is a Kahler class, hence

also ci(L). Conversely, the celebrated Kodaira embedding theorem asserts that

a line bundle whose Chern class is Kähler is ample. As a corollary, we see

that any compact Kähler manifold X with H°(X. Qjj-) — 0 is projective : we
have H2(X, C) — H11, hence the cone of Kähler classes is open in H2(X. R).
Therefore it contains integral classes; by the above results such a class is

the first Chern class of an ample line bundle, hence X is projective. More

generally, the same argument shows that X is projective whenever the subspace
H1-1 of H2(X, C) is defined over Q.
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