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CHOW’S K/k-IMAGE AND K/k-TRACE,
AND THE LANG-NERON THEOREM

by Brian CONRAD *)

1. INTRODUCTION

Let K/k be an extension of fields, and assume that it is primary: the
algebraic closure of £ in K 1s purely inseparable over k. The most interesting
case in practice is when K/k is a regular extension: K/k is separable and &
is algebraically closed in K. Regularity is automatic if & is perfect. (For K/k
finitely generated, regularity 1s equivalent to K arising as the function field
of a smooth and geometrically connected k-scheme.)

In the theory of abelian varieties over finitely generated regular extensions
K/k with respect to some field of “constants” k, there is a generalization
of the Mordell-Weil theorem, due to Néron [26] (in his thesis) and Lang-
Néron [19], and in this theorem a crucial role is played by the K/k-trace
and the K/k-image of an abelian variety A over K. These constructions are
also ubiquitous in many problems concerning families of abelian varieties.
(The family is parameterized by a nice base V over &, and K = k(V).) For
an arbitrary primary extension of fields K/k, the K/k-trace of A is a final
object in the category of pairs (B,f ) consisting of an abelian variety B over k
equipped with a K-map of abelian varieties f: By — A, where Bg denotes
the scalar extension BQy K ; we write (Trg i (A), 74 x/¢) to denote such a final
object (if it exists). Likewise, the K/k-image of A is an initial object in the
category of pairs (B,f) consisting of an abelian variety B over k equipped
with a K-map of abelian varieties f: A — Bg ; we write (Img/(A), Aa ki)
to denote such an object (if it exists). Roughly speaking, the K/k-image is
the largest quotient of A that can be defined over k, and the K/k-trace is
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the largest abelian subvariety of A that can be defined over k. A precise
description along these lines requires some care in positive characteristic.
These concepts are due to Chow ([3], [4]).

Despite the importance of Chow’s K/k-trace and K/k-image and the
Lang-Néron theorem in arithmetic geometry, unfortunately no detailed general
reference on these topics has been available entirely in the language of schemes.
The papers of Chow ([3], [4]) and the book on abelian varieties by Lang [18]
discuss the K/k-image and K /k-trace and develop their properties, but entirely
m Weil’s framework [34]. Similarly, in Lang’s modem book [20] the Lang-
Néron theorem is proved in Weil’s language. In connection with my work
in [5], where the Lang-Néron theorem plays a crucial role, I was motivated to
write this expository account of a scheme-theoretic approach to Chow’s results
and the Lang-Néron theorem. In some instances the old and new methods
are expressing similar ideas, but in other cases where we make extensive
use of infinitesimal or flat descent methods it 1s less clear how much overlap
there 1s. For example, our use of infinitesimal group schemes in the proof of the
fundamental Chow regularity theorem (Theorem 5.5) replaces the ineffective
“sufficiently large” aspect of the original version of the theorem (as in [3,
Cor. to Thm. 8] and [18, VIII, Thm. 3]) with a simple explicit lower bound.

We begin in §2 with some intuition and examples related to Chow’s
work and the Tang-Néron theorem (including a precise statement of the
latter). In §3 we summarize some background facts and terminology {rom
algebraic geometry (centered largely on Grothendieck’s descent theory and
group schemes) and prove some other additional results for convenient
reference later; some of the topics discussed in §3 are used in §2. In
our development of the K/k-image in §4, we prove that the canonical
map A g A — Img(A)x 1s surjective with connected kernel that may
be non-smooth in positive characteristic (Example 4.4). The behavior of the
K /k-image with respect to extension of the ground field & is treated in §5. The
key result here is that the formation of the K/k-image commutes with linearly-
disjoint extension on k when K/k is regular. This is the most important fact
in Chow’s theory, and it is also the hardest to prove.

In §6 we develop the dual theory of the K/k-trace T = 74 g i+ Trg i (A)x —
A whose kernel 1s K -finite with connected Cartier dual. We show by example
(Example 6.3) that ker 7 may not be connected in positive characteristic, and
we also prove the one fact that is not a trivial consequence of duality and
the theory of the K/k-image: if K/k is regular then ker7 is connected. In
terms of the dual map A = A\yv g 1 AY — Img (AY)g this means that ker A
has vanishing multiplicative part when K/k is regular. In §7 we prove the




CHOW’S K/k-IMAGE AND K/k-TRACE 39

Lang-Néron theorem, following some of the same reduction steps as in [20]
and retaining the key idea of exploiting the fact that certain Hom-schemes
are quasi-compact (a result known in the pre-Grothendieck era in the form
of Chow coordinates). The reader 1s encouraged to begin with §2 and §7.
We conclude in §§8-10 with a scheme-theoretic development of the theory of
Néron-Tate heights for abelian varieties over rather general ground fields as
in the context of the I.ang-Néron theorem.

A nice application of the theory of the K/k-trace and the Lang-Néron
theorem 1s Grothendieck’s spectacular proof that an abelian variety of CM-
type over an algebraically closed field must be isogenous to an abelian variety
defined over a finite extension of the prime field. (In characteristic zero
we can replace “isogenous” with “isomorphic”, but in positive characteristic
this cannot be done and hence the result really is non-trivial.) The key to
constructing the right abelian variety over a finmte extension of the prime
field is to form a suitable K/k-trace. We refer the reader to [27] for an
exposition of Grothendieck’s proof. In §3 of Raynaud’s Bourbaki report [28]
on Grothendieck’s generalization of the Ogg-Shafarevich formula, the reader
can find some additional elegant applications of the Lang-Néron theorem.
Some more recent papers that apply the [ang-Néron theorem and discuss
constructions of the K/k-image and K /k-trace for finitely generated regular
extensions K/k are [15] (which gives a construction of the K/k-image using
Albanese varieties) and [13] and [29] (which give Raynaud’s construction of
the K/k-trace using Picard varieties).

TERMINOLOGY AND NOTATION. For any field &, a k-variety 1s a separated
and geometrically integral k-scheme of finite type. If V 1s a finite-dimensional
vector space over a field & then P(V) = Proj(SymV) denotes the projective
space classifying hyperplanes in V. The dual of an abelian variety A is
denoted AY. For any scheme § and S-scheme X, if § — § is a map of
schemes then Xy and X,q denote X xg S’ considered as an §’-scheme in
the usual manner; we use similar notation for base change applied to §-maps
between S-schemes. If S — Spec A’ then we may write X4 and X,, (and
X ®4 A if also S = Spec A) rather than Xy and X g .

An extension of fields K/k is primary if k is separably closed in K, is
separable if K is a direct limit of finitely generated extensions that each admit
a separating transcendence basis over k (one of several equivalent definitions ;
see [22, Thm. 26.2]), and 1s regular if it is separable and primary (so in
particular, k is algebraically closed in any regular extension of k).
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We indulge in one notational convention that should not cause too much
confusion: if K/k is a primary extension and E/k is an arbitrary extension,
then EK denotes the fraction field of the domain (£ @ K).q obtained by
passing to the quotient of E &y K by its unique minimal prime ideal. Beware
that if £ and K are given as subextensions of an ambient extension L/k,
then the domain (£ @4 K).g maps to the compositum of £ and K inside
of L but this map is an injection if and only if £ and K are linearly
disjoint over the intersection of £ M K with the algebraic closure of & in L
(exercise !), in which case EK maps isomorphically onto the compositum. We
could alternatively speak throughout in the language of linear disjointness, but
this is too cumbersome. The property that makes the notation EK useful is
that EK/E is again a primary extension [7, IV,, 4.3.2] and if E'/E is an
extension then E'(EK) = E'K. This allows us to use transitivity arguments
without having to think twice. Note also that if K/k is regular then EK/E
is regular because separability of K/k is inherited by EK/E.

CONTENTS
1. Introduction . . . . . . . . ... .. 37
2. Motvation and examples . . . . . ... ..o 40
3. Some preliminary results . . . . . . . ... ... 4
4. The K/k-image . . . . . . ... ... 56
5. The K/k-image and base change . . ... ... ........... 59
6. The K/k-trace . . . . . . ... ... ... . ... ... ... 72
7. The Lang-Néron theorem . . . . . .. .. .. ... ... ...... 76
8. Generalized global fields . . . . . . ... ... ... ... ...... 82
9. Review of heights . . . .. ... ... ... ... ... ...... 87
10. Proof of Theorem 9.15. . . . . . . .. .. ... ... ... ..... 100

2. MOTIVATION AND EXAMPLES

The duality theory of abelian varieties shows that the concepts of
K/k-image and K/k-trace are dual to each other in an evident manner.
It 1s not a requirement in the universal property that the universal morphism
7: Trgp(A)xy — A be a closed immersion. Also, it is not a requirement in
the universal property that the universal morphism A: A — Tmg /(A)x have
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connected (or smooth) kernel or be surjective. The behavior of the K/k-image
and K /k-trace with respect to extension of the ground field and the reason
for their existence will depend in an essential way on the hypothesis that K /&
1S a primary extension.

If K/k is finitely generated and regular then there is a way to visualize the
K /k-trace, as follows. Consider an abelian variety A over K as an “algebraic
famuly” of abelian vaneties over k i the sense that K = k (V) for a smooth
k-variety V and (by shrinking V') A is the generic fiber of an abelian scheme A
over V. Each fiber A, has a semisimple decomposition over & (v) in the sense
of the Poincaré reducibility theorem, and the K/k-trace is (roughly speaking)
the part of these fibral decompositions that is “the same™ across all fibers (or,
equivalently, 1s independent of the parameters in the base V). For this reason,
for any primary extension K/k the abelian variety Trg/(A) over k is called
the fixed part of A relative to the extension K/k. The scheme-theoretic image
of Trg/(A)x in A (for any primary K/k) is an abelian subvariety of A,
called the K/k-maximal abelian subvariety of A, but beware that in positive
characteristic it is often not “defined over k” (in contrast with Trg/(A)x);
see 86 for further discussion of this issue.

Suppose that A is an abelian variety over a field K that is finitely generated
and regular over a field &, so K = k(V) for a smooth k-variety V. Consider
the problem of whether or not A(K) is finitely generated. Shrinking V if
necessary, let A be an abelian scheme over V whose generic fiber is A.
Since A 1s V-separated and V-flat, A(V) 1s naturally a subgroup of A(K).
(In fact, since A 1s a smooth and proper group over the normal base V, the
valuative criterion for properness and an extension lemma of Weil [1, 4.4/1]
ensure that A(K) = A(V), so all elements of A(K) may be identified with
cross-sections to the structural map A — V.) This makes it geomeitrically clear
that if the family of abelian varieties A, has a “common isogeny factor” Ag
over k, which 1s to say that if A admuts (Ag)y as an 1sogeny factor over V,
then A(K) contains “constant sections” coming from Agy(k) C (Ag)y(V'). Such
a subgroup Ag(k) may be very large (e.g., il k is algebraically closed).
Algebraically, if A admits an i1sogeny factor (Ag)x with Ay defined over %,
then Ag(k) 1s a subgroup of A¢(K) = (Ap)x(K) and modulo a finite subgroup
it injects into A(K). In this way, we see that the existence of isogeny factors
defined over k 1s a geometric obstruction to A(K) being finitely generated
when £ 1s algebraically closed. This motivates consideration of the quotient

2.1 AK) /7 (Trg 1 (A)K))

as a more reasonable group which one may hope to prove is finitely generated,
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where 7: Trg/(A)x — A is the canonical map. Since ker 7 is an infinitesimal
K -group when K /k is regular (Theorem 6.12), for such K/k we can consider
Try e (A)(k) as a subgroup of A(K) and so we omit 7 from the notation
in (2.1). The reasonableness of considering (2.1) 1s confirmed by

THEOREM 2.1 (Lang-Néron). If K/k is a finitely generated regular
extension and A is an abelian variety over K, then A(K)/Trg;(A)(k) is
a finitely generated group.

We will prove Theorem 2.1 in §7.

EXAMPLE 2.2. Let K/k be a finitely generated regular extension and let £
be an elliptic curve over K. We say E is constant (with respect to K/k) if
E ~ (Ey)g for an elliptic curve E, over k, and non-constant (with respect
to K/k) otherwise. A necessary condition for constancy is that j(E) € K lies
in k, but this is not sufficient. In our development of the Chow (race we
shall prove that the canonical map Trg /(A)x — A 1s an 1somorphism for any
abelian variety A over k, so the constant case of the [Lang-Néron theorem for
elliptic curves is the assertion that Eq(K)/Ey(k) is finitely generated for any
elliptic curve Ey over k.

Now suppose that £ is non-constant. In this case we claim Trg /. (£) = 0,
and so the Lang-Néron theorem for £ and K/k says that E(K) is finitely gen-
erated. Letting Eq = Trg (E), n the general theory of the Chow trace we will
see that the canonical map 7: (Ep)x — E has finite kernel, and so if Ey #£ 0
then £y, must be 1-dimensional and 7 must be an isogeny. Thus, to prove
Trg/t(E) = 0 for a non-constant elliptic curve E over K, it suffices to show
that a non-constant elliptic curve £ over K cannot be K -1sogenous to an ellip-
tic curve of the form Ej with £’ an elliptic curve over k. Suppose otherwise,
so there is an isogeny f: Ei — E. The kernel G C Ej% is a finite K -subgroup
of E}, whence E /G ~ E and so to get a contradiction it suffices to prove:

THEOREM 2.3. Let K/k be a regular extension of fields, and let E' be
an elliptic curve over k. Every finite K-subgroup G in E} is induced from
a (necessarily unique) finite k-subgroup of E'.

The main issue in the proof of this theorem is that the connected-étale
sequence of G may be non-split when K is not perfect. The connected-étale
sequence and other background concerning group schemes are discussed in §3.
Note also that if we consider replacing elliptic curves in Theorem 2.3 with
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higher-dimensional abelian varieties (such as a product of two supersingular
elliptic curves) then there are counterexamples to the k-descent conclusion
when char(k) > 0 and G 1s not K-étale.

Proof. 1f the identity component G° is the base change of a finite
k-subgroup of E’ then passing to the quotient by this subgroup would reduce
us to the étale case. Hence, it 1s enough to treat separately the cases of
connected G and étale G. The connected case is trivial in characteristic 0.
The étale case in any characteristic is settled by Lemma 3.11 (taking H
this lemma to be E'[N] for a nonzero integer N killing G).

It remains to treat the connected case in characteristic p > 0. In this
case G must have p-power order (Example 3.10), say p™ with 1y > 0. The
key point now is that an elliptic curve over a field with characteristic p > 0
(unlike higher-dimensional abelian varieties) contains a unigue infinitesimal
subgroup of length p" for each n > 0. Indeed, for any regular curve over a
field there is a unique infinitesimal closed subscheme with any desired length
supported at a rational point, and in the case of elliptic curves and subgroups
supported at the origin we use the kernel of the relative p"-Frobenius map
(Definition 3.15) to settle the existence aspect for order p" for each n > 1.
The unique infinitesimal subgroup of E’ with order p™ therefore gives the
required descent from K to k. [

ExXAMPLE 2.4. Let K, be a global field and let K = Ky (ty,...,1,)
with n > 1. If A 1s an abelian variety over K then A(K) is finitely generated
by Theorem 2.1 because Trg,x, (A)(Ko) is finitely generated (by the usual
Mordell-Weil theorem over Ky ), and there 1s a nonempty open U C Py, such
that A extends to an abelian scheme A over U. Thus, for all uy € U(Ky)
we get an abelian variety /,, over Ky and there is a natural map between
finitely generated groups

Puy - AK) = AU) — A, (Ko) .

If A has large rank over K and one can control the kernel of the specialization
map at up then one can hope to find fibers A, with large rank over Kp.
For example, it is a theorem of Silverman [30, Thm. C] that if n = 1
and Trg/x,(A) = O then kerp,, = O for all but finitely many uo € U(Ko);
Silverman’s proof requires characteristic 0, due to a use of resolution of
singularities, but the argument can be modified to avoid resolution and to
thereby work 1n any characteristic (for # = 1). Néron [26] proved a weaker
specialization result for all # > O: there are infinitely many uy € U(Kjp) for
which p,, is injective.
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3. SOME PRELIMINARY RESULTS

To make our arguments as self-contained as possible, we need to review
some background facts and terminology related to Grothendieck’s fpgc descent
theory (which vastly generalizes classical Galois descent) and group schemes
over a base scheme (which vastly generalize classical group varieties over a
field). We also give proofs for some other results that will be needed in what
follows.

An excellent introduction to Grothendieck’s descent theory is [1, Ch. 6]
(along with [7,1V,, §2.2-2.7]). A basic question in the theory is the following :
given a faithfully flat and quasi-compact (fpgc) map of schemes §" — S, such
as Spec(A’) — Spec(A) for a faithfully flat map of rings A — A’ (the
main example for us being an extension of fields & — K), can we identify
the category of S-schemes as a subcategory of the category of §’-schemes ?
We also want to relate properties of an S-morphism f: X — Y (such as
properness, surjectivity, finiteness, smoothness, etc.) with the corresponding
properties of the induced §’-morphism fi : Xg — Yy, and to relate “structures”
on an S-scheme X (such as quasi-coherent sheaves, closed subschemes, group
scheme structure, etc.) with corresponding “‘structures” on Xy equipped with
suitable descent data with respect to §" — §. See [1, Ch. 2] and the references
therein for the fundamental definitions and results related to smooth and étale
morphisms of schemes.

In general the natural map Homg(X,Y) — Homg (Xs, Yg) 1s injective,
and one of the first important results in fpgc descent theory is to characterize
the image of this injection. To formulate the answer, we introduce some
notation: if Z' is an §'-scheme then we write pj(Z’) and p5(Z’) to denote
the schemes over § = §' x3§" induced by base change along the projections
p1.p2: 8" = 8. For example, consider a finite Galois extension of fields &' /k
with Galois group G, and take §" — S to be Spec(k’) — Spec(k). The natural
map of k-algebras

3.1 K ek — [~
g€

defined by a ® b (ag(h)),cc 18 an isomorphism, and this identifies pi(Z’)
with the disjoint union [ 0eG 7’ of copies of Z' indexed by G and it identifies
p3(Z") with the disjoint union | | 9€G g (Z") of the various “Galois twists” of the
k' -scheme Z’ with respect to the G-action on k’. The problem of descending
objects over &’ to objects over k was described by Weil and his contemporaries
in terms of invariance with respect to suitable Galois actions, and the preceding
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description of the p;(Z')’s as disjoint unions via (3.1) provides a mechanism
to translate such statements about Galois-invariance into statements concerning
schemes over the fiber product Spec k’ X spec« Spec k. This makes Weil’s theory
of Galois descent fit into the framework of the following descent theorems
with respect to general (not necessarily algebraic or separable) field extensions
and even general fpgc base change §' — S.

