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DYNAMICS OF A DIFFERENTIAL SYSTEM
USING INVARIANT REGIONS

by F.P. DA COSTA *)

ABSTRACT. The long-time behaviour of a two dimensional system of ordinary
differential equations with singularities is studied using conveniently defined positively
invariant sets and auxiliary functions. The approach uses only elementary techniques
of phase plane analysis and provides a good geometric insight into the dynamical
behaviour of the system. It provides dynamical information analogous to what is
usually obtained via centre manifold techniques but does not require the flow to be
defined at the limit point.

1. INTRODUCTION

In this paper we present a study of the long-time behaviour of solutions
to the following two dimensional ordinary differential system arising from
coagulation theory :

k=g

(1.1) | ¥ a2
T ek — 2 —a— +—,
X X

where e > 0 is a constant, and (x,7) € RT x R. In this system the interesting

*) Partially supported by Fundagic para a Ciéncia e a Tecnologia through project
PDCT/MAT/56476/2004
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feature of the dynamical behaviour 1s the convergence to a singular point of
the phase space, namely (0,0), and the details of this convergence. A study
of (1.1) was recently completed in [1] using a centre manifold analysis after a
convenient desingularization via a time-scale change. A somewhat different, but
related, nonautonomous system was also recently considered in [2, Eq. (14)].
In the present paper we study the behaviour of the solutions to (1.1) using
the same type of geometric approach, based on the monotonicity properties
of auxiliary functions, as well as on the positive invariance under the flow
of conveniently (and naturally) defined subsets of RT x R. This approach,
bypassing the need to regularize (1.1), gives a much clearer geometric picture
of (1.1) thus allowing for a better insight into its dynamical behaviour and
furthermore, uses only elementary tools and could, in principle, be used in
situations where centre manifold analysis is definitely not applicable.

2. THE ODE SYSTEMS AND THE MAIN RESULT

In the study of particles undergoing coagulation (see [1] for details), we
are led to the following system of differential equations:

o
2.1) {y w \
X=qq—xy—Xx°,

where « 1s a positive constant, and x and y representing physical concentra-
tions must be non negative.

We start by looking at the gross features of the asymptotic behaviour of
solutions to (2.1).

PROPOSITION 2.1. For every nonnegative solution (x.y) of (2.1) the
Jfollowing holds true as t - +oc ! x(2) — O, y(@) — +00, and x@)y() — .

The proof of this result uses only elementary phase plane analysis tools:
the tubular flow theorem and the positive invariance under the flow of some
subsets of the phase plane. It has already been published in [1] but, since it
1s very short and resorts to the same type of geometric arguments used later,
we shall include it in the next section, thus also making the current paper
more self-contained.

The behaviour described in Proposition 2.1 is not quite enough for the
envisaged application to coagulation systems, and information concerning the
rate of approach to the limits is crucial.
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PROPOSITICN 2.2.  For every nonnegative solution (x,y) of (2.1) we have:
1/3
3 L
1) lim (—r) Xt =1

By e X ¥

.. . 35513 .
i 3?3\, (3a71) ityes 1

3 2/3
(iii) ) gﬁw (J) (v — x(@y(t) = 1.

In order to prove this proposition, which deals with the approach to the
limit point at infinity, it i1s convenient to map the limit point at infinity
to a point in the phase plane. In this case, and suggested by the result in
Proposition 2.1, it 1s natural to consider the variable 7 1= &—xy and to perform
the change of variables (x.,y) =+ (x.#) which, according to Proposition 2.1,
corresponds to mapping the limit point (0, +-20) to (0.0). Under this change of
variables system (2.1) becomes (1.1) and the region of interest, corresponding
to (x,y) € Rt xRt is (x,7) € RT x (-0, ). Observe that we know, from
Proposition 2.1 and the definition of 7, that all solutions to (1.1) converge to
the origin as ¢ —» <400, Also, statements (i) and (iii) have direct equivalents
for the new variables x (which is actually the same) and =, and (i1) can easily
be rephrased by noting that y = (e — ©)/x. So, the proof of Proposition 2.2
can be done by working directly with system (1.1) in a neighbourhood of the
singular point (0,0). This will be done in the next section using, as main
tools, geometric information provided by the positive invariance of certain
subsets of the phase plane and analytic information derived from the evolution
of some auxiliary functions.

