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RIEMANNIAN HOLONOMY AND ALGEBRAIC GEOMETRY

by Amaud BEAUVILLE

ABSTRACT. This survey paper is devoted to compact Riemannian manifolds with
special holonomy. To any Riemannian manifold of dimension # is associated a closed
subgroup of SO{rt), the holonomy group; this is one of the most basic invariants
of the metric. A famous theorem of Berger gives a complete (and rather small) list
of the groups which can appear. Surpnisingly, the compact manifolds with holonomy
smaller than SO(x) are all related in some way to algebraic geometry. This leads to
the study of special algebraic varieties {Calabi-Yau, complex symplectic or complex
contact manifolds) for which Riemannian geometry raises interesting questions.

INTRODUCTION

This survey is devoted to a particular instance of the interaction between
Riemannian geometry and algebraic geometry, the study of manifolds with
special holonomy. The holonomy group is one of the most basic objects
associated with a Riemannian metric; roughly, it tells us what are the geometric
objects on the manifold (complex structures, differential forms, ...) which are
parallel with respect to the metric (see 1.3 for a precise statement).

There are two surprising facts about this group. The first one 1s that,
despite its very general definition, there are few possibilities — this is Berger’s
theorem (1.2). The second one is that apart from the generic case in which
the holonomy group is SO(s), all other cases appear to be related in some
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way to algebraic geometry. Indeed the study of compact mamfolds with
special holonomy brings into play some special, and quite interesting, classes
of algebraic varieties: Calabi-Yau, complex symplectic or complex contact
manifolds. [ would like to convince algebraic geometers that this interplay
is interesting on two accounts: on the one hand the general theorems on
holonomy give deep results on the geometry of these special varieties; on the
other hand Riemannian geometry provides us with good problems in algebraic
geometry — see 4.3 for a typical example.

I have tried to make these notes accessible to students with little knowledge
of Riemannian geometry, and a basic knowledge of algebraic geometry. Two
appendices at the end recall the basic results of Riemannian (resp. algebraic)
geometry which are used in the text?).

1. HoLoNOMY

1.1 DEFINITION

Perhaps the most fundamental object associated to a Riemannian metric
on a manifold M is a canonical connection on the tangent bundle 7(M),
the Levi-Civita connection. A connection gives an isomorphism between the
tangent spaces at infinitesimally near points; more precisely, to each path ~ on
M with ongin p and extremity ¢, the connection associates an isomorphism
oy T(M) = Te(M) (“parallel transport™), which is actually an isometry with
respect to the scalar products on 7,(M) and 7,(M) induced by the metric
(see Appendix A for more details). If ¢ is another path from g to r, the
isomorphism associated to the path composed of v and ¢ is wsoep, .

Let p € M; the above construction associates 1n particular to every loop ~
at p an isometry of T,(M). The set of all such isometries is a subgroup H, of

1y This text is an updated version of the “Emmy Noether lectures” which I gave at Bar Ilan
University (Fall 1998). I want to thank the Emmy Noether Institute for the invitation, and Mina
Teicher for her warm hospitality.
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the orthogonal group O(T,(M)), called the holonomy subgroup of M at p. If
¢ is another point of M and ~ a path from p to g, we have Hy == ¢, Hp o7 ks,
so that the H,’s define a unique conjugacy class H C O(n); the group H i3
often called simply the holonomy group of M. Similarly the representations of
the groups H, on (M) are isomorphic, so we can talk about the Aolonomy
representation of H.

There 1s a variant of this definition, the restricted holonomy group, obtained
by considering only those loops which are homotopically trivial. This group
actually behaves more nicely: it is a connected, closed Lie subgroup of
SO(T,(M)). To avoid technicalities, we will always assume that our varieties
are simply-connected, so that the two notions coincide. We will also usually
consider compact manifolds: this 1s somehow the most interesting case, at
least for the applications to algebraic geometry.

1.2 THE THEOREMS OF DE RHAM AND BERGER

With such a degree of generality we would expect very few restrictions,
if any, on the holonomy group. This is far from being the case: thanks to
a remarkable theorem of Berger, we can give a complete (and rather small)
list of possible holonomy groups. First of all, let us say that a Riemannian
manifold is irreducible if its holonomy representation is irreducible.

THEOREM (de Rham). [let M be a compact simply-connected Riemannian
manifold. There exists a canonical decomposition M —=s || M;, where each
M; is an irreducible Riemannian manifold. Let p = (p;) be a point of M, and
let Hy C O(T,,(M;)) be the holonomy group of M; at p;; then the holonomy
group of M at p is the product || H;, acting on Ty(M) = [[ T, (M;) by the
product representation.

The reader fluent in Riemannian geometry may replace compact by
complete. On the other hand, both completeness and simple connectedness are
essential here. The proof is far from trivial, see [R] or [K-N], IV.G.

We are thus reduced to irreducible (compact, simply-connected) Rieman-
nian manifolds. Among these are some very classical manifolds, the syrmumnetric
spaces; they are of the form G/H, where G is a compact Lie group and H is
the neutral component of the fixed locus of an involution of G. These spaces
are completely classified, and their geometry is well-known; the holonomy
group is H itself. Excluding this case, we have
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THEOREM (Berger). Let M be an irreducible (simply-connected) Rie-
mannian manifold, which is not isomorphic to a symmetric space. Then the
holonomy group H of M belongs to the following list:

H dim (M) metric
SO(m) 7l generic
U 2m Kidhler

SU(m) 2m Calabi-Yau
(m=3)
Sp(r) 4r hyperkdhler
Sp(rySp(l) 4r quateraion- Kahler
(r=2)
Gp 7
Spin(7) 8

We have deleted SU(2) (= Sp(1)) and Sp(1)Sp(l) (= SO(4)) so that
a given group appears only once in the list. We should point out that a
third exceptional case, Spin(9) C SO(16), appeared in Berger’s list, but was
eliminated later (see [B-G]). The original proof [Be] rests on a rather involved
case-by-case analysis; a more conceptual proof was given later in [Si], based
on the fact that H, must act transitively on the umt sphere of T,(M). A
simpler proof appears in [O].

Which groups in this list do effectively occur for some compact, simply-
connected, non-symmetric manifold ? That O(s) and U(m) occur 1s classical
and easy: one starts from an arbitrary Riemannian (resp. Kadhlerian) metric on
M and perturbs it in the neighborhood of a point. The other groups required
much more efforts. The case of SU(m) is a direct consequence of the Calabi
conjecture, proved by Yau [Y]; examples with H = Sp(r) were found in
1982 [B1], again using Yau's result (these cases will be studied in §2 and 3
below). Examples in the last cases, G2 and Spin(7), were found only recently
[J1, J2]. As for Sp(1)Sp(r), no example is known, and in fact it is generally
conjectured that they do not exist — we will discuss this in §4.