If Z is an S-scheme, then for the §'-scheme Z' = Zg there is a canonical
§" -isomorphism ¢z: pj(Z') ~ p;(Z") via the common identification of each
side with §” x5 Z. Using this ¢z, the main result on descent of morphisms
1s the following (see [1, 6.1/6(a)] for a proof):

THEOREM 3.1 (Grothendieck). If §" — S is a faithfully flat and quasi-
compact map of schemes and X and Y are S-schemes then an S'-morphism
' X¢ — Ysg has the form fg for a (necessarily unique) S-morphism
X = Y if and only if pj(f") = pi(f') in the sense that these maps
correspond under the canonical S" -isomorphisms ¢x: pi(Xs') ~ p3(Xy) and

ey: piYs) = p3(¥s).

ExampLE 32. If § — § corresponds to a finite Galois extension of
fields k'/k, the isomorphism (3.1) converts the criterion in Theorem 3.1 into
the classical Galois-equivariance criterion for descending a &’ -morphism to a
k-morphism. This 1s worked out in [1, 6.2/B]. In another direction, a diagram
chase shows that if Xy is endowed with an §’-group scheme structure then
this descends (necessarily uniquely) to an S-group scheme structure on X if
and only if the induced S”-group scheme structures on pj(Xs) and p;(Xy)
coincide via the canonical §”-isomorphism ¢y pj(Xy) =~ p5(Xg).

REMARK 3.3. Even if one 1s only interested in Theorem 3.1 or other
descent theorems for the special case § = SpecK and § = Speck
corresponding to a field extension K /k, it is crucial in some proofs to apply the
descent machinery to the fpge morphism 7" = Xg — X = T that is generally
not a map between spectra of fields. Thus, even for practical purposes it is
useful to allow the generality of & — S as above.

As we have noted already, in practice one does not just want to (uniquely)
descend morphisms but also quasi-coherent sheaves (from Xg to X), closed
subschemes, properties of morphisms, etc. For many standard properties P of
morphisms of schemes (such as properness, surjectivity, finiteness, smoothness,
etc.; see [7,1V,, 2.7.1] and [7, TV 4, 17.7.3(i)] for typical properties) one has




46 B. CONRAD

that an S-map f: X — Y satisfies P if and only if fs: Xg» — Y does. The
problem of descent of an §'-scheme to an §-scheme in general is a subtle
one, even for finite Galois extensions of fields, but in a special case we have
a simple criterion that notably applies to abelian varieties (and is a special
case of a general criterion of Grothendieck [1, 6.1/6(b)]):

COROLLARY 34. Let k' [k be a finite Galois extension of fields and let X’
be a quasi-projective k'-scheme. Let G = Gal(k'/k). To specify a k-scheme
X equipped with a k'-isomorphism X ~ X' is equivalent to giving the
data of k' -isomorphisms «g: g*(X') ~ X' satisfying the cocycle condition
Qgg, = Qg © g1(Qy,) for all g,g, € G. Such an X is necessarily quasi-
projective over k.

A k' -group scheme structure on X' descends to a k-group scheme structure
on such an X if and only if each «y is a k'-group scheme map.

To functorially descend a quasi-coherent sheaf on Xg to one on X there
1s a necessary and sufficient criterion that 1s the natural generalization of a
classical Galois-action criterion (see [1, 6.1/4], applied to the fpgc morphism
Xs» — X). In the case of quasi-coherent ideal sheaves this leads to the
following key fact that we will often use without comment:

THEOREM 3.5. Let 8" — S be faithfully flat and quasi-compact, and let X
be an S-scheme. The map Z — Zg from the set of closed subschemes of X
to the set of closed subschemes of Xg Is injective, and a closed subscheme
7' — Xg descends (necessarily uniquely) to a closed subscheme Z — X if
and only if pi(Z') = p3(Z) as closed subschemes of p;(Xs) =~ p3(Xg).

In particular, if X is an S-group scheme and Z is a closed subscheme of X
then Z is an S-subgroup scheme of X if and only if Zg is an S'-subgroup
scheme of Xy .

EXAMPLE 3.6. If k'/k is a finite Galois extension of fields and X
1s a k-scheme then the theorem says that a closed subscheme Z' in Xj
descends to one in X if and only if the natural isomorphism g*(X;/ ) ~ X/
for each g € Gal(k'/k) carries ¢*(Z') to Z’; this is the classical Galois-
stability criterion. If K/k is an arbitrary extension of fields, A is an abelian
variety over k, and B’ C Ag is an abelian subvariety over K that descends
to a closed subscheme B C A then B is necessarily an abelian subvariety
of A.
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In the theory of group schemes, the main results that we require take
place in the category of group schemes of finite type over a field k. We
will sometimes have to work with possibly disconnected k-group schemes,
but in the connected case over k there is never disconnectedness arising
from extension of the base field because a comnected k-scheme X with
X(k) #£ @ is geometrically connected over &k (i.e., X @ K 1is connected for
any extension field K/k); this geometric connectivity is a special case of [7,
IV,, 45.13].

THEOREM 3.7. Let k be a field, and let G be a k-group scheme of finite
type. For any closed k-subgroup scheme H in G there is a unique H -invariant
faithfully flat k-map w: G — G/H to a separated finite type k-scheme such
that the action map G x H — G Xy G is an isomorphism, and w is inifial
for H-invariant morphisms from G to other schemes. In particular, if K/k is
an extension field then the natural map Gg/Hx — (G/H)k is an isomorphism.

If G is a smooth k-group then G/H is k-smooth, and if in addition H is
normal in G in the sense that the action map GxH — G via (g, h) — ghg™!
factors through H — G then G/H has a unique k-group structure compatible
with that on G.

Proof. This follows from [12, 1V 5, 3.2] and Theorem 3.1. In the special
case that H 1s a k-finite commutative group scheme, these results are special
cases of [25, Thm. 1, p.111]. L1

ExampPLE 3.8. If f: G — G’ is a k-group morphism between finite type
k-group schemes then G/(kerf) is naturally a k-group scheme of finite type
and G/(kerf) — G’ is monic, hence a closed immersion [12, VI, Cor. 1.4.2].
That is, G/(kerf) is naturally a closed k-subgroup of G’. In particular, if
f 1s surjective and G’ is smooth then G/(kerf) ~ G’. As a special case, if
fi A — B is a map between abelian varieties over a field k then A/(kerf)
1s an abelian variety and so it 1s naturally an abelian subvariety of B.

EXAMPLE 3.9. If G is a finite commutative group scheme over a field &
and H C G 1s a closed k-subgroup then #G = #H - #(G/H) where the order
#X of a finite k-scheme X 1is the k-dimension of its coordinate ring. Indeed,
since G X H ~ G xXg/y G we just have to check that the finite flat map
G — G/H has constant fibral degree equal to #H, and this equality is clear
because its geometric fibers are isomorphic to H via translation. As a simple
consequence, we see that if G has prime order then H =0 or H = G.
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EXAMPLE 3.10. Let G be a finite commutative group scheme over a
field k, and let G° be its identity component; this is geometrically connected
over k and (for topological reasons) is a subgroup scheme of G. Since
the formation of the finite commutative k-group G/G° is compatible with
extension on k, by extending scalars to an algebraic closure k of & and using
that each connected component of Gy contains a unique k-rational point we
see that G; is uniquely and functorially the product of Gg and a constant
group (that in turn is canonically identified with Gz/ G% ~ (G/G")). Hence,
G/G° is k-étale. By [8, Ch. 1, 9.1, 9.5/2], the case G°® £ 0 can only occur in
characteristic p > 0, in which case G° ~ Speck[xy, ... ,xN]/(xfg1 . ,xf\’,gN)
as pointed k-schemes for some N > 0 and e,...,ey > 0, so the order of G°
1s a power of p.

We call the diagram

0-G"=-G—=G/G*—=0

the connected-étale sequence of G and we call G/G® the éiale part of G and
denote it G ; the formation of this diagram is functorial in G and commutes
with any field extension on &. We have just seen that the connected-étale
sequence uniquely and functorially splits over an algebraic closure &, so by
Galois descent it uniquely and functorially splits when & 1s perfect (i.e., when
k/k is Galois). This sequence can fail to split when k is imperfect, and this
possibility will arise in a crucial step in our proof of an important result of
Chow (Theorem 5.5). For this purpose, the following descent lemma (along
with Lemma 3.14) will be useful.

LEMMA 3.11. Let K/k be a regular extension of fields and let H be a
finite commutative k-group. If G C Hg is an étale K-subgroup then it arises
by base change from a unique étale k-subgroup of H.

Note that the regularity of K/k is a crucial hypothesis in this lemma.
Indeed, one gets many counterexamples in characteristic p > 0 for purely
inseparable K/k by taking K = k(a'/?) for a € k* not a pth power in k
and H equal to the non-split p-torsion extension of Z/pZ by p, classified
by the non-trivial element a mod (k*)? € k* /(k*)? as in [16, 8.7.1]. In any
characteristic, another source of counterexamples in the absence of a regularity
hypothesis is k-étale H and K/k a finite Galois splitting field for H.

Proof. The uniqueness is clear by Theorem 3.5. Pick a separable closure &’
of k, and let K’ = k' @, K. Since k is separably closed in K we see that
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K’ is a field and K'/K is Galois with the same Galois group as k'/k.
Hence, if we can solve the descent problem for K'/k’ then the k’-descent
I of Gy C Hgr in Hyp is a Gal(k'/k)-stable k’'-subgroup because of the
uniqueness of descent and the fact that TV @ K' = Gg C Hgs is visibly
Gal(K' /K)-stable. Using Galois descent with respect to k'/k, the k’-descent
I in Hy then must descend to a k-subgroup I'" of H that solves the original
problem: T' has K-fiber in Hy that coincides with G because its K’ -fiber
in Hg: 1s Gk by construction. This shows that 1t suffices to treat the case
when & is separably closed, so we now assume k to be separably closed. In
particular, H* = H/H® is a constant k-group. By expressing K as a direct
limit of finitely generated regular extensions of k& we can assume that K/k is
finitely generated. Hence, K = k (V') for a smooth k-variety V.

The composite map G — Hg — HS has kernel GNHY that vanishes since
G is K-étale, so G is identified with a closed K -subgroup of HS. But H®
is constant, so each closed K -subgroup of H$ arises by base change from
a unique closed k-subgroup of H®. By replacing H with the preimage of
this latter k-subgroup under the quotient map H — I we can assume that
G maps isomorphically to H¢. In other words, the data of G amounts to a
splitting of the connected-étale sequence of Hg, and we wish to prove that
this forces the connected-étale sequence of H to be split. More generally, 1f

O=-H - H—-H" =0

is a short exact sequence of finite commutative k-groups (i.e., H' is closed
i [ and H/H' ~ H") and if there is a splitting after extending scalars to
K = k(V) then we claim that there is a spliting over k. By “smearing out”
from the generic pomnt SpecK of V, a K-spliting extends to a Vj-splitting
of the diagram

0 — Hy, — Hy, = Hy, — 0

for a suitable dense open Vy C V. The set Vy(k) is non-empty since Vy is
smooth over the separably closed field k, so specializing a Vy-splitting at any
vo € Vo(k) gives a splitting of the original exact sequence over k. [

The methods in [25, §14] show that if & is a field and G is a finite
commutative k-group then the functor § — Homg,/5(Gs, Gy, 5) on k-schemes
(where Gp/S denotes the category of group schemes over §) is represented by
a finite commutative k-group D(G), the Cartier dual of G, and the canonical
map G — D(D(G)) 1s an 1somorphism (“double duality isomorphism™). For
example, D(Z/nZ) = G,,[n] = p,. The same methods work over any base
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ring, so for any base scheme Sy and any finite locally free commutative group
scheme G over S; there i1s a finite locally free commutative group scheme
D(G) representing the functor § — Homg,,5(Gs, G, 5) on the category of
So-schemes, and G ~ D(D(G)). If S — So is any So-scheme, then we have
naturally D(G)s; ~ D(Gs;) as St -groups. In the special case that the base
So 1s Speck for a field &, since an inclusion between Hopf algebras over
a field is faithfully flat [33, 14.1] it follows that that a map f: G’ — G
between finite commutative k-groups is a closed immersion (resp. faithfully
flat) if and only if D(f) 1s faithfully flat (resp. a closed immersion). Using
Nakayama’s Lemma on fibers and fibral flatness criteria [7, IV, 11.3.10], the
same assertion carries over to maps between finite locally free commutative
group schemes over any base scheme Sp.

EXAMPLE 3.12. A finite commutative group scheme G over a field &
18 multiplicative il D(G) 1s étale over k. If k 1s separably closed then this
says that D(G) is constant, or equivalently (by double duality) that G is a
finite product of groups of the form D(Z/nZ) =~ 1, (hence the terminology).
In particular, if k& has positive characteristic p then a multiplicative group
1s connected if and only if it has p-power order. In the case of perfect &
with characteristic p > 0, we may apply Cartier duality to the unmiquely and
functorially split connected-étale sequence of G to uniquely decompose G
into a product of four kinds of finite commutative k-groups: étale with étale
dual (this is the prime-to-p part of G%), étale with connected dual (this is
G%[p>1), connected with étale dual (this is D(D(G®)*"), the muitiplicative part
of G), and connected with connected dual (this is D(D(G®)?), the local-local
part of ). These four factors are respectively denoted G, Gy, Gy, and
Gy since a finite scheme over a perfect field is étale if and only if it is
reduced. In the case of algebraically closed &, this 1s all worked out in [25,
p. 136].

EXAMPLE 3.13. If f: A — B 1s an isogeny between abelian varieties over
a field & and fV: BY — AY is the dual isogeny then the finite commutative
k-groups kerf and kerf“ are each canonically isomorphic to the Cartier
dual of the other (in a manner respecting extension of the base field). This
i1s stated over an algebraically closed field in [25, §15, Thm. 1], but the
proof there works without restriction on the base field. There are more refined
questions that one can ask concerning double duality for finite k-groups and
abelian varieties over k, but we do not need to address such matters for our
purposes.
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LEMMA 3.14. Let k be a perfect field with characteristic p > 0 and let
H be a finite commutative k-group with associated four-fold decomposition

H=H, x Hy x H, x Hy

as at the end of Example 3.12. For any extension field K/k and any closed
K-subgroup G C Hg, the natural map

(3.2) (G N (Hy)x) X (G N (Hy)g) X (G N (Hipg) X (GN(Hpg) = G
is an isomorphism.

Proof. If K is perfect then we have (H.)x = (Hg)y, and similarly for the
other three factors of H, so the functoriality of the four-fold decomposition
over K (applied also to G) gives the result in this case. For general X, since
the formation of G N (Hy)k, ..., GN(Hy)x commutes with arbitrary extension
on K we see that the map (3.2) between finite commutative K -groups becomes
an 1isomorphism after extension of scalars to the perfect closure of K. Hence,
it is an isomorphism.  []

The final general concepts that we shall review from the theory of group
schemes are the relative Frobenius and Verschiebung morphisms. Fix a prime
p and consider F,-schemes. For any F,-scheme S, let Fg: S — § be the
absolute Frobenius morphism (identity on underlying topological spaces, the
pth-power map on Ug); this 1s functorial with respect to arbitrary maps
of F,-schemes. For any S-scheme X and n > 0, we let X denote the
§-scheme § x5 X obtained from X by base change through Fg. Roughly
speaking, X (7" is obtained from X by replacing coefficients in the “defining
equations” of X over § by their p” th powers. This 1s well-behaved with respect
to base change in the sense that if § — S is a map of F,-schemes then there
is a natural §'-isomorphism (X5)?" ~ (X"}, due to the functoriality of
Fs and Fy with respect to the map §' — S. If f: X — Y is an S-morphism
then f7V: X&) — Y(7) denotes the induced map after base change.

DEFINITION 3.15. For n > 0, the relative p"-Frobenius morphism
Fxisn: X — X is the unique S-map whose composite with the projection
X 5 X (over F§:§ — S)1s I%. For n = 1 we also use the notation
Fx/s., and this 1s called the relative Frobenius morphism for X over §.

This definition makes sense since the absolute Frobenius morphisms Fy
and Fy are compatible via the structure map X — §. Note that Fy /g, is an
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S-map whereas Fy generally is not (unless Fg is the identity, such as for
§ = Specx with x a finite field satisfying [~ : F,]|n). Roughly speaking,
Fx /s, 18 the map induced by raising “coordinates” (over §) to the p"th power.
Explicitly, for n > 1,

(33) FX/S;n :FX(pn—l)/SO---OFx/S.

The map Fx/g5, is functorial in the S-scheme X, is compatible with the
formation of products in X over S, and is compatible with any base change
§' — S in the sense that (Fx/s,)s = Fx,, /s, via the natural isomorphism
(X (P)g >~ (X)), In particular, for an S-group scheme G the map Fg/s,
1s a morphism of S-groups and ng/";):n = Fgom s, for any m > 1.

For an §S-group G that 18 commutative and S-flat, there 1s a canonical
S-group map Vg/5: G — G [12, VI, 4.2-4.3] called the relative Ver-
schiebung morphism that satisfies Vi /g0 F/5 = [plg. The formation of Vi /g
commutes with any base change on § and it is functorial in the S-group
G. If G is a finite locally free commutative group scheme over S then

Viss = D(Fpyys) [12, VILa, 4.33]. For n > 1, we define the §-group map

VG/S,n d:ef VG/S 0+ 0 VG(pn—l)/SI G(pn) = G,
$O0 Vgysn© Fgrsn = [Pl In particular, [p"]g = 0 if Fgs5, = 0, and so
by Examples 3.9 and 3.10 we see that any fimite commutative group scheme
over a field is killed by its order.

