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106 B.CONRAD

Consider the composite map

(10.2)

where the final step uses that A is constructed inside of P" x V. The map (10.2)
is dominant, since even Wp — Z.XO Ç Z maps birationally onto V, so Z hits the

generic point i/fV with über Z.n that must be integral and have dimension

dimZ — dim V - Ï, Thus, the proper map

Z^-tXxÄ-tXxV
has restriction over XK that is a proper map (j : IL —4 XK between integral
curves over K. Since XK is a IT-smooth curve, £ is either constant or finite
and flat. The fibers of £ over the K-points XspecaX and {vq} xSpCc/> K
of Xk are {Zxf)n (Wp)n and (/., ),; (Wp')n, and these are non-empty
because Wp —¥ V and Wp> —> V are dominant (even birational) morphisms.
Thus, f must be finite and flat. Since Wp —> V is birational, so (Wp).t/ —> 7] is

an isomorphism, Ç has degree 1 and tlius is an isomorphism. It follows that for
some dense open V° Ç V, the restriction of tlie composite Z s-XxA-t Xx V
over X X V° is an isomorphism.

Hence, we can consider Z\vo as a section lPp»i Xvo —x Xv« xvoAvo.
Restricting this over the generic point // of V° and recalling that (by
construction of A) the map A —> V has generic fiber equal to the abelian

variety A over 7], we arrive at a section !P/(- : XK —r XK x A over XK such

tliat '.P/idf-Vo l/i') 6 A(K) is the K -point P tliat was used to define Wp via

closure, and likewise ri'/c({Ar',}p) e A(K) is P'. It is tlierefore enough to prove
tliat for all x X(k), tlie points 'Pplx) e A(K) coincide modulo TxKjk(A)(k).
The argument with Albanese varieties tliat we used to conclude the proof
of tlie Lang-Néron theorem may now be carried over verbatim to prove this

final claim.
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