RIEMANNIAN HOLONOMY AND ALGEBRAIC GEOMETRY 101

1.3 THE HOLONOMY PRINCIPLE

Before describing the subgroups which appear in the list, let us discuss the
geometric meaning of such a restriction on the holonomy. We say that a tensor
field # on M is parallel if for any path ~ from p to g, the isomorphism
@~ transports ¢(p) onto #(g) (this is equivalent to V& = 0, see App. A).
This implies in particular that #(p) is invariant under the holonomy subgroup
H,. Conversely, given a tensor #(p) on 7,(AM) invariant under H,, we can
transport it at g by any path from p to ¢ and obtain a tensor #(g) independent
of the chosen path; the tensor field # thus constructed is parallel. We have
thus established:

HOLONOMY PRINCIPLE. Evaluation at p establishes a one-to-one cor-
respondence between parallel tensor fields and tensors on Tp(M) invariant
under Hy.

In the next sections we will illustrate this principle by going through
Berger’s list. Let us start with the two simplest cases:

a) H = SO(») means that there are no parallel tensor fields (apart from
the metric and the orientation). Such a metric is often called generic.

b) U{m) is the subgroup of SO(2m) preserving a complex structure J
on R which is orthogonal (that is, J € SO(2m), J? = —1). Therefore the
manifolds with holonomy contained in U(#) are the Riemannian manifolds
with an almost complex structure J (that is, an endomorphism of the tangent
bundle with square —1) which is orthogonal and parallel. This is one of the
classical characterizations of Kdhler mamfolds.

We claimed in the introduction that compact manifolds with special
holonomy are related to algebraic geometry. Indeed compact Kihler manifolds
share many properties with projective manifolds, in particular the Hodge
decomposition of the cohomology spaces. Actually for a long time the only
known examples of compact Kahler manifolds were deformations of projective
ones, like complex tori or K3 surfaces; Kodaira asked whether every compact
Kéhler manifold was obtained in this way. This has been recently answered
negatively by C. Voisin [V2].

We will discuss the groups SU(m), Sp(r) and Sp(1)Sp(r) in the next
sections. We will not discuss the exofic holonomies & and Spin(7) here;
I refer to [J3] for a readable account.
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2. CALABI-YAU MANIFOLDS

We now consider manifolds with holonomy contained in SU(#). We can
view SU(m) as the subgroup of U(m) preserving an alternate complex m-form
on C™; therefore a manifold X with holonomy contained in SU(m) 1s a Kihler
manifold (of complex dimension ) with a parallel form of type (m.0). This
means that the canonical line bundle Kx = ¥ 1s flat; in other words, the
Ricci curvature (which for a Kahler manifold is just the curvature of the line
bundle Ky) is zero. Thus the manifolds with holonomy SU(m) are exactly
the Ricci-flat Kidhler manifolds.

It is easy to see that a parallel form is closed, hence in this case
holomorphic; thus the canonical bundle Ky of X is trivial (as a holomorphic
bundle)?). Conversely, Calabi conjectured in [C] that a compact, simply-
connected Kahler manifold with trivial canonical bundle admits a Ricci-flat
metric. This was part of a more general conjecture, for which he proposed a
heuristic argument. It took 20 years to turn this argument into a complete proot;
this was done by Yau [Y]. These manifolds are nowadays called Calabi- Yau
manifolds. To summarize :

The compact (simply-connected) complex manifolds which admit a metric
with holonomy contained in SU(m) are the Calabi-Yau manifolds.

This fact has strong implications in algebraic geometry, in particular thanks
to the following result:

PROPOSITION (Bochner’s principle). On a compact Kéhler Ricci-flat mani-
fold, any holomorphic tensor field (covariant or contravariant) is parallel.

The proof rests on the following formula, which follows from a tedious
but straightforward computation ([B-Y], p. 142): if 7 is any tensor field,

Al =197

Therefore A(“THZ) 1s nonnegative, hence 0 since its mean value over X is O
by Stokes” formula. It follows that + is parallel. [

) Recall that our manifolds are assumed to be simply-connected.
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As a consequence we get

PROPOSITION. Let X be a compact Kahler manifold, of dimension m > 3,
with holonomy group SU(m). Then X is projective, and H'(X, QL) = 0 for
0<p<m.

Proof. let x € X, and V = TR(X). Using the Bochner and holonomy
principles, we see that the space H’(X. %) can be identified with the
SU(V)-invariant subspace of A?V* . Because SU(V) acts irreducibly on APV*,
the invariant subspace is zero unless p = 0 or p = m. Since H'(X, Q%) is
zero, X 1s projective (App. B). L]

Manifolds with holonomy Sp(r), called hyperkdhler manifolds, have very
special properties; we will study them in detail in the next section. Since the
only groups in Berger’s list which are contained in SU(m) are of the form
SU(p) or Sp(g), we get the following structure theorem :

THEOREM. Any (simply-connected) Calabi-Yau manifold is a product
[L Vi x [L; X5, where

a) each V; is a projective Calabi-Yau manifold, with HO(V,-p Q%;-) = 0 for
0 < p<dm(Vy;

b) the manifolds X; are irreducible hyperkdiihler.

(There is a more general statement for non simply-connected manifolds, see
for instance [B1].)

FURTHER DEVELCPMENTS

Calabi-Yau manifolds have been at the center of a flurry of activity in the
last 15 years, principally under the influence of mathematical physics. The
keyword here is mirror symmetry, a (conjectural) duality between families of
Calabi-Yau manifolds. T will not try to be more precise, because this goes
far beyond the scope of these notes. A good introduction to the beginning of
the story is given in [V1]. The current main trends are the Strominger-Yau-
Zaslow conjecture [S-Y-Z] and the Kontsevich homological mirror symmetry
conjecture [Ko]. Both give an important role to the (real) symplectic aspect.
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3. SYMPLECTIC MANIFOLDS

3.1 HYPERKAHIER VERSUS SYMPLECTIC

The group Sp(r) is the quaternionic unitary group, that is, the group of
H-linear automorphisms of H” which preserve the standard hermitian form
¥(z,7) = Y. zZ,. Viewing H" as R* realizes Sp(r) as a subgroup of the
orthogonal group SO(4r). The manifolds of dimension 4r with holonomy
Sp(r) are called hyperkdhler manifolds.

There are two ways of making this defimtion explicit. We can characterize
Sp(r) as the subgroup of orthogonal transformations of R* which are linear
with respect to the complex structures 7,.J. K (here (1.7.J.K) is the standard
basis of H over R, with IJ = ~JI = K). By the holonomy principle,
hyperkdhler manifolds are therefore characterized by the existence of 3
complex structures I, J, K, with IJ = —JI = K, such that the metric is K&hler
with respect to each of these. Actually any pure quaternion al -+ bJ -+ cK with
a? + b 4+ ¢? = 1 defines such a structure, so hyperkahler manifolds admit a
family of complex Kahler structures parametrized by the sphere 8% (hence
their name).