EXAMPLE 3.16. The map Vg, /s vanishes because Fg, (/g is faithfully flat
and [plg, ; = 0. The subgroup ap s = ker g, /5 = Specg(Os[T1/(T7)) € G
1s the S-group scheme of pth roots of 0 (with additive group structure), and
it is a tautology that F, ., =0 whereas V,, 5 =0 due to the vanishing
of VGa,s /8-

EXAMPLE 3.17. By working over an algebraic closure k of k and using
the explicit description of the relative Frobenius in terms of pth-power maps,
we see that (1) Fg /. 1s an isomorphism if and only if G is étale over k, and
() Fgkn = 0 for large n if and only if G 1s connected. Hence, by (3.3)
we can filter the connected part G° by kernels of successive iterates of rela-
tive Frobenius so that the successive quotients in the filtration have vanishing
relative Frobenius. On the maximal local-local quotient of G° (the Cartier
dual to D(G®)°) we can apply the same procedure and then refine it further
by using kernels of iterates of the relative Verschiebung morphism (i.e., we
form kernels of Frobenius iterates on the Cartier dual, and then dualize back).
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In this way we can filter the local-local part of G with successive quotients
whose relative Frobenius and relative Verschiebung morphisms both vanish.

This motivates the question of describing all finite commutative &-groups
G for which Fg/, and Vg, vanish. In case k is perfect (e.g., algebraically
closed), such G’s are precisely products of finitely many copies of the k-group
scheme «,. Indeed, by Dieudonné theory over k [8, Ch. III, 1.4, 3.2, 3.3] the
category of G’s with Fg/ = 0 and Vi = 0 is antiequivalent to the category
of finite-dimensional k-vector spaces, with G of order p’ going over to a
vector space of k-dimension r, and the k-group «, of order p corresponds
to a 1-dimensional k-vector space under this anti-equivalence. (As a special
case, D(ay,) =~ o, over Spec(F,) and hence over any F,-scheme by base
change.) A useful consequence of this classification is the following result
that will be used 1n our proof of Chow’s regularity theorem.

THEOREM 3.18. Let k be a perfect field of characteristic p > 0 and let
G be a finite commutative k-group such that Fg, and Vg vanish. For any
extension field E/k, the operation H — To(H) is a bijection from the set of
closed E-subgroups of Gg to the set of E-subspaces of To(Gg). Moreover,
Hy, C H, if and only if To(Hy) C To(Ha).

Proof. Since k 1s perfect, we may and do fix an isomorphism G =~ a;; C Gy,
over k and then we claim (with slight abuse of notation) that the operations
Wi WNao, p and H — To(H) C To(Gg ) = G,  are inverse bijections be-
tween the set of vector subgroups of G% ; and the set of closed E-subgroups
of aj ; this claim certainly implies the theorem. Tt suffices to check this
general claim over an arbitrary algebraically closed extension field E/k. Every
closed E-subgroup of af p for such E is a product of copies of e, g, and
Homg(ay, g, ap ) = £ via the scaling action, so we easily get that the two

operations are mverse to each other. [

This concludes our background review of descent theory and group
schemes, and now we provide proofs for a few other necessary results. Let
us begin with a crucial result due to Chow (see [3] or [18, Ch. II, Thm. 5]),

for which we give a Grothendieck-style proof via descent theory.

THEOREM 3.19 (Chow). Let A and B be abelian varieties over a
field k and let K/k be a primary extension. Any map of abelian vari-
eties f: Ax — Bk Is defined over k in the sense that the injective map
Homy (A, B) — Homg(Ag, Bg) is bijective.




54 B. CONRAD

This theorem is especially useful for separably closed k, in which case
every extension K /k is primary. In the proof of Theorem 3.19 and throughout
later sections we will find it useful to invoke some elementary concepts related
to abelian schemes (i.e., smooth proper group schemes with geometrically
connected fibers). In [24, Ch. 6] there is given a systematic treatment of the
basics (and much more) concerning abelian schemes.

Proof. let K' = K@, K. Since K is a primary extension of k, Spec K’
1s irreducible and in particular 1s connected. By Theorem 3.1, it suffices to
show that the two pullbacks p/(f): Axx — Bg of f along the projections
p1.p2: Spec K’ = Spec K are equal. To prove that pi(f) = p3(f), we first
check such equality on a single fiber over Spec K’. Consider the canonical
point Spec K — Spec K’ defined by the diagonal. The pullback of each p;(f)
via this point is f, so the desired equality is achieved on the fiber over the
diagonal point.

With equality achieved on one fiber, now consider the K’ -maps induced by
the pi(f)’s on ("-torsion for n > 1, with £ a fixed prime distinct from the
characteristic of &k (so £ is a unit on Spec K'). These torsion subschemes are
finite étale over the connected base Spec K', and a map h: 7' — Z between
finite étale schemes over a connected scheme § 1s uniquely determined by
its restriction Z. — Z; to fibers over a single geometric point s of the base
scheme § [7,1V4, 17.4.8]. Hence, py(f) and p;(f) coincide on each Ag/[£"]
for all > 1.

To infer equality of py(f) and p;(f) on Ak, we want a map between
abelian schemes over K’ to be uniquely determined by its restricton to all
£-power torsion subgroup schemes. We shall appeal to a more general sufficient
claim: if A — & 1s any abelian scheme over a scheme & and if ¢ 1s any
prime then the collection of closed subschemes A[¢*] for all n > 1 is
universally schematically dominant in A with respect to & in the sense of [7,
IV3, 11.10.8] (we only need the case when £ is a unit on §). To prove this,
by working locally on § one can reduce to the case of noetherian §, in which
case [7,IVs, 11.10.4, 11.10.9] reduces the problem to the classical schematic
density of such torsion-levels on geometric fibers. [l

Theorem 5.5 ensures that the concept of “defined over k7 for abelian
varieties over K is both well-defined and functorial when K/k is primary.
We shall use this repeatedly without comment. An important corollary is

the validity of the Poincaré reducibility theorem over an arbitrary base
field:
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COROLLARY 3.20. Let k be a field. If Y is an abelian subvariety
of an abelian variety X over k then there exists an abelian subvariety
Z C X such that the natural map Y x Z — X Is an isogeny. In particular,
the isogeny category of abelian varieties over a field is artinian and
semisimple.

Proof. A proof is given in [23, §12] when the base field &k is perfect.
(The proof 1s inapplicable for non-perfect k because the underlying reduced
scheme of a finite type k-group scheme can fail to be a subgroup scheme
when k is not perfect.) In the general case, if K/k is the perfect closure
and Y — X is an abelian subvariety then we may pick an abelian subvariety
7! C Xg such that the natural map f: Yx x Z' — X is an isogeny. Let
Xk — Yg x Z' be an 1sogeny whose composite with f is multiplication by a
nonzero integer. The composite K-map

Xg — Ve xZ 25 7 < X

descends to a k-map X — X by Theorem 3.19, and its schematic image
Z C X is an abelian subvariety that is an isogeny-complement to ¥ in X
(as we may check after the faithfully flat extension of scalars £ — K). [

COROLLARY 3.21. Let K/k be a primary extension of fields and let A be
an abelian variety over k. Any abelian subvariety of Ax has the form Ay for
a unique abelian subvariety A" of A over k. In particular, if k is separably
closed then an abelian variety over k acquires no new abelian subvarieties
under any extension on the ground field.

Proof. By Theorem 5.5, passage from k& to K does not change Hom-
groups, and in particular does not introduce new idempotents in the i1sogeny
category, so if {A;} is a collection of mutually non-isogeneous k-simple
abelian varieties such that A is k-isogenous to [[ A (with e; > 0), then the
Ai/x’s are K-simple and Ag is K -sogeneous to HAf/ - Lhus, by Poincaré
reducibility over K, any abelian subvariety B in Ax is the schematic image

of some K-map of abelian varieties HA,E/,K — Ak for suitable ¢} < ¢;. By

Theorem 3.19, this map descends to a k-map of abelian varieties HA?“’ — A.
The schematic image of this map is an abelian subvariety A" in A. Since
the formation of schematic image commutes with the flat extension of
scalars from & to K, we conclude that B = A} as abelian subvarieties
of AK. D
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4. THE K/k-IMAGE

Throughout this section, K/k denotes a primary extension of fields. We
begin with a definition :

DEFINITION 4.1. Let A be an abelian variety over K. A K/k-image of
A 15 an mmtial object (Img/(A), A) in the category of pairs (B,f) consisting
of an abelian variety B over k and a K-map of abelian varieties f: A — Bg.

It is obvious that a K/k-image is unique up to unique isomorphism if it
exists. An important example is:

THEOREM 4.2. Let A be an abelian variety over k. A K/k-image of Ag
is given by the pair (A, la,).

Proof. The assertion is that if B is any abelian variety over k and
f: Ag — Bk 1s a map of abelian varieties over K, then it arises as the base
change of a unique %k-map of abelian varieties A — B. This follows from
Theorem 3.19, since K/k is primary.  []

THEOREM 4.3. For any abelian variety A over K, the K/k-image exists.

Proof. If f: A — Bk and f’': A — Bj are maps of abelian varieties with
B and B’ abelian varieties over k, then (f,f’): A — Bx X By = (B x B')g
i1s a map of the same sort. The image of this map is an abelian subvariety of
(B x B' )k, and so by Corollary 3.21 it has the form Xy for a unique abelian
subvariety X in B x B'. It is clear that f and f’ respectively uniquely factor
through the K-fibers of the natural k-maps of abelian varieties X — B and
X — B, so we have shown that the collection of pairs (B,f) admits finite
suprema.

Each object (B.f) is uniquely dominated by an object (C, h) where C is
an abelian subvariety of B and &: A — Ck 1s a surjection of abelian varieties
(namely, take C to be the unique abelian subvariety of B such that Cg is
the image of f; here we once again use that K/k is primary). Thus, it is
enough to make an initial object in the category of pairs (B,f) such that
f 1s surjective. Any such object is determined by the K-subgroup kerf C A,
and the construction of finite suprema shows that this collection of kernels
is stable under finite intersection in A. The descending chain condition in A
thereby produces an initial object. [
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EXAMPLE 4.4. We give an example such that the map to the K/k-image
has non-smooth kernel. Let K/k be a non-trivial extension in positive
characteristic p with &k algebraically closed. Let E/k be a supersingular
elliptic curve, so the self-duality of E (see the proof of [16, 2.1.2]) implies
that ker Fz /. ~ oy, due to Examples 3.13 and 3.17. Let

G g (ap X Q{p)K g EK[p] ><SpecK EK[p]

be an o that 1s not defined over k as a K-subgroup of (o, x ap)k.
(By Theorem 3.18, to pick such a G amounts to picking a K-line L in the
plane To(a‘g’ x) = K & To(az) such that L does not arise from a line in the
k-vector space To(af,).) For A = (ExE)x /G, we have Img ;1 (A) = EP) x P
and the natural map

A A= (E x E)g/(a, X ap)x ~ EP x EP

is the K/k-image. The kernel of A\ is isomorphic to «a,, so ker A is not
smooth.

Let us now treat some formal properties.

THEOREM 4.5. Let A be an abelian variety over K.

(D) If k/ko is primary and (Imy,(Img /i (A)), Ao) denotes the k/ko-image of
Img i (A) then

(Tmy /¢, (Tmg 7 (A)), Ao/g © A)

is a K/kq-image of A.

(2) If K'/K is a primary extension then (Img /i(A), A\x') is a K'/k-image of
Agr.

(3) The canonical map A: A — Img(A)g is surjective with (geometrically)
connected kernel.

Proof. The first part is a tautology. The second part follows from the first
part and Theorem 4.2. For the final part, let # = ker A. Thus 1s a (possibly non-
smooth) closed subgroup of Ax. The quotient A/H is an abelian subvariety of
Img /4 (A)x by Example 3.8. By Corollary 3.21, A/H must have the form X
for a unique abelian subvariety X in Img/(A). For any K-map of abelian
varieties h: A — Bx with B an abelian variety over k, there is a unique
k-morphism of abelian varieties f: Img/,(A) — B such that & = fx o A, so
h uniquely factors through the K-extension of f|y: X — B via the natural
map A — Xg induced by A. By universality, we conclude that the inclusion
of X into Tmg(A) must be an isomorphism. Hence, X is surjective.
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It remains to show that I = ker \ is connected. Let H° be the identity
component and consider the quotient A/H®. This is an abelian variety over K
and the natural map

p: AJH® — A/H = Img i (A)g
is a finite surjection with kernel H/H® that is étale over K, so p is a
finite étale covering. Let n be the degree of this covering, so the map
[nlg: Img (A — Img(A)g factors through p. The connected part of
ker[n]x 1s killed by p, so p is dominated by the base-change to K of the
finite étale cover

Imp ;4 (A)/(ker[n])° — Img /i (A)
induced by [n]. We claim that the subgroup

ker(TImy ;. (A) / (ker[n]x)” — A/H®) C (ker[nlx)/(ker[n]g)” = (ker[n])g

descends to a subgroup of the finite étale (ker[n])®'. This holds because for
compatible separable closures k;/k and K;/K, the natural map Gal(K;/K) —
Gal(k,/k) is surjective (as K/k is primary, so k,&;K is naturally a subextension
of K;/K). Thus, there exists a unique abelian variety A; over & equipped
with a finite €tale map 7: Ag — Img /4 (A) that descends the canonical map
p: A/H® — A/H.

For any abelian variety B over k, any K-map of abelian varicties
h: A — Bk admits a unique factorization as fx o A where f: Img 1 (A) — B is
a k-map of abelian varieties. Writing X as po A’ = mg o \? for the projection
N A — A/HO, clearly there is also a factorization of h as gx o A\° for a
unique map of abelian varieties g =fom: Ag — B over k (uniqueness of g
follows from surjectivity of \®). Thus, the pair (Ao, \%) has the universal
property of a K/k-image, and so the map mx carrying A\’ to A must be an
isomorphism. This shows that # = H? is connected. [

REMARK 4.6. Theorem 4.5(2) is false if the primality condition on K'/K
is dropped. To give a counterexamples with regular K/k in arbitrary char-
acteristic, let Ey be an elliptic curve over k& such that £y has geometric
automorphism group {1}, let K'/K be a quadratic Galois extension with k
algebraically closed in K’ (so K’'/k is regular), and let A be the nontrivial
quadratic twist of £y g associated to K’ /K. In this case A cannot arise {rom
an elliptic curve E; over k because otherwise the resulting K’ -isomorphism
Ey/x =~ Agp = Egyxr would descend to a k-isomorphism Ey ~ E, (since
K'/k is primary) and so would give a K-isomorphism A ~ Eyx, a contra-
diction. This non-constancy of A with respect to K/k forces Img /(A) = 0
by Example 2.2 and duality, yet Tmg /(Ag) = Ep.
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Note that the functor Img/.(-) carries finite products to finite products
(since Hom(4 x A", X) = Hom(A, X) x Hom(A’, X) for abelian varieties A, A’
and X over a field). Also, it carries 1sogenies lo 1sogenies since isogenies
are characterized as having a two-sided “inverse” (up to multiplication by a
non-zero integer). Thus, for many questions about the K/k-image that take
place in the isogeny category, there 1s often no loss of generality by restricting
attention to the case of K-simple abelian varieties. The following useful result
reduces many questions about the K/k-image to the case when the canonical
map A= Ay g/t A — Img/(A)g 18 an isogeny.

COROLLARY 4.7. For any abelian variety A over K there exists
a unigque abelian subvariety A" C A such that Img,(A) = 0 (so
Img /i (A) — Imgp(A/A") is an isomorphism) and AJA" — Img,(A/A )k
IS an isogeny.

Proof. Since the additive functor Img/, commutes with products and
carries isogenies to isogenies, by Corollary 3.21 and Theorem 4.2 we see that
A’ is the unique maximal abelian subvariety of A whose K-simple isogeny
factors are K-isogenous to an abelian variety defined over k. [

5. THE K/k-IMAGE AND BASE CHANGE

We now consider extension of the ground field. As before, K/k is a
primary extension of fields and A 1s an abelian variety over K. For any
extension E/k, there is a unique £-map of abelian varieties

S.1) Ig i I pp(Apg ) — Tmg 1 (A)g

characterized by the property that composing

N = Mg px/e A — Impg p(Aex ek

with (/g )ex yields the base change

ek Apg — (Img g (A)x)ex = (g (A)g)ex

of A = A k. We remind the reader that EK denotes the fraction field of
the domain (F &y K)eq, and it is not the compositum in an arbitrary common
extension of £ and K over k (unless we restrict attention to composites
that satisfy a linear-disjointness condition over a suitable purely inseparable
extension of k).
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THEOREM 5.1.  The canonical map Igy. is a purely inseparable isogeny.

Proof. Since N and Agp are surjective with connected kernels by
Theorem 4.5(3), Ig/ 1s surjective and the EK-group scheme (ker /g )px =
(ker M)z /(ker \') is connected, so kerlgj, is connected. Hence, it remains to
compare dimensions. Quite generally, for a primary extension K/k we wish to
give a “geometric” description of dimImg/(A) in a manner that is unaffected
by replacing K/k with EK/E (and replacing A with Agg).

If Xo and Xoo are abelian varieties over k such that Xo/x and X,k are
K -isogenous then X, is k-isogenous to Xoo (since K/k is primary). Thus, for
any abelian variety X over K there is a well-defined k-isogeny class Cx g/«
of abelian varieties of maximal dimension that are K -isogenous to a factor
of X, and any abelian variety over k£ admitting a K -isogeny to a factor ol X
is k-isogenous to a factor of any member of the distinguished k-isogeny class
Cx x/x- Roughly speaking, Cy g/, comresponds to a maximal isogeny-factor
of X that can be defined over k. It is obvious that Img /(A) 1s a distinguished
member of this isogeny class for X = A, and so the dimension of Img /. (A)
is equal to the common dimension of the members of C, ki .