3. PROOFS

Proof of Proposition 2.1. As stated in the previous section, this proof
is based on very basic tools from qualitative theory. First observe that (2.1)
does not have equilibria. From the inequalities % = & > 0 when x = 0, and
v = a > 0 when y == 0 we immediately deduce the positive invariance of
Rt x R" of the phase plane. Let Q be the connected subset of R* x R
whose boundary is {y = 0} U {x = 0} U {xy = a}. Since we have y = 0
and X = —x? < 0 for points on {xy = a}, we conclude that Q is positively
invariant for the flow of (2.1) (see Figure 1).
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FIGURE 1
Region @ with a sketch of the flow in 4Q

Consider first the initial data in the closure of €2 and let €2; be the subset

of € defined by

Ql:m{(x;y)éﬁ:max{o;% wx} <y = %} :
Since the flow of (2.1) satisfies ¥ = 0 and y = x? > O on points of J€2; Y IR
we conclude that the set €2j is positively invariant. From the absence of
equilibria, the inequalities & > 0 and y > 0, valid in Q% @i, and the
tubular flow theorem, we conclude that for any initial condition in €2 the
corresponding orbit will eventually enter €1 (see Figure 2).

From this we immediately conclude that, as ¢ —» 400, we have x(¢) -+ O
and y(#) — -o0. Furthermore, for all initial data in €2, there exists a T
(depending on the initial condition) such that, for all ¢ > 7, the orbit is
in €1, and so

15T=2-3<y<%eoa-P<w<a.
x X
Letting ¢ — -0 and using x{7) - 0 as f — 00, we get
lim x(OHy(t) = .
Py oo 0N

Consider now initial data (xp,v0) € Q2 = RT x Rt \ Q. Fix K > xo,
Ky > yo and let Q(Ky, Kp) = 2 (0 ([0, K7] % [0, K3]).

By the analysis of the flow in &€2;(Kj, K2) and the tubular flow theorem

we conclude that the orbit will eventually enter £2; (see Figure 3) and so the
previous analysis applies. This concludes the proof. [
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FIGURE 2

Region £ with a sketch of the flow in #Q, J€; and in Q

Proof of Proposition 2.2. Considering the change of variables (x,y) +»
(x,7) introduced in the previous section, we rephrase part (ii1) of Proposi-
tion 2.2 as hgl (3&1')2-"}3@@) == 1. From Proposition 2.1 we know that all

By e SN0
orbits will eventually enter €2y, i.e., xy < «, for sufficiently large times (de-
pending on the orbit). So we need only to consider # € (0. ). Define the set
A = R" % (0, a). The analysis of the flow of (1.1) on JA immediately gives
the positive invariance of A.

For the study of the flow of (1.1) in A observe that
& 2

=== (2+0) - e+ (2)

7 LT > \/ >
Let w(x) ;= x2. The analysis of the flow is presented in Figure 4, from which
we conclude that the set

A= AN ) () £ v < w0}

is positively invariant and that every orbit will eventually enter A for
sufficiently large times.

So, for sufficiently large times, solutions satisfy = € ('UW(X),,’U()(X)).