A second way to look at Sp(r) is to give a special role to one of these
complex structures, say I, and to view H as C{/) (and C as R{)). We identify
H with C7&C7J = C¥ . The hermitian form % can be written as #-+J, where
h is the standard (complex) hermitian form and ¢ the standard C-bilinear
symplectic form on C% . Therefore Sp(r) 1s the intersection in SO(4r) of the
unitary group U(2r) and the complex symplectic group Sp(2r, C) (incidentally,
this implies that Sp(r) is a maximal compact subgroup of Sp(2r, C), which
is the reason for the notation).

In terms of holonomy, this means that once a preferred complex structure
has been chosen, a hyperkidhler manifold can be characterized as a Kihler
manifold with a parallel non-degenerate 2-form of type (2,0). As above this
2-form must be holomorphic, hence it 1s a (complex) symplectic structure, that
is a closed®), holomorphic, everywhere non-degenerate 2-form. Conversely, let
X be a compact Kihler manifold of (complex) dimension 2r, with a complex
symplectic structure ¢ ; then X is a Calabi-Yau manifold (because " does
not vanish), hence admits a Ricci-flat metric, for which the form ¢ is parallel.
If moreover we require the holomorphic 2-form ¢ to be unique up to a scalar,
the holonomy of X is exactly Sp(r). We will call such a manifold Kdahler
symplectic, to emphasize that we have chosen a particular complex structure.

) The closedness condition is automatic for compact Kihler manifolds.
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32 THE TWO STANDARD SERIES

A typical example of a Kihler symplectic manifold is a K3 surface, that
1s a compact (simply-connected) Kihler surface with trivial canonical bundle.
Note that in the statement of Berger’s theorem [ have deliberately chosen
to view the group SU(2) as symplectic (= Sp(1)) rather than unitary: we
will see that the theory of K3 surfaces is an accurate model for the study of
complex symplectic manifolds. For a long time no other example was known,
and it was even conjectured that such manifolds do not exist (see [Bgl]).
In 1982 Fujiki gave an example in dimension 4, which I generalized in any
dimension — in fact I constructed two series of examples [B1]. Let me explain
these examples.

Start from a K3 surface S, with a holomorphic nonzero 2-form . The
product §” admits a natural symplectic form, namely prj@ - ...+ pry ¢;
but there are others, since we may take as well any expression Ajprj ¢ -+
b Aprr e with Ag, ... A in €. A natural way to eliminate those is to
ask for &, -invariant 2-forms, which amounts to considering instead of S” the
symmetric product § := §/&,.

Unfortunately this quotient is singular as soon as 7 is greater than 1; but
it admits a nice desingularization, the Douady space S¥) which parameterizes
the finite subspaces of S of length r (when S is projective this is known
as the Hilbert scheme; the fact that it 1s smooth 1s proved in [F]). We can
view S as the space of finite subsets E ¢ § with a positive multiplicity
m( p) assigned to each point p of E, in such a way that Zngm(P) = oS
The natural map &: S -5 $ which associates to a subspace Z of S its set
of peoints counted with multiplicity turns out to be holomorphic; it induces an
isomorphism on the open subset SF1 of SP1 parameterizing those subspaces
which consist of r distinct points.

It 1s then easy to show that the 2-form prj ¢ -+ ... 4 pr; ¢, which lives
naturally on Sl extends to a symplectic form on S¥1, unique up to a scalar,
and that SF1 is simply-connected. Moreover SP1 is Kihler as a consequence
of a general result of Varouchas [Va]. In other words, the Douady space ST
is a (2r)-dimensional irreducible symplectic manifold.

We can perform the same construction starting from a 2-dimensional
complex torus T : the Douady space TPl is again symplectic, however it is
not simply-commected. In fact it admits a smooth surjective map S: TV — T
which is the composite of ¢: TU! — T and of the sum map 77 - T. The
fibre K,_1 = S~10) is a simply-connected, irreducible symplectic manifold
of dimension 2r — 2.
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Thus we get two series of examples in each dimension. The first thing to
look at, for algebraic geometers, is their deformations: there are some obvious
ones obtained by deforming the surface S (or 77), but it turns out that we get
more than those. In fact, in the moduli space parameterizing all deformations
of the manifolds we found, those of the form SU1 for some K3 surface S
form a hypersurface, and similarly for K, (this is, of course, for r > 2).

This 1s seen as follows. First of all, the universal deformation space of
a symplectic manifold X is smooth, of dimension dimHl(X_., Tx). This is a
general result for Calabi-Yau manifolds, due to Tian and Todorov (see [T]);
in the particular case of symplectic manifolds it had been proved earlier by
Bogomolov [Bgl]. Since X is symplectic, the tangent sheaf Ty is isomorphic
to Q% hence

dim H (X, Ty) = dim H'(X, Qb = by(X) — 2;

the last equality holds because X is irreducible and therefore H*° and H°?
are one-dimensional. An easy computation gives by(SPy = B8 + 1 and
ba(Kyp) = by(T) + 1 for r >» 2, hence our assertion.

We will say that a symplectic manifold is of type SF1, or K, if it can be
obtained by deformation of S or K. As an example, we proved in [B-D]
that the variety of lines contained in a smooth cubic hypersurface V of P?
is of type SB!, but it is not isomorphic to S¥ if V is general enough.

33 OTHER EXAMPLES

Shortly after the two series were discovered, Mukai showed that they fit
into an elegant construction which looks much more general [M]. He proved
that the moduli space of stable vector bundles on a K3 or abelian surface S,
with fixed rank and Chern classes, is smooth and admits a symplectic form.
The idea is quite simple. The smoothness follows from a standard obstruction
argument: one shows that the obstructions to deform E infinitesimally are
the same as the obstructions to deform det£, which vanish. Now the tangent
space to the moduli space at £ is Hl(S_., End(E)), and the symmetric form
(1. 2) = Tr(ue) on End(E) gives rise to a skew-symmetric pairing

HY(S, End(E)) & HY(S, End(E)) — H(S, Of) &2 C

which is non-degenerate by Serre duality, and provides the required symplectic
form.

If we want to exploit this construction to give new examples of symplectic
manifolds, we need to fulfill the following requirements :
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a) Our moduli space M should be compact. This is achieved by including
in M stable sheaves, and choosing the polarization so that all semi-stable
sheaves are actually stable. I refer for instance to [H-1.] for the details.

b) M should be simply-connected, and satisfy dim HO(M, Q%J) = 1. This
was proved in [OG1]. Observe that both properties are invariant by deformation,
and also under birational equivalence. O’Grady deforms S to a surface S,
admitting an elliptic pencil, with a suitable polarization; then a detailed analysis
shows that the moduli space is birational to SI! for some r.