The problem of finiteness of I/, is thereby reduced to showing that the
scalar extension k — [ carries members of C4 x/ to members of Cy,, px/k-
If A’ denotes an isogeny-factor of A over K that is complementary to
Img /4 (A)x then the proof of Corollary 4.7 shows that Img /(A") = 0. Thus, it
is enough to show that if Img /i (A) = O then Imgg,p(Aggx) = O. That is, if A
admits no nonzero maps to abelian varieties Bx with B defined over &, then
we must show that Apgy admits no nonzero maps to abelian varieties Bpg
with B defined over E. This property is transitive in E, so it is enough to
treat separately the cases where E/k purely inseparable, separable algebraic,
and separable in general. In each case, what we will really prove is that if
Imgg /p(Agg) # O then Img /i (A) # 0. More precisely, since

)‘AEK,EK/E: Apx — ImEK/E(AEK)EK
1s a surjection, 1t suffices to prove that if Aggx admits an EK -1sogeny factor Bgg
for a nonzero abelian variety B over FE, then there is a nonzero K-map of
abelian varieties A — Xg for some abelian variety X over k (and hence
Img (4) # 0).

First consider the case when FE/k is purely inseparable, so EK/K is
primary. By expressing E as a direct limit of subextensions of finite degree
over k, we may assume £ to be of finite degree over k. We can also assume
that & has positive characteristic p (as otherwise £ = k and we are done), so
some relative g-Frobenius twist B9 (with ¢ = p" for some n > 0) is defined
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over k. Hence, Aif]}{ admits a nonzero isogeny-factor that is defined over k.
A projection to such a factor descends from EK down to K since EK/K
is primary, so A‘? has a nonzero K -isogeny factor that is defined over k.
However, the relative ¢-Frobenius A — A is a K -isogeny, so we conclude
that A has a nonzero K-isogeny factor that is defined over k. This takes care
of the case when E 1s purely inseparable.

Now assume that E is separable algebraic, so we can assume E/k is
a finite Galois extension. In particular, FK = E ©@; K. The Weil restriction
Respg/x(Agk) (see [1, 7.6]) is a product of copies of A, and it has a K -1sogeny
factor given by the nonzero abelian variety Respg/x(Bek) = Resg/((B)k ; this
equality 1s due to compatibility of Weil restriction and base change. We thereby
get a nonzero K-map of abelian varieties from A to an abelian variety over K
that is defined over k.

Finally, we may assume that E/k is separable, and since the separable
algebraic case is settled we can use a direct limit argument with E/k to see
that it is enough to treat the case when E = k() is purely transcendental
of degree 1 over k. At the expense ol separable algebraic increase on &
(permissible by the steps we have just settled), it may be assumed that &
1s separably closed and in particular infinite. T.et us assume that there is an
abelian variety B over k() and a nonzero map f: Agy — Bge over K(7).
Since B extends to an abelian scheme B over a dense open U in P,{ , the
infinitude of k& allows us to find ty € U(k) such that f extends around ¢ = £,
and so may be specialized to define a nonzero K-map of abelian varieties
from A to (B,)x with B, an abelian variety over k. (Non-vanishing of
the specialization follows from considering the finite étale ¢"-power torsion
subschemes over U in the abelian scheme B for a prime ¢ # char(k) and
al n>1) O

The following corollary gives a criterion for an abelian variety A over K
to be defined over k (i.e., for Ay g/ 1o be an isomorphism) via a descent
hypothesis on Agg relative to E for a separable extension E/k.

COROLLARY 5.2. Let K/k be a primary extension of fields and let A be
an abelian variety over K. If there exists an abelian variety B defined over
an extension E/k such that Apx is EK-isogenous to a factor of Bk, then
the natural map

A=Ak A— Img(A)x
is a purely inseparable isogemy. This map is an isomorphism If Apx Is
EK -isomorphic to Bgx and E/k is separable.
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Proof. We first claim that Agx has the same dimension as its EK /E-image ;
that 1s, we claim that the canonical surjective map

Ape EKJE - AEx — Igg /e (AEK)ER

1s an isogeny. This property is 1sogeny-invariant and is inherited by direct
factors, so since Agg 1s an i1sogeny factor of Bgkx the desired result follows
from the fact that Bgx has EK/E-image equal to B (by Theorem 4.2). By
Theorem 5.1 we conclude that

dim Img ;4 (A) = dimImgg p(Agg) = dim A,

so the map A: A — Img (A)x that is a priori surjective with connected
kermnel must be an isogeny and hence 1s purely inseparable.

Now assume that E/k is separable and that there is an EK -isomorphism of
abelian varieties ¢: Bpg ~ Apg. We want to show that A 1s an isomorphism.
Equivalently, in view of Theorem 4.2, we need to show that A can be defined
over k. By direct limit considerations with the separable E/k we can assume
E =k (V") for a smooth variety V' over a finite separable extension £'/k,
and by smearing-out of ¢ over a dense open U’ C V' and specializing at
a closed point &' € U’ for which k'(u')/k’ is separable we may assume
E/k is finite and separable. By increasing E/k to be normal, transitivity
(as in Theorem 4.5(1)) reduces us to treating the case when E/k is finite
Galois, so EK = E ®; K and hence we may transfer the Galois descent data
on Agg (via the K-structure A) into Galois descent data on Bgg relative to the
extension EK /K. However, Gal(EK/K) = Gal(E/k) and any EK -isomorphism
Bk ~ (Bgx)” = (B?)gx of abelian varieties (for o € Gal(EK/E) = Gal(E/k))
uniquely descends to an E-isomorphism B ~ B because EK/E is primary.
Thus, we have Galois descent data on the abelian variety B relative to E/k,
and so by Corollary 3.4 we conclude that B = Xy for an abelian variety X
over k, with this equality respecting the actions of Gal(E/k). Thus, Agg
1s EK-1somorphic to Xpgr = (Xg)gx in a manner that respects the actions of
Gal(EK /K) = Gal(E/k) on both sides. By Theorem 3.1, this EK -isomorphism
descends to a K -isomorphism A ~ Xk, so A is defined over k as desired. [

The proofs of Theorem 5.1 and Corollary 5.2 use direct limit arguments
with E/k, but they avoid the issue of how the K/k-image behaves with
respect to direct limit processes. Now we address this issue; the next result
reduces most questions about the K/k-image (and base change) to the case
of finitely generated extensions:
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LEMMA 53. If E = li_n>1E[- is a rising union of extensions of k, then the
natural map

I /g, Igg p(Apg) — g g/ g (Ag ) e
is an isomorphism for large i. Also, if K = ﬁ_r)nK,- is a rising union of primary

: . : ; 3 def
extensions of k and A;, is an abelian variety over some K;, with A; = A; sk,

Co def
for i>iy and A= Ay /x> then the natural map

Img /1 (A) — Tmg, /1 (4;)
is an isomorphism for all large i.

Proof. 'To show that Ig,g is an isomorphism for large i, first recall that
Imgg/£(Agx)ex 18 constructed as the largest quotient of Agg that is defined
over E. The kemel of the quotient map Ay, zx/z 1s a closed subgroup
scheme of Agx and so is the base change of some closed E;K-subgroup I’
of Agx for some large i. The quotient Apg/I' over E;K might not be
defined over E;, but since its EK -fiber 1s defined over E it 1s clear that by
replacing i with some i/ > i and T" with I'®@gx Ex K we may arrange that the
quotient Ag g /I" is defined over E;. We have now shown that for sufficiently
large i there is a quotient X; of Apx over E;K that is defined over F; and
has EK-fiber (Xj)px equal to the quotient Imgg/p(Apx)ex of Apx that is
defined over E. Consequently, the maximality of this latter quotient over EK
forces the maximality of X; as a quotient over E;K that is defined over E;.
This implies that the F;-descent of the abelian variety X;, equipped with its
quotient structure over E;K, is an E;K/E;-image of Agy. Hence, I 18; 1S an
1somorphism for such large :.

Next, we turn to the behavior with respect to limits in K. The morphism

AN A— ImK/k(A)K

descends to a map
N Ay — Tmg Ak,

over some subextension K /K; . It is clear via faithfulness of the scalar
extension Ky — K that this gives a K /k-image of Ay . L]

We conclude our discussion of base change by studying an important case
when the formation of the K/k-image commutes with any (linearly disjoint)
extension on k relative to K ; without a doubt, this 1s the most important
theorem in the theory and all of the difficulties in its proof are related to
purely inseparable extensions in positive characteristic :
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THEOREM 54. Let K/k be a primary extension of fields and let E/k
be an arbitrary extension of fields. Assume either that E/k is separable or
that K/k is regular. For any abelian variety A over K, the natural map I
in (5.1) is an isomorphism. In particular, (Img /¢ (A)g, Aex) is an EK/E-image
Of AEK

Note that the separability and regularity assumptions both hold if & 1s
perfect.

Proof. By transitivity, it suffices to treat two cases: when E /k is separable,
and when E/k is purely inseparable with K/k regular. We first treat the
separable case. By LLemma 5.3 it suffices to handle separately the cases when
E/k is finite separable and when E = k(¢). In the finite separable case, so
EK = E @ K, it is easy to reduce to treating the case when E/k is finite
Galois. In this case we have Gal(EK/K) = Gal(E/k), and the universality of

Apx — gk e(AEx)Ex

gives a natural action of Gal(EK/K) on the target that is compatible with
the action on the source. This descends to a Gal(Z/k)-action on Imgg/p(Agk)
because EK/E is primary; let us write X to denote the descended abelian
variety over k. The natural map

Aggx — Impg p(Ap)ex = (Xp)ex = (Xe)ex

is equivariant with respect to the actions of Gal(EK/K), so it descends to a
map A — Xg as abelian varieties over K. This latter map factors through the
K -fiber of a unique map of abelian varieties

Img (A — X
over k. Extending scalars to £ thereby gives a map of abelian varieties

Img /i (A)p — Xp = lmgg/p(Aex)

respecting projections from Agg, so this is an inverse to I Thus, I,
is an isomorphism, as desired. This settles the case when E/k is finite and
separable, and so when E/k is separable algebraic.

Since we have verified compatibility with separable algebraic base change,
by a transitivity argument we may now assume that & is separably closed, and
hence infinite. To handle E = & (), it 1s enough to show that for any abelian
variety B over k(¢), any map f: Agy — Bk over EK = K(¢) uniquely
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factors through

Ak Ake — Img /i (A)k) -

Certainly B extends to an abelian scheme B over a dense open U in P}, and
so f extends to a map of abelian schemes f: Ay — §K|W over a nonempty
open W C Ug. It is obvious that U(k) 1s contamned in W(K) with at most
finitely many exceptions (as we are working in P').

For each 7, € U(k) N W(K), the specialization ﬁo uniquely factors
through A. Thus, ker A is contained in ker}}o for all #, € U(k). In other
words, the induced map

f: (ker Ny — By|w

over W specializes to zero over U(k) N W(K). This map factors through
gK[n]|W with n = #ker Ak, and the resulting map (ker \)w — EK[n]|W be-
tween finite flat W-groups specializes to zero over the infinite set U(k)NW(K).
Since W is a nonempty open in P, this implies that f vanishes on (ker Ay,
and hence f :fK(,) kills ker Ak . Thus, f uniquely factors through Ak as
desired.

Finally, we suppose that K/k is regular and E/k is purely inseparable
(hence algebraic). Since k 1s separably closed, £ must be separably closed.
By Lemma 5.3, we can assume [F : k] is finite. Clearly EK = E ®; K since
K/k is regular. If k has characteristic O then £ = k and there is nothing to
prove. Thus, we may assume that the separably closed field k& has positive
characteristic p.

We shall reduce to the case when the natural maps
A = AA,K/k: A= ImK/k(A)K, )\, = AAEK,EK/E: AEK — ImEK/E(AEK)EK

are 1sogenies. Let us first check that Img/(A) = O if and only if
Imgg/e(Apx) = 0. Since the map Apx — Imgy(A)ex 18 surjective and
factors through Imgg p(Agx)ex (Via (gsex), if Imggp(Agg) = O then
Img 4 (A) = 0. Conversely, assuming Imgg/p(Agk) # 0 let us show that
Img /. (A) # 0. By assumption, there exists a nonzero morphism Aggx — Brg
for an abelian variety B over E, so composing with a relative g-Frobenius
B — B9 such that B9 is defined over k (e.g., ¢ = [E : k]) allows us
to assume that B is defined over k. In this case we may descend to get a
nonzero morphism of abelian varieties A — Bg because EK/K is primary.
Thus, Tmg /.(A) # 0.
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We now reduce to the case when A and )\ are isogenies. Since EK/K
1s primary, base change from K to EK carries K-simple abelian varieties to
EK -simple abelian varieties. We have proved the equivalence of the vanishing
of K/k- and EK/E-images for any abelian variety over K, and these “image”
functors carry i1sogenies to i1sogenies and commute with the formation of
products. Thus, by Corollary 4.7, we can replace A with the quotient by its
unique abelian subvariety that splits (in the isogeny sense) the quotient map A
so as to reduce to the case where A 1s an isogeny without changing either
the K/k-image or the EK/E-image of interest. Since ker N C (ker A)gx, we
conclude that the surjective )\’ also has a finite kernel and so )\’ is an isogeny.
This completes the reduction to the case when A\ and )\ are both isogenies.
Since the map /g, satisfies

(e)ex © N = ek

I must be a purely inseparable isogeny. In concrete terms, G = ker A and
G’ = ker ' C Ggg are the unique minimal connected finite subgroups of A
and Agg such that A/G and Agg /G’ are respectively defined over k and E.
We wish to prove that G’ = Ggg, but such a concrete formulation is not the
way we will make progress since it is hard to directly exploit the mimmality
properties that define G and G’. Instead, we are going to indirectly show that
the purely inseparable isogeny I/ is smooth, and so it is an isomorphism.

By Lemma 5.3, we may assume that the regular extension K/k is finitely
generated, so K = k (V) for a smooth k-variety V. By shrinking V we may
assume that A extends to an abelian scheme A over V and that the isogeny
At A — Img (A)g extends to a map of abelian V-schemes

X: A — Tmg i (A)y .

Thus, for all v € V(k) we have a well-defined specialization XU: AV@ —
Img /((A). Since EK is the function field of the smooth E-variety Vg, by
possibly shrinking some more on V (in fact, no shrinking i1s needed) we also
have a map

NiAxy Vg — Imgg /e (Ap) vy

of abelian schemes over Vg that smears out the map X : Agx — Imgg 1ECAEK)EK
on generic fibers over Vg.

We now must formulate (and prove) Chow’s regularity theorem. This
theorem pleasantly disentangles the roles of £ and & : it says that for any
sufficiently large integer m there exists a dense open V(,, in the m-fold
product V" — V Xgpeek -+ Xgpeck V. Over Speck such that for all extensions
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F/k and all (v;)) € Vp(F) C V(F)", the specialized surjective F-map of
abelian varieties

Z XTJJ: Zvl X X Avvm — ImK/k(A)F

1s smooth (or equivalently, this map induces a “regular extension” of function
fields in Weil’s terminology). In other words, the universal flat surjective
addition morphism

> ) [ pr A — Iog i (A)pr

j=1
of abelian V™ -schemes is smooth on fibers over the generic point of V™ for
large m.

Granting such a general result and also applying it to the situation with
the FK/E-image over the separably closed E, for large m we similarly
get a dense open Vg, in the m-fold product of V' = Vi over E with an
analogous specialization property. Since E/k is a purely inseparable extension
we can arrange for V(’m) to map into V,, under the canonical morphism
from V'™ onto V™ for all large m. This has the fantastic consequence
that for a common large m and an algebraic closure E of E and k, for
(W) € VimE) C Vimy(E) the E-maps ZXUJ, and EX;} are both smooth.
However, (Ig/i)5 carries the first of these smooth surjections to the second,
and hence (Ig/)g 1s smooth, so Ig, 1s smooth! This forces the purely
inseparable isogeny I/ to be an isomorphism, as desired. The regularity

theorem of Chow is presented below. [

THEOREM 5.5 (Chow’s regularity theorem). Let V be a smooth variety
over a field k. Let A be an abelian variety over K = k(V') such that A
extends to an abelian scheme A over V. Let

A: A = Tmg/(A)y

be the unique map of abelian V-schemes that extends the canonical map
A A = Img(Ag. For any m > dimA there exists a dense open Vi in
V™ over which the flat surjective summation morphism

(52) > T PIO): PHA) iy - xym pin(A) — Tmg Ay

is smooth.

The fact that A extends to A over all of V is a special case of a general
extension lemma of Weil [1, 4.4/1] (extending the Néron mapping property of
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abelian schemes to the case of a normal noetherian base), but for our purposes
in the proof of Theorem 5.4 it 1s enough to use elementary denominator-chasing
to imtially shrink V to a smaller dense open over which A extends to a map
of abelian schemes, thereby bypassing the need to use Weil’s lemma.

Proof. 'The case ol characteristic 0 is trivial for any m > 1, so we
may (and do) now assume that k has positive characteristic p. By using
Corollary 4.7 and shrinking V', we can assume that the canonical map

ALA— IIIIK/k(A)K

i1s an isogeny. By Theorem 4.5(3), ker A 1s (geometrically) comnected, so A
1s a purely inseparable isogeny. Hence, X is an isogeny.

The compatibility of Img/ with respect to separable extension on k has
already been established in the part of above proof of Theorem 5.4 that is
not conditional on Chow’s regularity theorem, so we may (and do) assume
that k is separably closed. Let AY and A be the duals of A and A (see [2,
Ch. 1, Thm. 1.9] for the general existence of the dual abelian scheme, or
shrink V' to make A — V projective so that Grothendieck’s construction of
the dual may be applied), and let

T TI‘K/k(Av)K — Av

denote the dual of the purely inseparable isogeny A (since this dual map 7
will later be called the K/k-trace of AY). A key technical problem is that
we do not yet know that the finite kerr is connected. The proof of such
connectivity will be given later (Theorem 6.12), using the general validity
of Theorem 5.4 whose proof has not yet been finished. (See Example 6.3
for examples of non-regular primary extensions K/k with A = 7V a purely
inseparable isogeny and ker7 disconnected.)