The upper bound does not give new information about the behaviour
of the solutions, since it just implies that x(¢) is eventually decreasing:
v<r® ey < e r -2 <0e k<0
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FIGURE 3

Flow in the set Q:(K1,K;) surrounding an initial point (xp,yp) outside €2

On the other hand, the lower bound # > #..(x) is much more useful: we
start by observing that, for all sufficiently small x we can write, using the
binomial expansion,

1 1
v () = a2 s b —3x8 + 012y,

and denoting by #,,(x) the second term cut-off, namely #,,(x) 1= pr. . éx“

we have, for all sufﬁciently small x, 71, < v.(x). Let us now compute

the slope of the orbits at points (x,7) = (x_., 'vl_m(x)) o from (1.1) we
7 d‘?,! & 1 3

have & = —1x* and ¢ = L7 and thus = — = ——x% < 0, Since
(3 (E Cix x

X .
'z!’i!;a(x) z 2K %xq’ >0 for all x < (O,, %) we conclude that the set

—_—

2%
A= {(x? EA XL V/E Ve < v < 'vo(x)}

1s positively invariant and contains all positive semiorbits for sufficiently large
times (see Figure 5).
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nAfR

FIGURE 4
Flow of (1.1) in A and in A

Take any orbit of (1.1) and let fo be a time such that (x(fo). 2(f)) € Ay,
Denote x(fp) by xp. Using the first equation of (1 1) and the bound v > ,,(x)
we obtain the differential inequality x > — —x , which, after integration, ylelds

(3.1) X > L . Yi> .

" 1/3
(% + 20— 1)}
Now, to complete the proof, we need to obtain an upper bound of the same

type. In fact, we are going to prove that, for all solutions (x(f),#(z)) and all
ae (O,, é) there exists a 74 > fp such that, for all ¢ > 745 we have

1
( MBJ(IW;{;))I a

where x3 = x(f3). So fix 8¢ (O_“, (%) Consider the curve v5(x) = K d’x“' .
The slopes of the orbits of (1.1) at points (x,75(x)) are obtained from % =
z*g(x)wx = Ax* and © = ax— 2xva(x)— al M) e ﬂ (1 B0+ 2%
and are given by

e #  1-—af

== " gy 4o as x =0T,
dx X Gx ‘

(3.2) X1 =

¥t > ts > 0o,

Since the slope of z5(x) is 'z,!;'g(x) = 2K - 43x3, and v’j,(x) - 0 as x -+ 01,
we conclude that, for sufficiently small x, dx % z*i(x) Observe that, since
{graph('v;;)}r__%(ox];(k_) is a foliation of A, we have, locally, when 2 . z,!i(x)
a situation like the one depicted in Figure 6. Note that the intersections of
the orbits with the graphs of the functions 4 are transversal.
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v == w(X)

B T

FIGURE 5
Flow of (1.1) on 8Al{:<}: defined in the proof

We need to determine the points in Ay, at which % is equal to #/,(x).
From the results above, these points are given by

1—ad dr )
3}? — = .dxs = a = 'U;,*(X) w2 4]5.963
and hence
2_1=V1-30-af)
34

Consequently, if 1—~3(1~af) <0< 4 < %% we conclude that % = 'v;_',;(x)
always. For = gé there is a single value of x, namely x = ,/5 for which
% = vj(x), with % > v,(x) for all other values of x. Finally, it is not

difficult to see that, if 3 ¢ (%i i) we have % = 'Uf,;(x) for x € (0, x*(3)
where

) A L —
T = \,/ 34 '

Denote by #»*(x) the curve in A;,, for which % e ’sz,g(x). From what was
done above,

_ar 2D - i+ 222 - 124

25 (X)) = & -
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orbits of (1.1)

FIGURE 6
Local picture when %‘ > 'ZF%(JC)

with x & (0,, \/gj , and the set Ay, can be partitioned into the disjoint union

Alje = Aq, U{graphw)} UAY, .
where Ay, = A, 0 {v < ")} and A"l’tj@ = Ay N {v > * @)}, For
every point (x(f), 2(#)) of any orbit in Ay, , we can consider the value of the
function & = 5@ = %’i We conclude from the above results that S(t) is
monotonic decreasing in A, and monotonic increasing in A"*"fa. In Figure 7
we collect the information obtained so far concerning the behaviour of #(f)
along solutions in Ay, .