So M is a symplectic manifold, but the proof actually gives more: Huy-
brechts has proved that two birational symplectic manifolds are deformations
of each other — we will discuss this in detail in 3.5. Therefore the moduli
space M is of type S, and thus does not provide any new example.

When Huybrechts” result appeared, it implied that all examples of Kihler
symplectic manifolds known at the time were of type Sl or K,. Since then
two new examples have been constructed by O Grady ([OG2], [OG3]) of
dimension 10 (resp. 6), by desingularizing a singular moduli space of vector
bundles on a K3 (resp. an abelian surface). Unfortunately, it is shown in
[K-L-S] that the moduli spaces considered by O’Grady are the only ones
which admit a symplectic resolution.

[t remains an infriguing and very interesting problem to construct more
examples. As we will see in the next sections, we know a lot about the
geometry of Kéhler symplectic manifolds; it is somewhat embarrassing to
have so few examples.

34 THE PERICD MAP

For K3 surfaces the theory of the period map gives us a fairly complete
picture of the moduli space, thanks to the work of Shafarevich and Piatetski-
Shapiro, Burns and Rapoport, Todorov, Looijenga, Siu — I refer to [B2] for
a survey. The idea is to encode a K3 surface S by its Hodge decomposition
(see App. B)

HYS,0) = H> ¢ g o HO2

which is determined by the position of the line H20 in HZ(S,, C) (we have
HY? = F20 and HM is the orthogonal of H*? ¢ H%? for the intersection
product). The point is that H2(S, C) depends only on the topology of S, while
H? depends heavily on the complex structure: we have H>? = Cy, where
w 1s the De Rham class of a non-zero holomorphic 2-form on S (unique up
to a constant).
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To be more precise, we denote by L a lattice isomorphic to HZ(S,, Z) (this
is the unique even unimodular lattice of signature (3,19), but we will not
need this). A marked K3 surface is a pair (S.s) of a K3 § and a lattice
isomorphism &: Hz(S} Z) — L. The first (easy) result is that there is an
analytic manifold AM; which is a fine moduli space for marked K3 surfaces:
that is, there is a universal family u: if -+ Mjp of marked K3 over M;,
such that any family & -+ T of marked K3’s is the pull back of u# through
a classifying map 7 — M. The bad news is that M is not Hausdorff —
a rather surprising fact that we will explain later (3.5).

The advantage of working with A4; is that we can now compare the Hodge
structures of different surfaces. Given (S, ), we extend & to an isomorphism
H*(S,C) — Le and put®)

@(S, o) = a(H*®) = a([]) € PLe).

The map g is called the period map, for the following reason: choose a basis
(e1,...,ex) of L*, so that Le = C?2 . Put ~ = o(e;), viewed as an element
of Hh(S.Z); then

g&(S_.,a)x(/ﬂg;} e [ ;) e p2,

il

The numbers ]: i are classically called the “periods™ of .

Since ¢ 1s holomorphic we have ¢ A ¢ = 0 and fs.w A @ > 0. In other
words, (S, o) lies in the subvariety €27 of P(L¢), called the period domain,
defined by

Q= {[] € PLe) | ¥ =0, x% >0},

THECREM. 1) g: Mg — Qp is étale and surjective.
2) If @(S,0) = @S, 5", the surfaces S and S' are isomorphic.

Note that this does not say that g is an isomorphism (otherwise M
would be Hausdorff ): the same K3 with different markings can have the
same period. There is a more precise statement which describes exactly the
fibres of g (see for instance [P], p. 142, prop. 2).

4) We denote as usual by (V) the space of lines in a vector space V¥, and by [¢:] € P(V)
the line spanned by a nonzero vector 1 of V.
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CORCLLARY. Every K3 surface is a deformation of a projective one.

Proof. Write ¢ = a +i43, with o, 3 € H*(S,R). The condition [¢] € Qr
translates as a® = 4% > 0, a.3 = 0. It follows that the classes [¢] with
a. 8 € H¥S,Q) are dense in €. The corresponding surfaces are dense in
My ; they have HY = (Cae C‘_{)‘)i defined over Q, hence they are projective
(App. B). [

Note that we only need an easy part of the theorem, namely the fact that
g 1s étale.

We want to apply the same approach for any Kahler symplectic manifold X .
We still have the Hodge decomposition

HX,.O=HY o o B with H*° = Cp.

What seems to be lacking is the quadratic form, but in fact it is still there:
[ showed in [B1] that the point [¢] € P(H2(X .(C)) must lie in a hyperquadric,
which is rational over Q; this implies that there exists a canonical quadratic
form g: HZ(X: Z) — Z. 1t has the following properties (see [B1] and [H]):

a) ¢ is non-divisible, non-degenerate, of signature (3.5, — 3);

b) there exists a positive integer dy such that ¥ = dy g(a)y for all
a € HX,Z);

¢) gle) =0, and gl + ¢) > 0.

We can now mimic the K3 case. Let L be a lattice; we define as before the
moduli space M of pairs (X,s), where X is a Kahler symplectic manifold
and o: HX(X,Z) — L a lattice 1somorphism. We still have a natural structure
of analytic (non-Hausdorff) manifold on AAp (it is however no longer a fine
moduli space in general). To each element (X,s) of Af; we associate

WX, 0) = ol ) = oll¢]) € PLe).

As above, if we choose a basis (e1,...,ep) of L*, the element (X, o) is
given by the “periods™ [ @, with v = fo(e)).
By property ¢) of g, !_gfs(X,,o) lies in the subvariety €2; of P(L¢) defined
by
Qr ={[x] € PLe) | gx) =0, gx+3X) > 0}.

THEOREM. g My —» @ is étale and surjective.

The fact that 4 is étale follows from the (easy) computation of its tangent
map. The much more delicate surjectivity has been proved by Huybrechts [H].
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Using the easy part of the theorem and the same argument as for K3
surfaces we obtain:

CCROLLARY. Every Kdahler symplectic manifold is a deformation of a
projective one.

On the other hand, the answer to the Torelli problem is negative, at least
for the manifolds K, (3.2, see [N]). An interesting question here is to find
some additional data which together with the Hodge structure determines the
isomorphism type of the manifold.