Duality translates the universal property of A\ ito a umversal property
of 7: 1t is a final object in the category of pairs (B,f) consisting of
abelian varieties B over k and maps of abelian varieties f: By — AV
over K. This finality mmplies that the finite K-subgroup f, * kerr inside
of Trg /k(AV)K cannot contain any nonzero K -subgroup defined over k in
TrK/k(AV)K, as otherwise we could replace TrK/k(AV) with a non-trivial
quotient to contradict the mimimality property of 7. In particular, the connected
K-subgroup H)) = (ker7)" in Trg 4 (AV)[N]g (with N the order of H, ) cannot
contain any nonzero K -subgroup in TrK/k(AV)[N 1% that is defined over k.
Let 7: Trg /k(AV)V A" denote the isogeny that is dual to the isogeny A
The kernel H = kerT is a finite flat V-group, so by working on the K -fiber
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we see that H C TrK/k(AV)[N]V. For any m > 1, any extension F/k, and
any (v;) € V(F)", the F-map of abelian vaneties

(53) Forr -2 Ton)t TragpA)p = Ay oo x Ay
1s dual to ZXUJ_ and its kernel is the schematic intersection NH,, nside of
Trg /«(AY)r. If this intersection vanishes then (5.3) is a closed immersion of

abelian varieties, and hence its dual qu;j 1s smooth. This motivates us to
consider the following rather concrete assertion concerning finite connected
k-groups and generic specialization of certain finite K -groups.

Let B be a finite commutative connected k-group (such as Trg /k(AV)[N]0
above) and let G C By be a fimte flat V-subgroup (such as the V-group
HnN TrK/k(AV)[N]?, that is open and closed in H). Assume also that the
generic fiber G, contains no nonzero K-subgroups that are defined over k as
subgroups of Bk . For m > dimg T5(G,) we claim that there exists some dense
open V(,, in V" such that for all F/k and all (v;) € V{,,(I") the intersection
(G, in Br vanishes. Roughly speaking, the claim is that for a family of
subgroups {G,} of B that is parameterized by a smooth k-variety V and
is truly varying in the sense that the generic fiber G, contains no nonzero
subgroup arising from a k-subgroup of B (there is no nonzero “fixed part” in
the family), an intersection NG,, of sufficiently many generic specializations
of the famuly 1s equal to 0 (where “sufficiently many” can be taken to mean

“more than dimg 76(G,)7).

Once this general claim is proved, we can apply it to the preceding situation
with the k-group B = Trg(AV)[N]° and G = HN By (so G, = H)). This
gives that for m > dim A = dimg T(A) the kernel of (5.3) for any extension
field F/k and (v)) € V{,,(F) has vanishing connected part, and so is F-tale.
Fix such an m and consider the special case that F = &k (V™) and (v)) 1s the
generic point of V™. Since F/k is regular, by Lemma 3.11 the étale kernel
of (5.3) in this case arises from an étale k-subgroup TI',, of B. Smearing out
from SpecF = Speck (V™) provides a dense open U C V,, such that the
restriction over U of the canonical map

s’ o P e T g i Y
(PET)s oo, (D) Trg A Yym = PI(A ) Xpm - o+ Xym Pi(A7)

has kernel ([,,)y. Letting ¢: V™ — V™~! denote the flat projection away
from the first V-factor, pick ¢ € V"~!(k) in the non-empty Zariski-open
q(U) € v™! (such £ exists since k is separably closed and V™~! is
k-smooth). Specializing at the generic point Spec K of the fiber g=1(¢) = V
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thereby realizes (I',,)x as a K-subgroup of H, = kerr that is defined over k
as a subgroup of Trg /k(AV)K. This forces I',,, = 0, whence (5.3) at the generic
point of V™ 1s a closed immersion. Hence, the dual map is smooth on fibers
over the generic point of V", and this is (5.2) over the generic point of V™.
We conclude that (5.2) is smooth over a Zarniski-open neighborhood Vi, of
the generic point in V™ as desired.

It remains to prove the above general claim concerning a connected finite
k-group B and a finite flat V-subgroup G C By. We can assume G, # 0.
Since a nonzero finite connected commutative K -group has nonzero kernel for
its relative Frobenius morphism, we have ker g, /x # 0. Thus, by shrinking V
so that kerFg,y is V-flat, we can replace G with kerFg,y and B with
ker Fpy to reduce to the case when Fp/ = 0.

For any m > 1, generic flatness over the reduced V™ provides a dense
open in V™ over which the universal m-fold intersection of fibers of the
subgroup G — By 1s flat over the base. Within this dense open locus in V™,
the vanishing condition on the m-fold intersection ﬂG,,j 1s a Zariski-closed
condition. We seek to prove that if m > dimg 7o(G,;) then this locally-closed
locus in V™ contains a non-empty open and hence (by irreducibility) is Zariski-
dense in V™. Since k is separably closed, for an algebraic closure k/k we
see that V" — V™ is a homeomorphism. Hence, it is enough to solve our
finite-group problem with & replaced by k& and V replaced by V; ; that is, we
can assume k is algebraically closed. Here we use crucially that extending
scalars to k does not destroy the irreducibility and reducedness properties
used above. With k algebraically closed, the connected finite k-group B is
naturally a product of a local-local group By and a multplicative group B,.
The intersection G, M By ¢ must vanish because it is a K-subgroup of the
multiplicative B, ¢ and all such K-subgroups arise from k-subgroups of B,
(as we can see via Cartier duality and the constancy of D(B,)). Lemma 3.14
implies that G, — (G,, N By ) x (G, N By ) inside of By — By g x By g, 50
G, 1s contained in By x. Hence, G C (B)y and so we are reduced to the
case when B 1s local-local.

Just as we reduced to the case Fpy = 0, now that B is local-local we can
reduce to the case when the relative Verscheibung morphism Vg, vanishes
too. Thus, by Theorem 3.18, for any extension E/k the Lie functor on the set
of E-subgroups of Bg sets up an inclusion-preserving bijective correspondence
between the set of such E-subgroups and the set of E-linear subspaces of
the tangent space To(B)g = To(Bg). The main consequence of interest to us
1s that 7o(G,) must be a K-subspace of To(B)x that contains no nonzero
k-rational subspaces.
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Working with the relative tangent spaces for G and By along their identity
sections over V, our problem now translates into relative linear algebra:
To(G) 1s a subbundle of To(B)®; Oy whose generic fiber contains no nonzero
k-rational subspaces, and we seek to prove that if m > dimg 7o(G,) then
on some dense open locus of m-tuples (v;) in V™ the mtersection of the
To(G)y, s in To(B) 1s equal to zero. It 1s obviously enough to work with v;’s
that are k-points of V', as k is now algebraically closed. For any positive m
at all, consider the universal map

Om: ToByn — (Lo(B)yn /pi (To(G)) & - - - & (To(B)yn /py(To(G)))

over V™. The mduced map on fibers over a point (v;) € V(k)" 1s the natural
map
To(B) — (To(B)/To(G) o) @ - - & (To(B)/ To(G)y,,.) »

and hence this fibral map is injective if and only if () 7o(G),, = O.

Since ¢, 1s a map of vector bundles on V™, if it is injective on the
fibers at some k-point & then it is a direct summand over a Zariski-open
neighborhood of { m V™. Thus, the locus of points £ = (v;) € V(k)" such
that () 7o(G),, = 0 is a Zariski-open set in V(k)". Since V™ is irreducible,
it therefore suffices (for any particular m) to find some (v;) € V(k)y" such
that () Zo(G),, = 0. We may assume that the rank r of Tp(G) is positive. To
prove the existence of such a (v;) if m > r, it suffices to prove (by induction
on i) that for 1 <i < r and any vy,...,v; € V(k) such that ﬂjq To(G)y,
in To(B) has dimension at most r — (i — 1), there exists v, 41 € V(k) such
that To(G),,., does not contain ﬂjgi To(G),, in To(B). More generally, for
any nonzero subspace 7 i To(B) we claim that there exists v € V(k) such
that 7T9(G), does not contain 7. If no such v exists then the composite
map

T & Oy — (To(B) @ Oy)/To(G)

vanishes on all k-fibers and hence vanishes, so To(G) contains 7" &, Oy and
therefore the K-subspace To(G,) mn To(B)x contains the nonzero k-rational
subspace Tk, a contradiction. ]
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6. THE K/k-TRACE
As usual, we let K/k be a primary extension of fields.

DEFINITION 6.1. Let A be an abelian variety over K. A K/k-trace is a
final object (Trg /((A), T) in the category of pairs (B,f) where B is an abelian
variety over k and f: By — A 1s a map of abelian varieties.

In view of the double-duality theorem for abelian varieties, the existence
of the K/k-trace is obvious by dualizing the K/k-image of AV and using the
dual of its umversal morphism. Combining this with Theorem 4.5(3) we get:

THEOREM 6.2. Let K/k be a primary extension of fields, and A an abelian
variety over K. The K/k-trace

T =TAK/k- TI‘K/k(A)K — A

exists, and the associated dual morphism is the K/k-image v g of the
dual abelian variety AV .

The 1mage of the map 7 as above i1s an abelian subvariety of A and
it is called the K/k-maximal abelian subvariety in [18]. By Theorem 3.19
and Theorem 4.5(3), this subvariety is defined over k if and only if kerrt
descends to a k-subgroup of Trg,(A), and (by the universality of 7) this
happens il and only if ker 7 = 0, or equivalently 7 is a closed immersion. In
characteristic O, 7 1s a closed immersion because it 1s dual to the surjective
map

AAV,K/k: 4~ — ImK/k(AV)K

whose connected kernel must be smooth (by Cartier’s theorem [25, p. 101])
and hence is an abelian subvariety of AY.

In characteristc p > 0, the K-subgroup kerr may be nonzero, or
equivalently the connected kernel of the dual map 7V may not be smooth.
Example 4.4 gives many examples for which this possibility happens with
ker7V = apx (s0 7 is an isogeny and kert =~ D(opx) ~ apg). For
general primary extensions K/k the kemel of T might not be connected
(but see Theorem 6.12 below for the absence of this phenomenon when K/k
is regular); the following class of disconnected étale examples was suggested
by the referce.
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EXAMPLE 6.3. lLet E be an ordinary elliptic curve over a field & of
characteristic p > O such that the connected-étale sequence of E[p] is not
split. (Many examples of such E are provided by Serre-Tate theory, applied
to the generic fiber over ky[lg]l of a sufficiently generic deformation of an
ordinary elliptic curve over a field ky of characteristic p. The standard Tate
curve over ko{lg) 1s another example of such an elliptic curve.) Since the
sequence splits over a perfect closure of &, it splits over a sufficiently large
finite purely inseparable extension K/k. Such a splitting over K is unique
(since there are no nonzero maps from an étale commutative group scheme
to a finite connected commutative group scheme over a field), and we let
G C Ek[p] be the unique étale K -subgroup of order p.

Define £’ = Ex/G, and consider the degree-p étale isogeny Ex — FE
over K. This isogeny factors uniquely as 7' o hx where 7': Trg (B )g — E
is the K/k-image and h: E — Trg/(E') is a map of abelian varieties over
k. This forces Trg,(E') to be nonzero and & and 7’ to be étale isogenies of
elliptic curves with degh - degr’ = p. The map % must be an isomorphism
because if it is not then it 1s &tale with degree p and so the étale subgroup
kerhi C E[p] with order p defines a k-splitting of the connected-étale sequence
of E[p] (which we assumed is not split over k). Hence, the universal morphism
7' Trg u(E")x — E' is a degree-p étale isogeny, so its kernel is disconnected.

Some basic properties of the K/k-trace with respect to extensions of fields
are formal consequences of the theory of the K /k-image by means of duality.
For example, dualizing Theorem 4.2, Theorem 4.5, and Corollary 4.7 gives:

THEOREM 6.4. Let K/k be a primary extension of fields, and let A be
an abelian variety over K with K/k-trace T =74 gp: Trg (A)x — A.
(1) If A= Xk for an abelian variety X over k then T is an isomorphism.
(2) If k/ky is a primary extension and (Try ko (Ix /4 (A)), 7o) denotes the

k/ko-trace of Trg ;(A) then

(T gy (Trge j1(A)), T © Tosk)

is a K/ko-trace of A.
(3) If K'/K is a primary extension then (lrgy;(A),7x) is a K'/k-trace

of Ag’.
(4) The canonical map 7: Trg i (A)x — A has finite kernel.

Moreover, there exists a unique abelian subvariety A" C A such that
Trg/(AJA) = 0 (so Trgp(A) — Trgpu(A) is an isomorphism) and
Tar ki T plADNg — A' is an isogeny.
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The abelian subvariety A" C A at the end of Theorem 6.4 is the
K /k-maximal abelian subvariety of A. Combining Theorem 6.4 with The-
orem 4.5(3) gives an interesting property of the finite K-group ker 74/t

COROLLARY 6.5. Let K/k, A, and T be as in Theorem 6.4. The finite
K-group kert has connected Cartier dual.

Proof. By the final assertion in Theorem 6.4, we easily reduce to the
case when 7 is an isogeny. Hence, the Cartier dual of ker7 is the kerel of
the dual 1sogeny A4v g, and the connectedness of this latter kernel follows
from Theorem 4.5(3). [

Dualizing Theorem 5.1 gives:

THEOREM 6.6. Let K/k be a primary extension of fields and A an abelian
variety over K. For any extension E [k, consider the unique E-map of abelian
varieties

I,Ig/ki Trg /1 (A)e — Treg ) e(Apk)

such that Ta. gk E © (IJ’E/k)EK = (Tax/0)Ex- The map Ié/k is an isogeny and
its kernel has connected Cartier dual.

REMARK 6.7. Corollary 5.2 and [.emma 5.3 are of an essentially technical
nature, and their analogues for K /k-traces are immediate via either dualizing
from K/k-images or (better) copying the earlier proofs in our new setting
(which 1s possible, due to the preceding results), so we do not state them
formally here.

The dual of Theorem 5.4 is very useful, so we record it here for later
reference :

THEOREM 6.8. Let K/k be a primary extension of fields and E/k an
arbitrary extension, and assume either that E/k is separable or that K/k

is regular. For any abelian variety A over K with associated K/k-trace
7: Trg i (A)g — A, the pair (Trg/((A)g, 75) is an EK/E-trace of Agg.

By working with K-isogeny factors of A that are defined over £ (as in
the proof of Theorem 5.1), we deduce an unsurprising relationship between
the K/k-image and K /k-trace:
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THEOREM 6.9. Let K/k be a primary extension of fields and A an abelian
variety over K. The unique map

Tr/e(A) — Imyg /(A)

of abelian varieties over k that descends the K-map /\A’K/k O Tak/k IS an
isogeny.

Another simple but useful consequence of duality is a dual version of
Chow’s regularity theorem (Theorem 5.5):

THEOREM 6.10. Let V be a smooth variety over a field k. Let A be an
abelian variety over K = k(V') such that A extends to an abelian scheme A
over V. Let

Fi Trg Ay — A

be the unique map of abelian V-schemes that extends the canonical map
7: Trg i (A)x — A. For all m > dim A, there exists a dense open Vi in V"
over which the morphism

6.1)  (PIF),. ., P T i(Ayn — prA) Xym -+ Xym prfA)

is a closed immersion.

REMARK 6.11. Theorem 6.10 is not a formal consequence of the statement
of Chow’s regularity theorem. Indeed, from the statement of Chow’s theorem
one gets smoothness of the kernel of the surjective dual of (6.1) over
some dense open in V™ for all m > dimA, but in general the dual of a
smooth surjection between abelian varieties need not be a closed immersion.
Fortunately, it is the stronger closed immersion condition for (6.1) over some
dense open in V™ for all m > dim A that was established in the proof of
Chow’s regularity theorem.

It 1s natural to seek a criterion for kert to be connected (and hence
mfinitesimal, by Theorem 6.4(4)). The proof of the following criterion requires
the full strength of Theorem 6.8 (allowing E/k to be inseparable):

THEOREM 6.12. Let K/k be a regular extension of fields. For any abelian
variety A over K, the finite K-group Ker, k. is connected with connected
dual.
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Proof. 'The connectedness of the dual holds for any primary extension
K/k (Corollary 6.5), and to prove connectedness when K/k is regular we
first use that the formation of 7 commutes with passage to EK/E for any
extension E/k (by Theorem 6.8). By taking E to be an algebraic closure
of k, we may assume that k 1s algebraically closed. In particular, for any
extension K'/K the extension K'/k is regular. By Theorem 3.19, for any
primary extension K’'/K the map

TK' . TIK/k(A)KI — AKI

is a K’ /k-trace of Ag . Thus, by taking K’ to be a perfect closure of K we can
assume K 1s perfect. This perfectness ensures that the connected-étale sequence
of the finite K-group ker 7 is split, and its étale factor G descends to a finite
k-subgroup of Trg/(A) by Lemma 3.11 (applied to H = Trg/(A)[n] with
n = #G). We conclude that 7 factors through the K-fiber of the projection
map Trg;(A) — Trg,(A)/G, and so by finality of the K/k-trace it follows
that G must be trivial. Hence, ker 7 1s connected. L]

7. THE LLANG-NERON THEOREM

Theorem 6.12 implies that if K/k is regular and A is an abelian variety
over K then the map 7 = 74 g/i: Trg(A)x — A is injective on K-points,
s0 Trgt(A)(k) 1s naturally a subgroup of A(K).

THEOREM 7.1 (Lang-Néron). Let K/k be a finitely generated regular

extension of fields. Let A be an abelian variety over K. The quotient group
A(K)/TrK/k(A)(k) is finitely generated.

The reader who 1s only interested in the case K = k(C) with algebraically
closed & and a smooth proper connected k-curve C can skip ahead to
the paragraph containing (7.2). For non-constant elliptic curves £ over such
a K (ie., non-constant elliptic fibrations € — C), the K/k-trace vanishes
by Theorem 2.3. The argument following (7.2) therefore gives a proof that
E(K) = €(C) is finitely generated for such E over K without using any of
the material in §4-86.

Since an abelian variety over a finite field obviously has a finitely generated
(even finite) group of rational points, and an abelian variety over a number
field has a finitely generated group of rational points (the classical Mordell-
Weil theorem), a special case of the Lang-Néron theorem is the main result
of Néron’s thesis [26]:
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COROLLARY 7.2. Let K be a field that is finitely generated over its prime
field, and let A be an abelian variety over K. The group A(K) Is finitely
generated.