From these results we easily conclude that every orbit in Ap,, will
eventually enter A'"*}(x for sufficiently large time, and remain there afterwards.
Hence, along solutions, the value of 3(f) is eventually increasing. Our goal
is to prove that 3(t) T 1/a as t -+ -+oc. By the definition of £(#) and (1.1)
we obtain the following evolution equation for /4 :

g=(2-32-%)5+ 2,
X X X
and so
(33) B-28=-(32+2) 8+ 5.
X X X

In A"ﬁf& the function #(#) is increasing and bounded above by 1/ ; hence

4(t) converges as ! -+ -+00 and also lim 5(;) = 0. Since x(t) -» O as
By X0
t % 00, the limit inferior as 1 - <00 of the left-hand side of (3.3) is zero.
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Wi

FIGURE 7

Behaviour of #(t) along solutions of (1.1) in Al;c, :

3 is increasing in AY and decreasing in A,

1/ 1fe ;
in the figure are also shown the graphs of functions ¢4 for several values of &

Because (z) is convergent, v/x is positive, and a/x —» 00 as I~ 400,
we thus conclude from (3.3) that
1 ek L 7

(3.4 lim #() = lim — =— lim —,
oo Fobpoo DU G X O i oc ¥

where in the last equality we used our knowledge that #(¢) — 0 as ¢ — +c0.
Suppose now that 3(t) does not converge to 1/a but to some smaller number,
L _ £, for some £ > 0. Then, from (3.4),

o
1 7 : 4

—gm — lim —zwhm —zmlw««ea:(l.
€ fopoeixs ¥ fep b N

Q=

But, from the positive invariance of A”*}Q

and the fact that #"(x) > v1,,(®)

we conclude that, in A"f", .

1
7> X w—x4<:mt«~ : :>1w—x2m::;> lim —2>1
x Lo oo K
This contradiction implies that we must have F(f) ~» 1/ as t > 400,
Now it is straightforward to obtain inequality (3.2): Pick any # arbitrarily
close to, and smaller than, 1/¢. Without loss of generality, consider any initial
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data in Ay, . The corresponding positive semi-orbit will enter A*ﬂ after a
sufficiently long time. Once there, #(7) is increasing along the solutlon and
converges to 1/ex. Thus there must exist a t3 > fp such that 3(1‘5) i 3 and,
for (x(¢).¢()) a point of the orbit, we have ) < vy 5(X(1)) for all 7 > r

where v3(x) = e dx“ . Substituting this bound in the equation for x(t)

in (1.1), integrating the differential inequality thus obtained, and changing §
to 4, we obtain the desired result (3.2).
From (3.1) and (3.2) we can write

1 1
(35) 1/3 g X([) g 1/3 ¢ Vr ,.:P.; iz 2 Io.
=3 L 3¢t ! 23, : '
(JCO o (t IO)) (xg I 33(5 e I,-:’ii))
Multiplying (3.5) by (%t)l'ﬁ and taking lim and lim we obtain
¢ PR Loy o 0
1/3 1/3
. 3y o o O 1
1< lim (—r) x@® < lim (—r) ®E) & —
Fpee N0 b0 \ QY al

and since # < 1/« is arbitrary, we conclude that

3 3 1/3
lim (—t) X
oo 0 X €F

which proves (i). Returning to the bound #y,, < v < v5 < 1o, valid, along
any given orbit, for all sufficiently large #, we have

2@ — —D) < () < 2@ — G < 2.
84

Using (3.5) we obtain, for all 1 > 3 > f,

1 1 1
3 . B N 4/3
(257 + 2@ — 10D} & ( 5 300 r;))

< 2(1) <

1

(xj, + 38 wr;))m

Multiplying by (%r)m and takine lim and lim we conclude, as

Lot o Lot 0

above, by the arbitrariness of 3 < 1/e, that

3 2/3
lim (—x) ) =1,
Lopb 0\
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which establishes (i11). Finally, to prove (i1), observe that for the ornginal
variable y(#) we have y = “-* and thus, as 7 -» +00,

B2 y() = — af) RO 1.

1/3 2/3
3970 (20 o3
which concludes the proof. L]
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