3.5 BIRATIONAL SYMPLECTIC MANIFOLDS

The fact that the moduli space My of marked K3 surfaces is non-Hausdorff
goes back to a famous example of Atiyah [A]. Start with a family f: X — D
of K3 surfaces over the unit disk, such that the total space & is smooth, the
surface X, is smooth for ¢ 4 0 and A has an ordinary double point s: near
s we can find local coordinates (x,y.z) such that f(x,y,2) = 2% +y* +2%. Pull
back f by the covering t ~ 1> of the disk; we obtain a new family ¥ — D,
where now ) has an ordinary double point x* + y* + 22 = 1. Blowing up s
in ¥ we get a smooth threefold 5: with a smooth quadric { as exceptional
divisor; we can now blow down @ along each of its two rulings to get smooth
threefolds )7, ¥, which are smail resolutions of }’: the singular point s
has been blown-up to a line.

y’\

b1

¥ — Y
£
/ l
//
Dy’ Fes P D

The two fibrations ' — D and ¥ — D are smooth; their fibres at O
are both isomorphic to the blow up of Ay at 5. By construction they coincide
above D — {0}, but it is easily checked that the isomorphism does not extend
over D.
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The local systems H*(Y!,Zyep and H?*()Y,Z)ep are constant, and
coincide over D — {0} ; choosing compatible trivializations we get two non-
isomorphic families of marked K3 surfaces on D, which coincide on D — {0}
The corresponding maps D -+ Mj coincide on D — {0}, but take different
values at 0. In other words, the marked surfaces }} and Yy give non
separated points in the moduli space AM; (every neighborhood of one of
these points contains the other one).

To explain the analogous construction for higher-dimensional symplectic
manifolds, let us first describe, in the simplest possible case, the elementary
transformations discovered by Mukai [M]. We start with a symplectic manifold
X, of dimension 2r, containing a submanifold P isomorphic to P”. The 2-form
w restricted to P vanishes (in fancy words, P is a Lagrangian submanifold);
therefore we have a commutative diagram of exact sequences

0 Tp Txlp Npx 0
0 — Npjx — Qllp Qp 0

in which all vertical arrows are isomorphisms. In particular, Np,x is isomorphic
to Qb
Now blow-up P in X :

EC . %
P 2

The exceptional divisor E is by definition the projective normal bundle?)
P(Np,;x), which by the above remark is isomorphic to the projective cotangent
bundle PT*(P); thus we can view FE as the variety of pairs (p,h) with p € P,
h ¢ P* (the space of hyperplanes in P) and p € k. This is clearly symmetric:
£ 1s also isomorphic to PT#(P*), and in fact, using a classical contractibility
criterion (due to Fujiki and Nakano in this context), we can blow down £ onto
P* and get a new symplectic manifold X’ called the elementary transform
of X along P. The map X --» X’ is a typical example of a birational map

R

) We use the standard differential-geometric notation: if /° is a vector bundle on a variety
B, we put P(I) = tJ-gP(F},) (see footnote 3,
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between symplectic manifolds which is not an isomorphism. Note that it is
not known whether X’ is always Kahler.

Now suppose we deform X in a family & -+ D. We have an exact
sequence of normal bundles

0> Npix & Q}’ ~+ Npa —> (NX;’J(_’)!P = 0p 0.

The class of this extension lives in Hl(P_., Q};); a straightforward computation
shows that it is the restriction of the tangent vector in the deformation space
of X provided by the deformation X -+ D (remember that this tangent vector
belongs to HI(X,, Ty) & HI(Xc Q}()). Choose & so that this tangent vector
does not vanish on P, for instance is a Kihler class in HI(X_, Q}{). Then the
above extension is the non-trivial Euler extension

0 — Qb — V* 0 Op(—1) —+ Op =+ 0,

where P = P(V). So we get an isomorphism Np,;» = V* &c Op(—1D).
Thus if we blow-up P in &', the exceptional divisor £ is 1somorphic to
P(Np;+) & P x P*. As before we can blow-down & onto P* and get a
manifold &7 with a smooth map X7 -+ D, whose fibre at 0 is isomorphic
to X’. Again the two families coincide above D — {0}. Therefore if X’ is
Kiahler, X and X’ (with appropriate markings) give non-separated points in
the moduli space M.

This example, due to D. Huybrechts, was the point of departure of his
investigation of birational symplectic manifolds. The outcome is

THEOREM (Huybrechts, [H]). Let X, X' be two birational Kiihler sym-
plectic manifolds. There exist smooth families X — D and X' —» D which
are isomorphic over D — {0} and such that Xy is isomorphic to X and Xj
to X'.

As before it follows that X and X', with appropriate markings, give non-
separated points in the moduli space M. Conversely, Huybrechts also proves
that if (X, o) and (X’, ¢’) are non-separated points in A4y, the manifolds X
and X’ are birational.

COROLLARY. Two Kdhler symplectic manifolds which are birational are
diffeomorphic.

It 1s interesting to compare this statement with the following result of
Batyrev [Ba]:
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PROPOSITION.  Two Calabi-Yau manifolds which are birational have the
same Betti numbers.

The proof 1s (of course) completely different: it proceeds by reduction to
characteristic p. Note that the two Calabi-Yau manifolds need not be diffeo-
morphic, as shown by an example of Tian and Yau (see [Fr], example 7.7).

3.6 FURTHER DEVELOPMENTS

Kéhler symplectic manifolds have been much studied in the recent years;
there are two directions which I would like to emphasize. The structure of
the cohomology algebra has been studied by Verbitsky; we will follow the
elegant presentation of Bogomolov [Bg2].

PROPOSITICN. Let X be a Kdhler symplectic manifold of dimension 2r,
and let A be the subalgebra of H*(X.,Q) spanned by Hz(X_., Q). Then
H*X,Q = A@¢ A, and A is the quotient of S*HZ(X, Q) by the ideal

)

spanned by the elements xrtl Jor all x € HY(X . Q) with g(x) = 0.

Let Q@ be the quadric g(x) = 0 in H?*(X,C). Since the period map is
¢tale (3.4), we know that there is an open subset V' of @ such that every
element of V is the class of a 2-form on X, holomorphic with respect to
some complex structure on X. This implies that x™t! = 0 for x € V, and
therefore for all x € Q by analytic continuation.

The rest of the proof is purely algebraic. Given a vector space H over Q
with a non-degenerate quadratic form g, we consider the algebra A,(H.q)
quotient of 8*H by the ideal spanned by the elements x"*! for all x ¢ H
with g(x) = 0. Using the representation theory of O(H,g), one proves that
A,(H,q) 1s a Gorenstein algebra; more precisely A?(H, g) 1s one-dimensional,
and the pairing ALH, q) x AZYH, q) — A¥(H, ¢) = Q is non-degenerate for
each i.