To prove the Lang-Néron theorem, the first step 1s to reduce to the
special case when k is algebraically closed and K/k is finitely generated
of transcendence degree 1; that is, K = k(C) for a smooth proper connected
curve C over k. The reader may find it interesting to compare our arguments
below with those in [20, Ch. 6].

Let us now turn to the reduction steps.

LEMMA 7.3. If k' [k is an extension, it suffices to prove the Lang-Néron
theorem for the regular extension k'K/k' instead of K/k.

Proof. Let K' = KK and A" = Ag. We know that Trg (A)) =
Trg /¢(A) , by Theorem 6.8, so Trg: /(A" )K') = Trg 1 (A)(K') inside of A(K")
(recall that 7 and 7’ are injective on field-valued points, by Theorem 6.12).
Thus, by hypothesis A(K")/Trg ((A)(k') is finitely generated, and so it is
enough to prove that the natural map

A(K) Ty (A)(k) = A(K") /Ty (A)(K")
is injective. That is, we want the natural inclusion
T/ (A)(k) € A(K) N Trg 1 (A)K)

inside of A(K') to be an equality.

Let F,, be the fraction field of the domain K%™ (tensor product over k),
and let p;: SpecF,, — Spec K over Speck be the map induced by the ith
standard projection. By Theorem 6.10, for sufficiently large m the map of
abelian varieties over £,

(7.1) Trg i (A)F, — p1(A) X -+ X pr(A)

is a closed immersion. Let F) denote the fraction field of K’ S (tensor
product over k'), so F), = k'F,,. Since k is algebraically closed in F, we
have F,, Nk' = k inside of F},, so to show that a k'-point of Trg (A)
inducing a K-point of A (inside of A(K')) is a k-point of Trg;(4) it is
enough to prove that an F;, -point of Trg(A) inducing a K-point of A is
an F,,-point of Trg /(A). Concretely, if we let F,,; and F;,IJ denote F,, and
F! viewed as K-algebras via the ith tensor-factor, then the assertion to be
proved is that if x € A(K) is a point such that the points p;(x) € A(F), ;) are
all induced by a common point
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¥ € Trg(AF,,) = pi (Tt j(ANF,, )

then y € Trg /(A (F ).

By descent theory (Theorem 3.1), it suffices to show that y has the same
image under the two maps Trg (A)(F;,) = Trg (AF,, QF, F,). Since (7.1)
1s a monomorphism of functors, it is enough to check that the two natural
maps

AFpy 1) % -+ X A ) = Ay Dy Fap ) X -+ X Ay @t Foy)
have the same composite with the diagonal embedding
A(K) — A(F;%l) X e X A(F,;’m).
Thus, it suffices to show that for each i, the two composite maps
K—F,; = F,,;®F,, F,

coincide. This equality of maps is obvious, since the map K — K’ " to
the ith tensor-factor factors through the map K — K®" to the ith tensor-
factor. [

By the preceding lemma, if we wish to prove the Lang-Néron theorem
for any specific abelian variety relative to a given finitely generated regular
extension K /k then it suffices to treat the analogous situation relative to kK /k
for an algebraic closure k/k.

LEMMA 7.4. For any intermediate extension K/E/k such that K/E is
regular, it suffices to separately treat the cases K/E and E/k.

Note that, under the hypotheses in the lemma, K/E and E/k are
automatically finitely generated and E/k is automatically regular.

Proof. Since Trg(Trgs(A)) is a K/k-trace of A (Theorem 6.4(2)), via
the commutative diagram

Trg p(A)x - . A

(TE/;C)KT TTK/k

Trg(Trgjp(A)e)x —— Trg /(A

we are done. [l
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We now may and do assume k to be algebraically closed, and we can
choose a smooth k-variety V such that K = k(V). The case dimV = 0 1s
trivial (as then K = k). If dimV > 1, then by Bertimi methods we can shrink V
so that there is a smooth map f: V — V' with V' a k-variety of dimension
dimV — 1 and all fibers of f geometrically connected of dimension 1. In
particular, K is regular over E = k (V') with trdeg,(K) = 1. Using Lemma 7.4,
we are thereby reduced to the case when k 1s algebraically closed and the
finitely generated extension K/k has transcendence degree equal to 1.

Let C be the proper smooth connected curve over k with function field K.
Let U be a dense open in C such that A extends to an abelian scheme A
over U. Note that A(K) = A(U). Letting m > 1 be an integer not divisible
by the characteristic of k, the Kummer sequence

(7.2) 0 Aml - A S5 A -0

on Ug induces an injection A(K)/mA(K) — HL(U,A[m]). Since k is
separably closed and A[m] 1s a locally constant constructible sheal of
Z/mZ -modules on the smooth k-curve U (with m a unit in k), the group
H.(U,Alm]) is finite by a general finiteness theorem [9, 1, 8.10] for compactly
supported cohomology, together with Poincaré duality [32, Thm. 4.8] on U.
(See [0, Thm. 1.1] for a much deeper finiteness theorem.) Hence, A(K)/mA(K)
is finite. This 1s an analogue of the so-called weak Mordell-Weil theorem in
the classical case (with K a global field).

Using the standard normalized valuations on K arising from the points
of C(k), we have a product formula and thereby get a logarithmic height-
function on A(K) via a choice of projective embedding of A — P% over K.
We will show that the set of elements of A(K) with height below any given
bound M has finite image in A(K)/Trg/(A)(k); once this is proved, the
classical proof of the Mordell-Weil theorem (combining the weak Mordell-
Weil theorem and the elementary parts of the theory of heights) may be easily
adapted to show that A(K)/Trg (A)(k) is finitely generated.

Now choose a projective embedding A — P% and let /i be the resulting
logarithmic height on A(K). Let A< P} x C be the closure of A; this is a
projective k-variety. By the valuative criterion for properness,

A(K) = {f € Homy(C, A) | pr, of = 1¢} = A(C)

where pr,: A< P} x C — C 1s the second projection and 1s used to view A
as a C-scheme.
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LEMMA 7.5. Choose a projective embedding C — P! as a degree-d
curve. For P € A(K), the associated Segre-map

friC— A PYx C s PO

is a closed immersion and the projective curve fp(C) has degree < h(P)+d.
In particular, as P varies with bounded height, the map fp varies with
bounded degree for its image.

Proof. The map C — P7' 1s given by a twple [hy, -, hy] with
h; € k(C) = K and not all k; equal to zero. The point

P € A(K) C P"(K) = Homy(C, P})

1s given by a tuple [go,...,g,] with g; € k(C) not all zero, so fp 1s given by
the tuple of g;h;’s (by the definition of the Segre embedding). Thus, viewing
fp as a K-point of P@TDE+D=1 it hag naive logarithmic height equal to

—ord,(g;1,)) < — ord,(g; — ord,(h,
2 max(—ord(gihy)) < 3 max(—ordi(g) + 3 max(—ord(h)
xeCk) xECk) xeCk)

=P+ mjax(— ord, (1)) .

x€C(k)

We claim as a general identity that

(7.3) max(— ord, (1)) = d;
x%k) d '

this would complete the proof, since applying it to fp would also show that
the naive height just shown to be bounded by 4#(P)+d would in fact coincide
with the degree of fp(C), as desired.

Note that, by the product formula, the left side of (7.3) is unaffected by
a common k(C)*-scaling on the /;’s. Hence, this left side is intrinsic to the
embedding of C into P’ and is independent of the choice of representative
homogeneous rational coordinate functions hg, ..., h,. Let £ =3 aX; be a
generically chosen nonzero linear form over k, with zero-scheme H in P’.
By genericity, C is not contained in /7 and all a; are nonzero. Clearly HNC
is the zero-scheme of the nonzero rational function Zajhj on C. Thus, d
1s the degree of the zero-scheme of this rational function (by the definition
of d as the degree of C as a curve in P}'), and so d is also the degree
of the polar-scheme of the rational function } a;i;. For generic choices of
the a;’s, > a;h; will have its poles exactly where the /;’s have poles, with
the pole-order of > a;h; at each such point equal to the maximal pole-order
among the /;’s at the pomnt. Hence,
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d= " max(— ord.(h))
J
xeCk)
as long as the #;’s have no common zero (this lack of a common zero ensures
that the contribution to the sum at each x 1s non-negative, and is positive
at precisely the points where some #; has a pole). By making a common
k(C)*-scaling on the /;’s we may suppose some /; is equal to 1, so this
eliminates common zeros. [

By Lemma 7.5, as P varies over A(K) with h(P) < M (for fixed M), the
curves

have degree < M +d. It 1s therefore enough to show that the set of points
P € A(K) for which the closed immersion

1 n—1
fP: e P;{’H' Ym+1)

has a fixed degree (or equivalently, a fixed Hilbert polynomial) has finite
image in A(K)/Trg (A)K).

By the quasi-compactness aspects of Grothendieck’s representability results
on Hilbert and Hom-schemes [10], the functor of morphisms P: C — A such
that pr, o P = 1o and fp has degree § in PTD+D=1 g represented by the
“degree-9” Hom-scheme H; that is of finite rype over k. Thus, it suffices
to restrict attention to those P’s corresponding to k-points on a common
ureducible component of Hjs. The case of a O-dimensional component is
trivial, so we may focus attention on positive-dimensional components. Any
two k-points on an irreducible finite-type k-scheme V of positive dimension
lie in a common irreducible curve X m V (see the Lemma on p. 56 in [25]),
so it remains to check that if P,P': C = A are two C-maps lying in an
algebraic family of maps parameterized by an irreducible k-curve X then P
and P' coincide in A(K)/Trg/(A)(k). To be precise, by an algebraic family
of maps we mean an X x C-map

P:XxC—oXxA,

and for all x € X(k) we will show that the points P, € A(C) = A(K) represent
a common class modulo Trg /. (A)(K).

Using pullback by the finite surjective normalization X = X, we may
assume that X is k-smooth. Let X denote the k-smooth compactification
of X. Passing to fibers over the generic point Spec K of C, we get a section

fPKIXK—>XK XA,
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or equivalently a K-map Xx — A, and by the valuative criterion for properness
this uniquely extends to a K-map

FZXK—)A.

Since X(k) # &, upon choosing xo € X(k) we can use Albanese functoriality
to find a unique factorization

N

A

where 17(0) = F(x) € A(K). Here, ¢: (X,x) — (Albg/k,O) is the universal
pointed map to an abelian variety over k, and its formation commutes with
extension on k. Since 71 — F(xp) respects origins, it 18 a map of abelian
varieties over K. (For example, if A is a non-constant elliptic curve over K
then 7 — F(xo) vanishes because Trg/(4) =0 by Theorem 2.3.)

We apply the universal property of

Ti TTK/k(A)K — A

to get a factorization 1 — F(xy) = T o fx for a unique map of abelian
varieties f: Albg, — Trg/(A) over k! Thus, composing with 1k gives
F = F(xg)+7o(for)x. Composing this identity with the map x: Spec K — Xg
defined by x € X(k) gives that P,: SpecK — A m A(K) 1s equal to
F(xg) + 7 o (f 0 g(x), so the P.’s agree as elements in A(K)/Trg  (A)(k) :
they all represent the residue class of the point F(xy) € A(K) that has nothing
to do with x. This concludes the proof of the Lang-Néron theorem.

8. GENERALIZED GLOBAL HELDS

In the final three sections, we give a scheme-theoretic development of the
theory of heights in the “geometric” context of the Tang-Néron theorem. The

theory of canonical heights on abelian varieties over a global field K provides

a natural positive-definite quadratic form on A(K)g LR ©z A(K) for any

polarized abelian variety (A, ¢) over K such that the polarization ¢ satisfies an
auxiliary symmetry condition: the ample line bundle Ny = (1,¢)*(P) on A is
symmetric (i.e., [-11"(Ny) =~ Ny), where P is the Poincaré bundle on AxAY .
There are many such ¢ for any A, such as ¢ = ¢g: x — £5(L)Q L™ for any
ample symmetric line bundle £ on A, in which case N, = [2]*(L) @ L®(2),
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For any regular and finitely generated extension of fields K/k and any
polarized abelian variety (A, ¢) over K such that (1, ¢)*(P) is symmetric, we
wish to put a similar structure on (A(K)/Trg(A)(k))r once K is endowed
with a collection of absolute values resembling the “product formula™ situation
in the classical special case trdeg,(K) = 1 (using || - ||, = e~ Wwxklords 55 4
runs over the closed points of the unique regular proper k-curve with function
field K). In this section we shall develop the theory of fields endowed with
a “product formula” structure, and in §9 we use it to develop a theory of
heights. Applications to positive-definiteness are given in §10 (and also see
Corollary 9.12).

Let K be a field. Two absolute values |-| and |-|" on K are equivalent
if they define the same topology on K. By [20, Ch. 1, 1.1], it is the same to
say |-|'=|-|" for some r > 0.

DEFINITION 8.1. A generalized global field is a field K equipped with
an infinite set of equivalence classes v of non-trivial absolute values on K
and a choice of representative absolute value || - ||, for each » such that
1. all but finitely many v are non-archimedean, each non-archimedean v is

discretely-valued, and each x € K™ is a v-unit for all but finitely of the

non-archimedean v ;
2. for all x € K* the product formula [], ||x/|5* = 1 holds, where e, = 2

if v 1s complex (that 1s, if v 1s archimedean and K, ~ C) and ¢, = 1

otherwise ;

3. for all non-archimedean v, the discrete valuation ring O, for v on K is
excellent (this is equivalent to K, /K being a separable extension, so it is
always satisfied when K has characteristic 0).

REMARK 8.2. Beware that for non-archimedean v the notation ©,, denotes
the discrete valuation ring for v in the field K, and it 1s not to be confused with
the complete discrete valuation ring of the v-adic completion K, of K ; this
latter valuation ring will never arise below. To keep the distinction clear, note
that complete discrete valuation rings are always excellent whereas general
discrete valuation rings (with positive generic characteristic) may fail to be
excellent. We refer the reader to [21, Ch. 13] for a development of the basic
properties of excellent rings. See [7, IV, 7.8{l] for further results concerning
excellence.

Let us give two important classes of examples.
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EXAMPLE 8.3. The arithmetic case is when K is a number field. In this
case, we use the traditional set of normalized absolute values || - |, : for non-
archimedean v we require the value group of || - ||, in Rsq to be g% with
G, equal to the size of the finite residue field at v, and for archimedean v
we use the standard absolute value on the topological field K, (satisfying
llglls = |g| for ¢ € Q). An element x € K* satisfies ||x|[, = 1 for all » if
and only if x is a root of unity.

EXAMPLE 8.4. The geometric case with constant field &k is when K is
a fimtely generated over a field k& with %4 algebraically closed in K and
trdeg, (K) > 0; we do not assume K/k is separable. In this case, let V be
a proper integral k-scheme with k(V) = K and assume V is regular in
codimension 1 (for example, normal projective V). The codimension-1 points
v € V give rise to inequivalent non-trivial discrete valuations on K with local
ring Oy, and associated normalized order function denoted ord,: K™ — Z.
If dimV > 1 then this collection of local rings depends on the choice of V
(though V is unique if trdeg,(K) = 1), and for each x € K* we have
ord,(x) = O for all but fimitely many v. Since schemes of finite type over
a field are excellent [7, IV,, 7.8.3], each Oy, is excellent. To give K a
structure of generalized global field, we want to find constants 0 < ¢, < 1

such that defining |||, = ¢%%* makes the product formula ], |x||, = 1 hold
for all x € K*. (A special property of the generalized global field structures
{|| - lls}» on K arising in this way is that an element x € K* satisfies

|lx[[, = 1 for all v if and only if x € k*, since k is algebraically closed
in K and the normalization map V — V is a finite birational map that is an
isomorphism away {rom a closed subset of codimension > 2 in V.)

To find such ¢, ’s, first assume there exists a closed immersion i: V < P}
over k. We can use ¢,; = e~ dege () with degk’i(v) the k-degree of the
closure of i(v) as an integral closed subscheme of P} : the product formula is
the classical fact that on an integral closed subscheme of P} that is regular in
codimension 1, any principal Weil divisor has k-degree 0. More generally, 1f
there exists an ample line bundle N on V then we can use ¢,y = ¢~ doge (V)
where

def T im V— im {v}
deg, 5 (v) = degy y([{o}1N clN)™ 1) = deg, mor(cr N ™™ 1),

. dim V—1 . . .
Since ¢, yer = €, for all positive integers 7, reduction to the very

ample case shows that the absolute values | - ||, v = czrc},\r satisfy the product

formula.
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Whenever we speak of the “geometric case” for K/k, it is always
understood that we use a generalized global field structure arising from such
a pair (V,N). Note that replacing V with its normalization V and N with its
ample pullback to V does not affect this construction, so there is no serious
loss of generality i restricting attention to normal projective k-models for K.
In the special case dimV =1, V is unique and both deg, (v) = [k (v) : k]
and log|| - ||o,n = —[k(v) : klord, are independent of N. J

Of course, when & 1s finite (the “overlap” of the arithmetic and geometric
cases), it is traditional to use 1/#k rather than 1/e in the above construction.
In Remark 8.7 we will recall the justification for this convention, but we
note here that since this change merely scales all log||- ||, ’s by the universal

positive constant log #k, it has essentially no impact on the theory of heights
and so does not affect the meaning of any of the theorems of this paper (when
applied to the geometric case with k finite).

Let us now explain the canonical procedure for extending generalized global
field structures through finite extensions (and in Example 8.5 we will make it
explicit in the arithmetic and geometric cases). Let K be a generalized global
field and let K'/K be a finite extension. Each v on K lifts to finitely many
equivalence classes v’ on K’, and each such v’ admits a unique representative

; . o g ; K Ky Jew /e,
|| - ||o+ defined by the requirement that its restriction to K is || - ||EJ wikvleo/e
(where e, = 2 for complex v and e, = 1 otherwise, and similarly for
e, ). Note that for archimedean v we are requiring || - | |x = || - ||», and

obviously at most finitely many o' are archimedean. For X’ € K'™, if ¥
(resp. 1/x") is non-integral at a non-archimedean place v’ of K’ over a
place v of K then one of the coefficients of the minimal polynomial of x’
(resp. 1/x") over K is non-integral at v. Hence, x” is a v-unit for all but
finitely many non-archimedean v’ . Also, for non-archimedean v the excellence
requirement on the O,’s is inherited by the O, ’s because excellence is
preserved under normalization in finite extensions [7, IV,, 7.8.2]. The rings
K’ ®k K, are reduced because K, /K is separable for all v (thanks to the
excellence hypothesis in the non-archimedean case), and hence the natural
map
K ok K, — | [ Kl

v’ |
is an isomorphism for all v. Thus, for all v and all X' € K'* we have

, K Ky lew fe,\ o' K K]
[T = TT (ke e, GO 75) = [N /(')

v v n'|v

€y
v
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and so the product formula holds for the ||-||,’s. This gives K’ the sought-after
natural structure of generalized global field, and the procedure is transitive
i towers of finite extensions. This construction 1s the algebraic method for
putting a generalized global field structure on K’ (via the one given on K).

