Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 52 (2006)

Heft: 1-2: L'enseignement mathématique

Artikel: Chow's K/k-image and K/k-trace and the Lang-Néron theorem
Autor: Conrad, Brian

Bibliographie

DOI: https://doi.org/10.5169/seals-2226

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-2226
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

106 B. CONRAD

Consider the composite map
(10.2) ZSXxAS AV,

where the final step uses that A is constructed inside of P} x V. The map (10.2)
1s dominant, since even Wp = Z,, C Z maps birationally onto V', so Z hits the
generic pomt 1 € V with fiber Z, that must be mtegral and have dimension
dimZ — dim V = 1. Thus, the proper map

ZsXxASXxV

has restriction over Xg that is a proper map &: Z, — Xx between imtegral
curves over K. Since Xg is a K -smooth curve, £ is either constant or finite
and flat. The fibers of £ over the K-points {xo} Xgpeck K and {x} Xspeck K
of Xg are (Zy)y, = (Wp)y and (Zy), = (Wp),, and these are non-empty
because Wp — V and Wp — V are dominant (even birational) morphisms.
Thus, { must be finite and flat. Since Wp — V is birational, so (Wp), — 7 1s
an isomorphism, £ has degree 1 and thus is an isomorphism. It follows that for
some dense open VO C V, the restriction of the composite Z < XxA — XxV
over X x V? is an isomorphism.

Hence, we can consider Z|yo as a section Pyo: Xpo — Xypo Xyo Apo.
Restricting this over the generic point n of V° and recalling that (by
construction of A) the map A — V has generic fiber equal to the abelian
variety A over 7, we arrive at a section Pgx: Xx — Xg X A over Xg such
that Px({xo}x) € A(K) is the K-point P that was used to define Wp via
closure, and likewise Px({x;}x) € A(K) is P’. It is therefore enough to prove
that for all x € X(k), the points Px(x) € A(K) coincide modulo Tr /. (A)(k).
The argument with Albanese varieties that we used to conclude the proof

of the Lang-Néron theorem may now be carried over verbatim to prove this
final claim. [
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