Put H = H*X.Q). By the geometric property above we get a ring
homomorphism A,(H,q) - H*(X,Q). Its kemnel 1s an ideal of A,(H,g);
if it is non-zero, it contains the minimum ideal Af"(H_., q), so the map
SYHAX,R) — HY(X.R) is zero — which is impossible since W # 0 for a
Kéhler class w. Hence A is isomorphic to A,(H,q); since the restriction
of the intersection form on H*(X.Q) to A is non-degenerate, we have
HX,Q=A®A+, [
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Another exciting recent development 1s the construction by Rozansky and
Witten of invariants of 3-manifolds associated to any compact hyperkidhler
manifold ([R-W]; an account more readable for an algebraic geometer appears
in [K]). By the advanced technology of 3-dimensional topology, defining such
invariants amounts to associate a complex number (a “weight”™) to each trivalent
graph, in such a way that a certain identity, the so-called IHX relation, is
satisfied. The weights associated by Rozansky and Witten to a hyperkdhler
manifold are sort of generalized Chern numbers, which certainly deserve
further study. Some explicit computations have been done by Hitchin-Sawon
[H-S] and Nieper [Ni].

4. QUATERNION-KAHLER MANIFOLDS

4.1 THE TWISTOR SPACE

The group Sp(l) is the group of quaternions of norm 1; it acts on H"
by homotheties. Since H is not commutative, Sp(l) is not contained in the
unitary group Sp(r), but of course it commutes with Sp(r). A manifold of
dimension 4r is said to be gquaternion Kdhler if its holonomy subgroup is
contained in Sp(r) Sp(1) € SO4r). As usual our mamifolds are assumed to be
compact and simply-connected; since Sp(l) Sp(1) = SO(4) we always suppose
r>2.

Despite the terminology, which is unfortunate but classical, a quaternion-
Kihler manifold has no natural complex structure: the group Sp(r)Sp(l) is
not contained in U(2x).

The complex structures [, J, K are not invariant under Sp(1), and therefore
they do not correspond any more to parallel complex structures. What remains
invariant, however, is the 3-dimensional space spanned by [,/ and K ; it gives
rise to a 3-dimensional parallel sub-bundle F ¢ £rd(T(M)). The unit sphere
bundle Z ¢ E is called the twistor space of M, the fibre of p: Z — M at
a point m ¢ M is a sphere 8% of complex structures on T,,(M), as in the
hyperkahler case. The link between quaternion-Kahler manifolds and algebraic
geometry 1s provided by the following result of Salamon [S]:

PROPOSITION.  Z admits a natural complex structure, for which the fibres
of p are complex rational curves.

The construction of this complex structure is quite natural. Since F is par-
allel, it inherits from the Levi-Civita connection on T(M) a linear connection,
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which 1s compatible with the metric. It follows that the corresponding hor-
zontal distribution (App. A) induces a horizontal distribution on the fibration
p. Z ~» M, that 1s a sub-bundle H C 7(Z) which is supplementary to the
vertical tangent bundle T(Z/M).

Let z € Z, and let m = p(2). The fibre p“"’"l(m) 1s canonically isomorphic to
the standard sphere S?, and therefore the vertical tangent space 7,(Z/M) has
a well-defined complex structure. The space H, projects isomorphically onto
T(M), on which z defines by definition a complex structure. The direct sum
of these complex structures define a complex structure on 7(Z) = T(Z/M)&H.
A non-trivial calculation shows that it is integrable. [

As an example, for the quatermonic projective space M = HP’ the
twistor space Z is CP¥*1: the fibration p: Z — M is the natural quotient
map W/C* —» W/H*, with W = C¥*? — {0} = H"*! — {0} Its fibres are
(complex projective) lines in CP¥+1,

The behaviour of the complex manifold Z depends heavily on the sign of
the scalar curvature k£ of (M, g). This turns out to be a constant: in fact, Berger
proved that a n-dimensional quaternion-K#hler manifold (M, g) satisfies the
Einstein condition Ric, == )—fg (I refer to [Bs], Ch. 14.D for a discussion of
the proof). The case & = 0 gives the hyperkihler manifolds (§3). In the case
k < 0 there seems to be no natural Kahler structure on Z ; actually no compact
example 1s known. We will therefore concentrate on the case k > (O, where
some nice geometry appears. Let me recall that a (compact) complex manifold
X is Fano if its anticanonical bundle Kj}l is ample (App. B). We will call a
quaternion-Kahler manifold positive if its scalar curvature is positive.

PROPOSITION.  If M is positive, 7 is a Fano manifold and admits a
Kdihler-Linstein metric.

The metric on Z 1s obtained in the same way as the complex structure,
by putting together the standard metric of the sphere $% on T(Z/M) and the
metric of M on H (with the appropriate normalization).

The space Z has one more property, namely a ¢holomorphic) contact
structure. We will now explain what this is.

4.2 CONTACT STRUCTURES

Let X be a complex manifold. A comtact structure on X is a corank 1
sub-bundle H of the (holomorphic) tangent bundle 7(X), so that we have an
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exact sequence

0 H —TX) 25 L0,

where L is a line bundle. Moreover the following equivalent properties must
hold:

@) The 2-form dé, restricted to H, is non-degenerate at each point®).

b) dim(X) is odd, say = 2r-1, and the form #A(d&) is everywhere # 0.

¢) The L-valued alternate form (IJ, V) ~+ &([IJ, V]) on H is non-degenerate
at each point.

Let L* be the complement of the zero section in L*. The pull-back of the
line bundle L to L* has a canonical trivialization, so p*# becomes an honest
Iform on L*. Put w = d(p*#). This 2-form is equivariant with respect to
the natural action of C* on L* by homotheties, that is A*w = A for every
AECT,

PROPOSITION (“contactization™). The 2-form w is a symplectic structure
on L*. Conversely, any C* -equivariant symplectic 2 form on L* defines a
unique contact form 6 € HY(X, Q}( &0 LY such that w = d(p*6).

The form « is closed, and using &) above we easily see that it is non-
degenerate. For the converse, consider the “Euler field” £ on L* corresponding
to the C”-action. The 1-form i(§). vanishes on & and is equivariant, therefore
it is the pull back of a form & ¢ HO(X, Q}( & L), Since w is equivariant, its
Lie derivative Lgw equals «r; using the Cartan formula Lg = di(§) + i(§) d
we find w = d(p*#). It is then an easy exercise to prove that # is a contact
form, using for instance condition a). |

EXAMPLE. Let M be a complex manifold, and X = PT*(M) its (holomor-
phic) projective cotangent bundle. Recall that the cotangent bundle 7*(M) has
a canonical symplectic structure w = dy, where # is the tautological 1-form
on 7*(M): the value of # at a point (m,a) of T°(M) me M, a € T, (M)
1s the pull-back of «a(m) by the projection T*(M) —+ M. By construction # is
equivariant with respect to the action of C* on 7*(M) by homotheties, and
so 1s w. By the proposition we see that # 1s the pull-back of a contact form
on X.

) The form d¥ is defined locally using a trivialization of L; it is an easy exercise to check
that conditions &) and &) do not depend on the choice of the trivialization.
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Going back to quaternion-Kihler mamfolds, the link with contact structures
is provided by the following theorem. Part a) is due to Salamon [S], part b)
to LeBrun [L].