EXAMPLE 8.5. In the arithmetic case, the algebraic method for endowing
a finite extension K’'/K of a number field K with a structure of generalized
global field does give the number field K’ its traditional collection of
normalized absolute values as in Example 8.3.

Consider the geometric case K/k with a generalized global field structure
{[|-|[+~}+ as in Example 8.4, using a choice of pair (V,N),so ¢, = ¢~ degy, (V)
for all codimension-1 points v € V. The algebraic method as above gives any
finite extension K’ a structure of generalized global field via absolute values
having the form || - ||, = c:r,d“' on K’ for suitable 0 < ¢,y < 1, with o/
ranging over the codimension-1 points on the V-finite normalization V' of V
in K'. Since V' is k-proper, integral, and normal with function field K’,
clearly the k-finite T(V',0y/) C K’ coincides with the algebraic closure &’
of £k in K’. In particular, V' is naturally a &’'-scheme. The only elements
X € K'* satisfying |||, = 1 for all v/ are the nonzero elements in k.
(Note that K'/k' need not be separable even if K/k 1s.) We would like to
describe the ¢, ’s explicitly, in a manner similar to the ¢, ’s.

Let N’ be the ample pullback of N to V’. In proofs it is sometimes
necessary to replace K/k with K'/k’, and so it is crucial to know that the
generalized global field structure put on K’ via the algebraic method (with
respect to the given “geometric” generalized global field structure {|| - ||, }o
on K) is closely related to the generalized global field structure {||- ||, w7 }or
put on K’ via k', V', and N’, at least up to a constant factor in the exponent.
First, observe that for both constructions the resulting set of equivalence
classes of valuations on K’ is the same, namely the equivalence classes of
the discrete valuations on K’ lifting the ones arising from the generalized
global field structure on K. Hence, the absolute values on K’ arising from
the algebraic method may be denoted {|| - ||,»} with index set given by the
codimension-1 points v’ € V’. The relationship between || - ||,» and || - ||, n/
1s explained in the following lemma.

LEMMA 8.6. For all codimension-1 points v' € V' we have

Kk —de o[k k
Cor = Cp oy = € & v (VOIRRT

Thus,

[Nl = - 1%5, for all such o',
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Proof. Using the defining property of | - ||, » and the general formulas
ord, [gx = e |v) - ord,, [K), : K,] = [K'(¥): k(v)]e@ |v)

with ¢(v'|v) denoting the ramification degree for v’ over v, the problem
comes down to verifying the identity

K : Kldegy o (') = [K (') : k(v)] degy n(0).

Letting X and X’ denote the closures of v and ¢ in V and V' respectively,
we are reduced to proving that if’ k' /k is a finite extension of fields, f: X' — X
is a finite dominant map from an integral proper k’-scheme to an integral
proper k-scheme, and N is a line bundle on X with pullback N’ on X', then

?
[k : k] degy o (X") = [K'(X") - k(X)]degy 5 (X)
with deg; \(X) d:Efdegk((:l(N)dimX) and likewise for (X', N’ k).
Equivalently, since dimX = dim X', we want the polynomials
K k] X, NS, KX 2 R GOT - XX, N
in n to have the same leading coefficients. Since
K k1 e O, N = e, N = AV = X, (RN

and fiN' = fo.f*N = (f.Ox) ®o, N, with f.Ox generically a vector bundle
of rank [k'(X"): k(X)], it suffices to show that if F is a coherent sheaf on
an integral proper k-scheme X and J has positive rank r at the generic
point, then Y. (X, F @ N®") has leading coefficient that is r times the leading
coefficient of (X, N®"). This is proved in [25, §6, App.]. [

REMARK 8.7. For function fields of varieties over finite fields, the equality
(1/#k)* %1 = 1/#k' enables us to climinate the intervention of [k’ : k] in
Lemma 8.6 by using 1/#k rather than 1/e in Example 8.4.

9. REVIEW OF HEIGHTS

Let K be a generalized global field with associated set of absolute values

{Il-|lo}+» as in Definition 8.1, and choose an algebraic closure K. For n> 0,
the standard K-height hg , : PR(K) = (I?n+1 — {O})/I?x —R is
1 e,
hn(lto, - - ta]) = > max(log||s{[};) >0

[K': K]

e
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where K/ C K is a finite subextension over K that contains the t;’s and
we canonically endow K’ with a structure of generalized global field via the
algebraic method as in §8. This formula is independent of the choice of K’
(because [K" : K'] = zv,,w[Kq’)’,, :K!,] for all v/ on K'), it is well-defined
(by the product formula), and it is invariant under the action of Aut(K/K) on
PL(K) (so it is essentially independent of the choice of K). It would be more
canonical to not choose K and to work instead with hk, as a function on
the set of closed points of P%. However, we are interested in applications to
abelian varieties and so we prefer to work with the set of K-points because
for a locally finite type K-group G the set of K-points G(K) is naturally a
group whereas the set of closed points of G is not naturally a group.

For any T € Autg(PY), hg, — hg, o T 1s bounded (in absolute value)
on P%L(K). For proofs of this and all subsequent unattributed assertions in this
section concerning K -heights, see [14, §B] and [25, §4, Appendix II], where
proofs are given for number fields but carry over essentially verbatim to any
generalized global field. Many basic proofs in [14] are written with restrictive
smoothness hypotheses, though as noted in [14, B.3.6] such hypotheses can
be avoided with better definitions in terms of Cartier divisors rather than Weil
divisors. (The proofs of the basics in [25] make no smoothness restriction.)

For any K-vector space V of dimension n+ 1> 1, transporting hg , by
means of any linear isomorphism V ~ K"*! gives rise to a common (and
hence intrinsic) residue class /g v in the R-vector space of R-valued functions
on P(V)K) modulo O(1) (by which we mean: modulo the R-subspace of
bounded functions). This residue class is denoted /i y .

REMARK 9.1. In the arithmetic case it 1s traditional to work with
hy = hgo/IK : Q] and hy = hgy/[K : Q] because these are invariant
under finite extension on K. There is no “smallest subfield of finite index”
analogous to Q in the geometric case, and so we must keep track of the
ground field K in general.

Let X be a projective K -variety. For any very ample line bundle £ on
X, the closed immersion

et X = PHYX, L))
defines a K-height function (modulo O(1))

O.1) hK,L = hK,HO(X,L) Olg
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on X(K). In what follows, all equations and inequalities involving /g o are
understood to be taken modulo O(1), though we may sometimes repeat this
explicitly for emphasis.

Since hg reoor = hi,o + hg oo for any two very ample line bundles O
and L' on X, and hgp = hg oo if L>~L" on X, if L is an arbitrary line
bundle on X then we may define

hi o = hg o, — he o,

where L >~ L@ L5 1 with very ample line bundles L£; and L. This is inde-
pendent of the choice of £ and L,, and L +— hg ¢ is a homomorphism from
Pic(X) to the R-vector space of R-valued functions on X(K) modulo O(1).

REMARK 9.2. Let K'/K be finite and give K’ a generalized global field
structure via the algebraic method as in §8. Upon picking a K -embedding
of X’ into K, we have

9.2 [K, : K]hK,L = hK’,LK/

on X(K) = Xg/(K) (modulo O(1), as always). Thus, for applications where
one considers sets of bounded height it 1s harmless if we replace K with a
finite extension K’ and X with the projective K’-variety Xg..

The identity (9.2) has a useful application for K/k as in the geometric
case when K' = K ®; k' for an algebraic extension k’/k such that either
k'/k or K/k is separable (so K’ is a field and k' is algebraically closed
in K’). Fix a choice of generalized global field structure on K using a
pair (V,N) as in Example 8.4. The hypotheses ensure that Vi 1s integral.
Let V' be the normalization of Vy and let N’ be the ample pullback of Ny
to V'. Upon choosing an algebraic closure K/K, we pick a k-embedding
of ¥ into K and thereby realize K as an algebraic closure of K’. Define
h}";(:IEK’ to be the mod-O(1) class of functions on Xg/(K) defined via the line
bundle Lg: and the generalized global field structure on K’ corresponding to
the pair (V/,N’). Beware that when [k’ : k] is finite and larger than 1, this
“geometric” generalized global field structure on K’ is not the one assigned
to K’ as a finite extension of K via the algebraic method as in §8: there is
a discrepancy by a factor of [k’ : k] due to Lemma 8.6.

The advantage of this “geometric” procedure for making K’ and K into
generalized global fields via such pairs (V,N) over k and (V',N’) over k'
1s that 1t gives a variant on (9.2) in which there 1s no intervention of field
degrees and so is well-suited to the case of algebraic extensions k'/k with
possibly infinite degree (such as &’ taken to be a separable closure of k):
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THEOREM 9.3. With notation and hypotheses as above,

__ ggeom
hi.o =g .,

Proof.  Since heights are calculated as finite sums, by descending through
direct limits we may reduce to the case when [k’ : k] is finite. In this case,
(9.2) translates the problem into that of proving the identity

hK’,LK/ ? ,geom
[k/ ¢ k] UK L

on Xg/(K), where the K'-height on the left is defined using the generalized
global field structure on the finite extension K’'/K via the algebraic method
in §8, and the K’'-height on the right is defined in terms of the pair
(V/,N') as we have explained above. The desired identity is a special case of
Lemma 8.6. [

Here are some basic properties of K-heights:

+ (functoriality) If f: X — X’ is a map of projective K-varieties and L'
is a line bundle on X’ then hg sz = hg oo of. This follows from the
Nullstellensatz over K.

* (positivity of ample K-heights) If L 1s an ample line bundle on X
and Ly is an arbitrary line bundle on X then for some ¢ > 0 we have
\hg.r,| < ¢ hg . modulo O(1) on X(K). This follows from the fact that
the two line bundles L®V ng)(il) are very ample for N sufficiently
large, together with the fact that the standard K -height /g , on P(K) is
non-negative at all points.

* (quasi-equivalence) If £ and L’ are algebraically equivalent (that is, they
give rise o geomelric points in the same connected component of the
Picard scheme PicXE /1?) and one of them is ample (so the other is also
ample [17, 4.6]), then

.0 X)) 1
h]("j\‘)(x)—)OO hK’L‘J(_x)

as x ranges over X(K) (in this limit we must choose representative
functions on X(K) for the mod-O(1) residue classes hg o and hg o+, but
a priori these choices do not affect the limit).
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* (positivity away from the base locus) If L is a line bundle on X then
hg ;, is bounded below on (X — B)(K) = X(K) — B(K), where

B = supp(coker(H’(X, L) @x L — L))

is the base locus of L (so X — B is a non-empty open set in X if and
only if H%(X, L) # 0).

EXAMPLE 9.4. Let K/k be as in the geometric case, endowed with a
generalized global field structure as in Example 8.4. Let ¥ be a projective
k-variety and X a projective K-variety, and let f: Yx — X be a map over K.
Using the algebraic closure k£ C K, we claim that /g ¢ of on Y(K) is bounded
on Y(k) for any line bundle £ on X. By functoriality, we may assume X = Y
and f is the identity, so the claim is that if X = Xy @; K for a projective
k-variety Xo, then /g o is bounded on the subset Xo(k) C X(K). It suffices
to check this for a single very ample £, so we choose L to arise from a
k-embedding X, < P}. Since all points in the subset P"(k) C P*(K) have
standard K -height O, the claim is proved.

ExXAMPLE 9.5. For a proper K-variety X endowed with a projective
K-embedding «: X — P% it is traditional to consider /g , o« as the “induced
height function” on X(K). This ad hoc construction represents the mod-O(1)
residue class fig ,«o,, 1) defined via the associated complete linear system (a
fact we shall use below without comment). Indeed, the K-height hK,Oan(l)
on P% is represented by the function hg ., s0 hg, o ¢ represents the residue
class hK7OP”K(1) ot, and this residue class 1s hK:f»*Oan(l) by functoriality of
K -heights.

In the special case of abelian varieties A over K, one has a much
finer theory of canonical K-heights in the sense that the mod-O(1) residue
class hg ¢ admits a canonical representative function, the canonical K-height
Sfunction ﬁK o A(K) — R attached to £ by Néron and Tate. Let us recall
how this is constructed. For £ = £1, a line bundle £ on A is e-symmetric
i L~ [—1]"(L)* (we also say symmetric if ¢ = 1 and anti-symmetric if
e=—1). If L is e-symmetric, then the limit

~ .l o (na)
93) Bt (@) = lim KT eR
for e =1 and

-~ I
9.4) hg o (@) = lim hxa) g

n—o0 ¥4
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for ¢ = —1 exists for all a € A(K); the formation of these limits uses a
fixed choice of representative function for /g o, the choice of which does
not affect the limit. If £ is symmetric then ,l;}g ¢ 18 a quadratic form, and
if L is anti-symmetric then EE ¢ 1s additive. The dependence of /ﬁ}g o on
symmetric £ and of EE - on anti-symmetric L 1s addiave.

For any line bundle L on A, define the symmetric and anti-symmetric
line bundles

LY =La[-1I"L), L™ =La[-1I"®) ",
and define the quadratic function

~ hicw +hg oo
hg p = — B

as a sum of a quadratic form and an additive function. Strictly speaking,
this “quadratic” function may have vanishing quadratic part, so it 1s really
of degree < 2 with value O at the origin; we shall nonetheless often
refer to 1t as bemg a quadratic function. If L 1s symmetric (resp. anti-
symmetric) then this quadratic function coincides with E}'g o (resp. EE ), and

: A(K) > R

EKL@;& = EK,Ll +EK,L2 on A(K) in general.

REMARK 9.6. By Remark 9.2, if K'/K is a finite extension and we choose
a K-embedding K’ < K, then for £ on A we have EK’,LK, =[K' :K]EK:L
on A(K) = Ag/(K) when K’ is made into a generalized global field by the
algebraic method in §8.

Clearly the function EK’L on A(K) is a representative for the residue
class hg o, and it only depends on the isomorphism class of L. Functonality
holds for canonical K -heights in the sense that if f: A — B is a K-map of
abelian vareties (so f(0) = Q) then for any line bundle L on B,

(9.5) hi gz = hx.o of.

Indeed, both sides are R-valued quadratic functions on A(K) that vanish at
the orgin, so the boundedness of their difference (due to functonality of the
mod-O(1) object hg ) forces the difference to be zero. We can improve (9.5)
by allowing f to be merely a map of K-varieties (with f(0) # O permitted):
the general identity is

(9.6) i o = hii o f — i e (FO)),
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and to prove this we use the factorization f = tyqy o (f — f(0)) with f — f(0)
a homomorphism and #, the translation by b € B(K) to reduce ourselves to
treating the special case of translation morphisms by points in B(K). Slightly
more generally:

LEMMA 9.7. Let K be a generalized global field with algebraic closure
K and let A be an abelian variety over K. For any finite subextension K' /K
inside K, any a € A(K"), and any line bundle L on Ay, we have

(9.7) by e, = hygr g 0 by — hgr £(a)

as functions on A(K) = Ag.(K). Here, K' is endowed with its canonical
structure of generalized global field as a finite extension of K.

Proof. 'The height function EK:7 £ 18 defined as a sum of a quadratic form
and a linear form by construction of canonical heights, and since K’-height
functions as in (9.1) are functorial modulo O(1) with respect to arbitrary
morphisms of K’-varieties we see that the mod- O(1) residue class hy ¢ o1,
of the function EK,’ r ot, 18 the class hgr o1 that admits a representative
function EK/,,: r . Thus, the two sides of (9.7) are functions of degree < 2
that lie in the same residue class modulo O(1), and so they differ by a
constant. Comparing values at the origin shows that this constant is zero. [

The property hg > 0 (modulo O(1)) for ample L implies EK=L >0
on A(K) for symmetric ample L because ﬁK, -, 18 a bounded-below quadratic
form for such L.

The “quasi-equivalence” for K -height functions acquires a stronger form
for canonical K-heights in the symmetric case (even without ampleness):

THEOREM 9.8. For symmetric invertible L on A, the quadratic form EK, L
on A(K) only depends on L up to algebraic equivalence.

Proof. Choose a symmetric ample L, and pick a large n so that the
symmetric L & LB 4y ample too. Since iz\KJ; = /};K”L@Ll@n — nEK,U, it
suffices to prove the result for symmetric ample line bundles.

Now let £ be a symmetric ample line bundle, and £’ another symmetric
line bundle algebraically equivalent to L, so L' is ample. We want to prove
EK: L= EK, o on A(K). By ordinary quasi-equivalence, applied to the canonical
K-heights as representatives of the residue classes hg r and hg o/, we have

;ﬁK,L(a) ol

hK,L’ (a)
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as EK?U(a) — oo. For arbitrary a € A(K) with EKL/(a) # 0 we have
hi o (na) — nth,Lf(a) — oo as r — oo (since ampleness of L’ ensures
hg c(a) > 0), so as n — oo we obtain

ﬁK,L(G) - EK,L(HC‘)

EK,L‘/ (@) B EK,L' (na)

and hence EK,L(a) — ;I\Kzgt(a). We likewise get such an equality when
hio(@) # O, and of course when both canonical K-heights vanish they
are still equal. [

The canonical K -height construction is important because it gives rise to
a canonical K-height pairing

(Vax: AK) x AY(K) = R

defined by
EK’,L(Q)
@ L) = F

for a € A(K’) and L a representative line bundle on Ak for a finite extension
K'/K inside of K (with K’ given its canonical structure of generalized global
field via the algebraic method as in §8); by Remark 9.6, the choice of K’ C K
adapted to the K -points a and [Lz] does not matter. This is Z-bilinear because
line bundles associated to geometric points of AY = Pic?1 /x are anti-symmetric
(by the theorem of the square). Thus, we can extend scalars to R to get an
induced R-bilinear pairing

(', JaAkR: A(K)r x AY(K)r — R.