THEOREM (LeBrun, Salamon). a) 7he twistor space of a positive
quaternion-Kdhler manifold is a Fano contact manifold, admitting a Kdhler-
Einstein metric.

b) Conversely, a Fano contact manifold which admits a Kdhler-Einstein
melric is the twistor space of a positive quaternion Kdhler manifold.

The key point is that the horizontal sub-bundle H ¢ T(Z) (4.1) is
holomorphic; this is proved by a local computation, and so is the fact that A
defines a contact structure.

Thus the classification of positive quaternion-K#hler manifolds is essentially
reduced to a problem of algebraic geometry. We are now going to explain a
conjecture describing this classification.

43 HOMOGENEQUS CONTACT MANIFOLDS

We have already mentioned that the only known examples of positive
quaternion-Kidhler manifolds are symmetric. More precisely, for each simple
compact Lie group K there exists a unique quaternion-Kiahler symmetric
quotient of K ; the corresponding twistor space is homogeneous under the
complexification G of K. These spaces have been classified by Wolf [W].
The twistor spaces admit the following simple description:

PROPOSITION. Let G be a complex simple Lie group, g iis Lie algebra.
There is a unigue closed orbit X, for the adjoint action of G on P(g);
X, is a Fano manifold, and admits a G-invariant contact structure.

Note that the closure in P(g) of any adjoint orbit contains a closed orbit,
necessarily equal to X, . Hence X is the smallest orbit in P(g).

Proof. 1 will give the proof because it is quite simple, though it requires
some knowledge of algebraic groups. Let X be a closed orbit in P(g), and
let  be a vector of g whose class [¢] € P(g) belongs to X. Since X is
projective, the stabilizer P of [¢] contains a Borel subgroup B of G ; this
means that » is an eigenvector of B in g. Since g is simple, the adjoint
representation of (G in g 1s irreducible, so B has exactly, up to a scalar, one
eigenvector (“highest weight vector™) 75 € g; thus X is the G-orbit of [#5].
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It does not depend on the particular choice of B because all Borel subgroups
are conjugate.

The pull-back of X, in g — {0} is an adjoint orbit of G ; using the Killing
form we can view it as a coadjoint orbit in g*. Every such orbit admits a
symplectic form, the Kostant-Kirillov structure, which is C* -equivariant and
G -invariant. Using contactization we see that X carries a GG -invariant contact
structure. [

For classical Lie algebras, the contact manifold X and the corresponding
quaternion-Kahler manifold M, are:

g Xy M,
si(n) P (P G2, C
o(r) Gyl2.6%) Gt(4,R"
sp(2n) Cp2—1 G(1,H" = gp*!

We have described the map Xgipom — Mpow in 41, Xopm is the
grassmanmian of isotropic 2-planes in C* and My, the grassmannian of
oriented 4-planes in R”; the map Xum —+ Mum associates to a 2-plane
P ¢ C" the real part of P& P. As in 3.4 we view X = PT*(P™ 1) ag
the space of flags D C H < C*, where D is a line and 1 a hyperplane;
choosing a hermitian scalar product on C”, this is also the space of pairs of
orthogonal lines in C*. The map X,y —+ My associates to such a pair the
2-plane that they span.

In view of the LeBrun-Salamon theorem (4.2), every positive quaternion-
Kidhler compact manifold will be symmetric if every Fano contact manifold
admitting a Kihler-Einstein metric is homogeneous. It is tempting to be a

little bit more optimistic and to conjecture
CONIECTURE (C). Every Fano contact manifold is homogeneous.

We will give some (weak) evidence for the conjecture. Let X be a compact
complex manifold, of dimension 2r + 1, with a contact structure

0 s =<r TOD <L Lows 0.
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The form #A(dé) defines a nowhere vanishing section of Ky It - therefore
we have Ky = L7, and X is Fano if and only if L is ample.

PROPOSITION. Let X be a Fano contact manifold. If the line bundle L
is very ample, X is homogeneous, and more precisely isomorphic to Xy for
some simple Lie algebra g.

Proof. Let G be the group of automorphisms of X preserving the contact
structure; its Lie algebra g consists of the vector fields V on X such that
[V.H] C H. Let us prove that the space of global vector fields HO(X: TN
is the direct sum of g and HO(X_.,H). [et V be a vector field on X. The
map W~ 6V, W]) from H to L is Ox-linear, hence by property ¢) of
contact structures (4.2), there exists a unique vector field V’ in H such that
BV, W] = 8([V',W]) for all W in H. This means that [V - V’, W] belongs
to H, that is that V — V' belongs to g. Writing V = V' 4 (V — V') provides
the required direct sum decomposition.

The map V = V/ provides a C-linear retraction of the inclusion of sheaves
H =3 T(M) ; therefore the exact sequence

[ =4 B =300 ~25 5

splits as a sequence of sheaves of vector spaces (nor of (Oy-modules). In
particular, the sequence

0 — HUX, H) — H%X, T(X)) —+ HOX.L) — 0

is exact, and @ induces an isomorphism of g onto H°(X,L). This isomorphism
is equivariant with respect to the action of .

We will therefore identify H®(X,L) with g. The diagram of App. B
becomes

L 2 g

!

lp ;

- ¥
X--» Pg".

Let V € g. The action of G on [ defines a canonical hft V of the vector
field V to L*. By construction we have {(p.V} = fr;;(17), where 7 1s the
1-form p*# on L™ (4.2). Since # is preserved by G, the Lie derivative Ly
vanishes. By the Cartan homotopy formula, this implies that

(d. VY = d(iVip) = —i(V)w,
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where w (== dpn 1s the symplectic form on L* (this relation means by defimition
that z¢ is a moment map for the action of G on the symplectic manifold L*).

For £ € L*, v € T¢(L*), this formula reads (T¢e(z0) 2.V} = w(fz?gﬁ(.ﬁ)).
When V runs through g, the vectors V(£) span the tangent space to the orbit
GE at £; thus the kernel of T¢(z) is the orthogonal of T¢(G£) with respect
to w. In particular, if 7¢(z¢) is injective, the orbit G£ is open, and therefore
the orbit of x = p(&) is open in X.

Now if L 1s very ample, j 1s an embedding, hence all the orbits of & are
open — this is possible only if G acts transitively on X. Since X is projective
this implies that G 1s semi-simple, so we can identify g* with g, and @(X)
with a closed adjoint orbit in P(g). It easily follows that g is simple and
eX)=X,. U

This result is improved in [B3], at the cost of assuming the Lie algebra g
reductive — this is not too serious since it is always the case if X admits a
Kihler-Einstein metric. The main result of [B3] is

THEOREM. Let X be a Fano contact manifold, such that

a) the rational map pp. X --» P(HO(X LL)F) is generically finite (that is,
dim ¢ (X) = dim X);

b) the Lie algebra g of infinitesimal contact automorphisms of X is
reductive.

Then g is simple, and X is isomorphic to X, .

Idea of the proof. In view of the above proof, a) implies that G has an
open orbit in L*. The image of this orbit in g (identified with g* thanks
to b)) is invariant by homotheties; this implies that it is a nilpotent orbit (if
a matrix N is conjugate to AN for every A € C*, we have TrN = O for
each p, so N is nilpotent). Thus the image of ¢ is the closure of a nilpotent
orbit in P(g). Then a detailed study of nilpotent orbits leads to the result. [

44 FURTHER DEVELOPMENTS

More generally, we can ask which projective varieties admit contact struc-
tures. We have seen two examples, the projective cotangent bundles PT* (A1)
(4.2) and the homogeneous spaces X; (4.3). Remarkably, Conjecture (C)
implies that they are the only ones, thanks to the following result:
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THEOREM ([KPSWI]+[Dm]). A projective contact manifold is either the
projective cotangent bundle of some projective manifold, or a Fano manifold
with by = 1.

The result 1s proved in [KPSW] under the assumption that the canonical
bundle is not nef; then Demailly proved that this is always the case for a
contact manifold, as a consequence of a more general integrability theorem.

APPENDIX A

CONNECTIONS

Let M be a differentiable manifold, E a vector bundle on M, @zﬁl(}f)
the vector bundle of differential operators of order <X 1 on E. A connection
on E is a linear map V: T(M) — ’Dz’ﬁ”l(E) which satisfies the Leibniz rule

VY5 = fVy(s) + (Vs

for any vector field V, function f and section s of £ defined over some
open subset of M.

The connection extends naturally to the various tensor, symmetric or
exterior powers of £, covariant or contravariant For instance, if & is a
bilinear form on £ and # an endomorphism of E, we have

Vy(b)(s, b = Vb(s, 1) — b(Vys, 1) — b(s, Vi)
Vi u)(s) = Vyu(s) — u(Vys)

for any local sections 5,1 of E. We say that a section s of £ (or of one of
its associated tensor bundles) is parallel if Vys = 0 for any vector field V
on M.

Let f: M’ —s M be a differentiable map. There exists a natural connection
S*V on f*E, characterized by the condition (f*¥)y.(f*s) = f*(Vys) for any
section 5 of E and vector fields V on M, V' on M’ such that f projects
Vv’ onto V. In particular, for any path ~: [0,1] - M, we get a connection
on y*E, or equivalently a first order differential operator Vv, , of v*E. Let
p = ¥0) and g = ~+(1); given a vector 1, € E,, there exists a unique section
t— 2() of ~*E such that Vd;dg!(t) =0 and #(0) = 7,. The map v, -+ v(1)
defines the parallel transport isomorphism wo Ep - Eg. Observe that a
section s of K is parallel if and only if @, (s(p)) = s(g) for every path ~
(this implies s(y(2)) = #(¢), hence ‘i?ﬂ-; S = 0).
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The tangent vector #(0) € Ty (Ep) 1s said to be horizomial; it 1s easy to
show that the horizontal vectors form a sub-bundle H of T(M), the horizonteal
distribution of ¥, which is a supplement of the vertical sub-bundle 7(¥/M).

Suppose now E = T(M). The connection is said to be symmetric (or
torsion-free) if VW — VYV = [V, W] for any vector fields V.W on M.
Let g be a Riemannian metric on M ; a simple-minded computation shows
that there exists a unigue symmetric connection ¥ on T(M) for which g is
parallel 1t is called the Levi-Civita connection of (M, g).

APPENDIX B

AMPLE LINE BUNDLES, HODGE THEORY

AMPLE LINE BUNDLES

Let X be a compact complex manifold and L a line bundle on X ; we
suppose H(X,L) # 0. For x € X, let ¢r(x) dencte the subspace of slobal
sections of L which vanish at x. It is either equal to HO(X:L) or to a
hyperplane in H%(X,L). In the first case x belongs to the base locus By of
L, that is the subvariety of the common zeros of all sections of L. The map
X =+ @p(x) defines a morphism X — By — P(HO(X_,L))*, which we consider
as a rational map X --» P(HO(X, L))* . We say that L is very ample if o is
an embedding (this implies in particular By == @); it amounts to saying that
there is an embedding of X into some projective space P such that I is the
restriction of the tautological line bundle Up(1l). We say that L is ample if
some (positive) power of L is very ample.

Consider the dual line bundle p: L* — X. To any £ ¢ L* associate the
linear form z(£): s = {s(p(&)), &} on HO(X,L). We have a commutative
diagram

L —% > HOX, L)
: i
. ¥
X - - = PUHOX,L)).

HODGE DECOMPOSITION

Let X be a compact Kidhler manifold. Recall that a differentiable form on
X is of type (p.q) if it can be written in any system of local coordinates
(Z1:....Zy) as a sum of forms a(z.2)dz; A ... Adzg, Adgy A ... Adz,. We
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denote by HPY « HPT4(X,C) the subspace of de Rham cohomology classes
of forms of type (p.q); we have HY¥ = HP-9 The fundamental result of
Hodge theory is the Hodge decomposition

H'X, O = ¢ HY,
pg=n

together with the canonical isomorphisms HP'? —» HI(X, %), In particular,

BPX,O=H g ¢ g2,

with HZO = HO(X: Q%), embedded into HZ(X,, C) by associating to a
holomorphic form its De Rham class.

To any hermitian metric g on X is associated a real 2-form w of type (1, 1),
the Kdhler form, defined by w(V,W) = g(V.JW) for any real vector fields
V, W the metric is Kahler if w is closed. Then its class in Hz(Xp ) is called a
Kihler class. The Kihler classes form an open cone in Hllq’l = HYNHY(X,R).

Let L be aline bundle on X. The Chern class ci1(L) € HZ(X_., C) 1s integral,
that is comes from H*(X,Z), and belongs to H'''. Conversely, any integral
class in H'! is the Chern class of some line bundle on X (Lefschetz theorem).

If L is very ample, its Chern class is the pull-back by ¢; of the Chern
class of Op(1), which is a Kihler class, and therefore ¢1(L) is a Kahler class.
More generally, if L. 1s ample, some multiple of ¢1(/.) is a Kahler class, hence
also c1(L). Conversely, the celebrated Kodaira embedding theorem asserts that
a line bundle whose Chern class is Kdhler is ample. As a corollary, we see
that any compact Kéhler manifold X with H(X, Q%) = 0 is projective: we
have H2(X_., ) = HY!' hence the cone of Kihler classes is open in H2(X_., R).
Therefore it contains integral classes; by the above results such a class is
the first Chern class of an ample line bundle, hence X is projective. More
generally, the same argument shows that X is projective whenever the subspace
HL of HZ(X, ) i1s defined over Q.
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