Also, if K'/K is a finite extension (given its generalized global field structure
via the algebraic method in §8) and we choose a K-embedding K — K,
then under the general identification X(K) — X/ (K) for K-schemes X (such
as A and AY) we have

(9.8) (s dagr =K KT+ (s ak -

The functoriality of canonical K -heights immediately implies adjointness with
respect to dual maps: for f: A — B a map ol abelian varieties over K,

9.9) {a,f" BNk = (f@),b)px -
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REMARK 9.9. If P denotes the Poincaré line bundle on A x AV then
(,)ax: (Ax A)K) — R is also equal to ,};K(P Indeed, consider a finite
extension K'/K inside of K, a point a € A(K'), and a line bundle L
on Ag that 1s algebraically equvalent to 0 (1e., L 1s classified by a
K'-point of the identity component AY of Pic,s). We want to prove
;Z\Krjg,(a)/[K, K] = EK,;D(a,L), and by Remark 9.6 we can rename K’
as K. By the universal property of the Poincaré bundle, the slice inclusion
i:A — A x AY defined by x — (x,L) satisfies i*(P) ~ L. Thus, since
z(a) (a,L), the generallzed functoriality (9.6) for canonical heights gives
hK pla, L) = hK ola) + hK p(i(0)). We therefore just need to prove that
hK »(H0)) = hK 7(0,L) 1s equal to 0. This reduces us to the special case
a = 0. But now we can view A as dual to AV (retaining the fact that P is
the universal line bundle) and so running the same calculation with roles of
the factors swapped gives /}ZK’T(O, L) = EK,fp(O, 04)=0.

The quadratic form EK, r Tor symmetric £ 1s naturally recovered from the
canonical K -height pairing (-,-)4 x, up to a factor of 2, by means of the map
dr: A — A (x+— t7(L) ® L1, This reflects the correspondence between
quadratic forms and symmetric bilinear forms:

THEOREM 9.10. For any invertible L on A we have
©10)  {ar, prl@))ax = hiclar + a) — I c(ar) — hi o (a)

for all ay,a; € A(K), where ¢r(x) = ' (L)@ LY. In particular, this pairing
is symmetric and if L is symmetric then (a,¢c(@))ax = 2hx c(a) for all
a € AK).

Proof. By functoriality of canonical K -heights,

by o (La X 62) = g (1x6.) )
= hK,m*L@pr—l(@p;L—l
:EK,L om _EK,L oM _EK;L ops.
Thus, by Remark 9.9 we get (9.10). The rest follows immediately (e.g.,

the final assertion for symmetric £ holds because EK £ 18 a quadratic form
for such £). [




96 B. CONRAD

COROLLARY 9.11. Let 1ta: A — AYY be the double-duality isomorphism.
For any (a,a") € A(K) x AY(K) we have (a,d')ax = (d',1(@))av k.

Proof. Agam using Remark 9.9 and the functoriality of canonical
K -heights, we just have to recall that if s: AxAY ~ AY x A is the flipping iso-
morphism and P,v is a Poincaré bundle on AY xAYY then s*((14v x14)*(Pav))
is a Poincaré bundle on A x AY. [

COROLLARY 9.12. For any polarization ¢: A — AV, the induced
R-bilinear pairing

AB)R x A(B)R — R

defined by (ai,az)y = (a1, p(ax))a kg is symmetric. If the ample line bundle
(1,9)*(P) on A is symmetric then (-,-)y Is positive semidefinite (i.e.,
(a,a)y = 0 for all a & AK)R).

Proof. By replacing K with a finite extension and using (9.8), we can
assume ¢ = ¢p for some ample L on A. This gives the symmetry, by
Theorem 9.10. If we define N = (1, 9)*(P) = 2]*(L) ® L¥2 then N is
ample and 2¢r = ¢ by the theorem of the square. Hence, in case N
1s symmetric it is harmless to replace ¢ with 2¢ to reduce the positive
semidefiniteness claim to the case ¢ = ¢ for a symmetric ample £ on A. It
therefore remains to recall our earlier observation that the quadratic form EK, c
on A(K)r is non-negative for any symmetric ample line bundle £ on A. [

The preceding discussion of heights is valid for any generalized global
field K. We now turn our attention to the geometric case. Let K/k be a
finitely generated regular extension, and give K a gencralized global field
structure using a pair (V,N) as in Example 8.4. This generalized global field
structure on K gives rise to a theory of heights for abelian varieties over K.

LEMMA 9.13. For a generalized global field K/k as in Example 8.4, let
A be an abelian variety over K and let L be a line bundle on A. For all
a e AK) and ag € TrK/k(A)(l_c) we have EK,L(a—I—ao) = EK,L(a). In particular,
the quadratic (or additive) function EK, ¢, uniquely factors as a quadratic (or
additive) function

©.11) hi g2 AR/ Trg i (A)k) — R.
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We let EK cr: (AKK)/Trg i (A)(k)r — R denote the induced function after
extension of scalars to R on the source. This 1s a quadratic form if L 1s
symmetric.

Proof. By Theorem 6.8, Theorem 9.3, and the definmition of EK L, we
can replace K/k with kK/k to reduce to the case that k is algebraically
closed. Since a € A(K') for some finite extension K'/K inside of K, and
K'/k is regular (since k is algebraically closed), by Remark 9.6 we can
assume a € A(K). By Lemma 9.7, we just have to prove that EKJ; ¢ vanishes
on Trg /k(A)(!_c). For any line bundle N on A, applving Example 9.4 to
7: Trgp(A)xk — A gives that any representative function for /g on A(K)
is bounded on the subgroup Trg /(A)(k) € A(K). Hence, the quadratic (or

additive) function EK;N on A(K) is bounded on Trg /k(A)(l_c) with value 0 at
the origin, and therefore it vanishes on this subgroup.  []

REMARK 9.14. Assume K/k in Lemma 9.13 is regular, so K @ k" is a
field for any algebraic extension &’/k. By the proof of Lemma 7.3, for any
algebraic extension k'/k and any extension K’ of K @; k', the natural map
A(K)/Trg i (A) (k) — A(K")/Trg k(A)(K') is injective (clearly the key case is
K' = K@k"). Thus, by expressing &/k as a direct limit of finite subextensions,
the source in (9.11) is a direct limit with injective transition maps when K/k
1s regular.

Recall that when K is a global field of the classical type (a number field
or function field of a curve over a fimite field), then for a symmetric ample line
bundle £ on an abelian variety A over K, the positive semidefinite canonical
K -height EK z on A(K) has positive-definite scalar extension to A(K)g . Thus,
this scalar extension 1s also positive-definite (or equivalently, non-degenerate)
on each finite-dimensional subspace A(K')g for finite K'/K inside of K, and
we can use Theorem 9.10 to rephrase this non-degeneracy in more canonical
terms: when K 1s a global field, the canonical K -height pairing

(v Iakr: AKR x AY(K)r = R

restricts to a perfect duality between A(K')r and AY(K")g for all finite K'/K
inside of K. In the classical global function field case with finite constant
field £ C K, the subgroup Trg /k(A)(I_c) is a torsion group and so it is killed by
the operation of tensoring against R. Thus, in this case we can equivalently
say that EK;L:R is positive-definite on (A(K)/Trg /((A)(k)r. In general, we
have:
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THEOREM 9.15. Let K be a finitely generated regular extension of a
field k with trdeg, (K) > 0, and endow K with a structure of generalized
global field by means of a pair (V,N) over k as in Example 8.4. For any
abelian variety A over K and any symmetric ample line bundle L on A, the
quadratic form N

hi.cr: (AK)/Trg (A EDr — R

is positive-definite.

This 1s proved in [20, Ch. 6, §5] using pre-Grothendieck methods, and
in § 10 we shall give a proof in the language of schemes. Let us now give the
reduction steps that eliminate the appearance of algebraic closures, as this also
leads to a reformulation of Theorem 9.15 in terms of the canonical K -height
pairing.

Observe that by expressing K as a direct limit of finite extensions of kK,
we see that among the finite extensions of K inside of K, a cofinal set is
given by those K’ that are regular over the algebraic closure k' of k in K’
(this regularity is automatic when K’/K is separable or k is perfect). Thus,
by Theorem 6.8, Example 8.5, Lemma 8.6, Remark 9.6, and Remark 9.14, by
suitable renaming of the constant field it suffices to prove positive-definiteness
on (A(K")/Trg ;. (A)(k))r in general for finite extensions K'/K such that K'/k
is regular. (In case K'/K is separable, the extension K’'/k is regular if and
only if it i1s primary.)

LEMMA 9.16. For A and K as above, let K'/K be a finite extension
with K’ /k regular. The natural map

(9.12) AWK [ Trg 1 (A)Kk) — AK')/Trgr ji(Agr (k)

has finite kernel.

Before proving the lemma, let us show by example in arbitrary characteristic
that the kernel of (9.12) can be nonzero. Let K'/K /k and the elliptic curves £
over k and A over K be as in Remark 4.6, so Trg k(A) = 0. By construction,
A(K) C A(K") = Eo(K") is the —1-eigenspace Eo(K')~ for the natural action
by Gal(K’/K). Hence, (9.12) is the map Eo(K')~ — Eo(K')/Eo(k) that has
kemel Ey(k)[2]. We can choose E; so that this latter group is nonzero.

Proof. Let Ky/K be the separable closure of K in K'. Since K'/Kj
is purely inseparable, Theorem 6.4(3) settles the case of K'/K, and so it
remains to treat the case when K’ /K is separable. Let K" be a Galois closure
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of K'/K, and let k" /k be the algebraic closure of k in K”. The extension
K" /K" is regular, but we need to first circumvent the possibility that k" £ k.
To this end, let FF = K ®; k" and F' = K’ @ k" considered as subfields
of K”. Theorem 6.8 and Remark 9.14 imply that the natural map

AWK [Trgr jn(AYE) — AE") [ Tepr o (Ap )K"

1s mjective. The composite of this injection with (9.12) 1s equal to the
composite of natural maps

AK)/Trg s (A k) — A/ Ttp o (ANK") — A/ Ttps por (Ap ) (k)

with injective first step (by Theorem 6.8 and Remark 9.14). Hence, we
can replace K/k with F/k" to reduce to the case when kK’ = k (e,
K"/k 1is regular). It clearly suffices to treat K”/K instead of K'/K, so
we can assume K’'/K is Galois. Hence, we need to prove that when K'/K
i1s Galois and K'/k 1s regular (or equivalently, finite), the quotient group
(AK) N Trge A )0)) / Trg e (A)(k) is finite.

For v € Gal(K’ /K), there are canonical isomorphisms

Iy 1y (Itgr e (Ax k) = Trgr il(Ax ke, oy 07 (Agr) = Age

as abelian varieties over K’ (encoding the evident Galois descents to K). By
the universal property of the K'/k-trace 74, g /i, there is a unique k-map of
abelian varieties [v]: Trg i (Ax:) — Trgr i (Agr) such that the diagram

—1

Trg: j((Ax ) % v (Trgr i (A k)

’Y*(TA ;K /k)
[¥1gs l \

Trgr j(Axr )i Ag/ — ¥ (Akr)

TAK, Kk v

commutes. Uniqueness gives [1] = id and [v172] = [vilo 2], so each [v] 1s
an automorphism and we get a natural action of the finite group Gal(K’/K) on
the abelian variety Trgs /t(Ag:) over k. For x € Trg: i (Ag/)(K) and y € A(K)
we have i,(v*(x)) =x and j,(7*(¥)) =y, so this action by Gal(X'/K) is the
identity on all points in A(K) N Trgs /i (Ag/)(k).

The Zariski-closure Z of A(K) M Trgs /1 (Ag)(k) in Trge ;i (Ag+) 1s a smooth
closed k-subgroup of Trgs/(Ax), so the identity component 7% is an
abelian variety (perhaps Z° = 0). The triviality of the Gal(K’/K)-action
on A(K) N Trg: 4 (Ag-)(k) 1mplies (by Zarski-denseness considerations) that
the map ¢': Zg: — Ags induced by 74, x s 18 Gal(K'/K)-equivariant with
respect to the K'/K -descent data on both sides, so it descends to a K-map
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of K-groups t: Zx — A. The restriction : Z) — A of ¢ factors uniquely as
Tak/k©px for a unique k-map of abelian varieties : 70 — Trg 1 (A). Hence,
the image of Z°(k) in A(K) lies in Trg 1 (A)k) C A(K), so by working inside
of Trg:/k(Ag' (k) we have that the subgroup A(K) N Trg: ((Agx )(k) © Z(k)
meets Z°(k) in a subgroup of Trg (A)k). The group

(AK) N Trgr i (Ag () / Trg g (A)(k)
is therefore a quotient of the subgroup
(AMK) N Trger i (Ax )0 /(Z° () N AK) N Ty (A WKY) — Z(k) [ Z°(k)
so finiteness of Z(k)/Z°(k) finishes the proof. [

By Lemma 9.16, the natural map

(AE) /Tr (A ENR — AWK/ Trgr ji(Ax )RR

is injective for finite K'/K such that K'/k is regular, and so (again using
Example 8.5, L.emma 8.6, and Remark 9.6) by renaming K’ as K we see
that to prove Theorem 9.15 it is equivalent to prove positive-definiteness
of the positive semidefinite quadratic form EK, r r on the R-vector space
(A(K)/Trg i (A)(k)r in general. This result will be proved in §10.

In view of the preceding reduction steps and Theorem 9.10, the Lang-Néron
theorem enables us to reformulate Theorem 9.15 as follows :

COROLLARY 9.17.  With hypotheses and notation as in Theorem 9.15, the
canonical K -height pairing restricts to a perfect duality
(AK")/Trg j(AYE DR X (AY(K")/Trg o (A)E )k — R
between finite-dimensional vector spaces for any finite extension K'[/K that

is regular over the algebraic closure k'/k of k in K.

The regularity condition on K'/k' in the corollary is satisfied for all
separable finite extensions K’/K, and also for all finite extensions K'/K
when £ is perfect.

10. PROOF OF THEOREM 9.15

We begin by recalling a general lemma of Minkowski that reduces the
positive-definiteness problem over R to a finiteness assertion on a lattice.
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LEMMA 10.1 (Minkowski). Let A be a finitely generated Z-module and
let q: A — R be a quadratic form such that g(\) > 0 for all A € A. Let
qr: V=R&z A — R be the induced quadratic form. If, for all C > 0, there
are only finitely many A € A such that g(\) < C, then gg is positive-definite.

Proof. See [31, Ch. VIII, Lemma 9.5]. (]

This lemma and the reduction steps in §9 reduce us to showing that for
all C > 0, the elements P € A(K) satisfying EK, o(P) < C represent only
finitely many residue classes modulo Trg/((A)(k). We can replace L with a
very ample power L%", and we can work with a K-height function arising
from a choice of ordered K-basis of I'(A,L) and the associated projective
K-embedding of A (as this function differs from the corresponding canonical
height by a bounded amount). Thus, by the reduction steps in §9, Theorem 9.15
1s reduced to:

THEOREM 10.2. Let K/k be a finitely generated regular extension of fields
with trdeg (K) > 0, and fix a pair (V,N) over k giving K a structure of
generalized global field as in Example 8.4. Fix a projective K-embedding
A — P% and let hg: A(K) — R be the resulting K-height function. For all
M > 0, the elements P € A(K) satisfying hg(P) < M represent only finitely
many residue classes modulo Try ;i (A)(k).

The special case trdeg,(K) = 1 with k algebraically closed was proved as
the key ingredient in the proof of the Lang-Néron theorem in §7. The case
of higher transcendence degree requires more care because we have to work
systematically with rational maps f» on V whose domain of definition in V
may vary with P. The diligent reader will observe that the reduction of our
task to proving Theorem 10.2 did not use the Lang-Néron theorem, nor does
the following proof of Theorem 10.2 use the Lang-Néron theorem, and so
(at the expense of using the foundational discussion in §8-§9) Theorem 10.2
gives a prool of the Lang-Néron theorem that avoids the need to initially
reduce to the case of transcendence degree 1 with an algebraically closed
constant field.

Proof. Let k' /k be a separable algebraic extension and define K/ = K@k,
so we get a standard K’-height on P*(K’) by using the generalized global
field structure on K’ arising from (Vi-, Ny.) as in Example 8.4; note that V.
is integral and regular in codimension 1 since k'/k is separable and V
is geometrically irreducible over &k (and regular in codimension 1). By
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Lemma 8.6, if [k’ : k] is finite then this is generally not the generalized
global field structure put on the finite extension K'/K via the algebraic method
in §8; there is a discrepancy factor of [k’ : k] = [K’ : K]. Even worse, there
is no uniform discrepancy factor when [k’ : k] is infinite. Fortunately, by
Theorem 9.3, the standard K’-height on P"(K') defined via the generalized
global field structure on K’ arising from (Vi., Ny/) has restriction to P*(K)
that coincides with the standard K-height defined via the generalized global
field structure on K arising from (V,N). Thus, by Remark 9.14 we can extend
scalars to a separable closure of k to reduce to the case when & is infinite.

Let 57 be the generic point of V. Replacing the ample N with a very
ample power N®" causes K-heights to be multiplied by a universal constant
pdimV—1 _ podeg (=1 g6 we can assume that there is a projective k-embedding
t: V<= P that induces the structure of generalized global field on K = k()
(with field of constants k). We let [hg,....h,] be a representative ordered
(m -+ 1)-tuple of rational functions on V not all of which are zero and which
define ¢ as a rational map. We let d be the k-degree of V i P{". Here 1s a
formula for d :

(0.0 degpp(V) = hin(u(m) = Y max(— ord, ()degp: (1),

v

where the sum runs over all codimension-1 points v € V and degpin (v) 1s the
degree of the closure of «(v) as an integral closed subscheme of P}'. For the
case trdeg,(K) =1 and k algebraically closed, (10.1) is the identity (7.3). In
general, the right side of (10.1) is variant under a common & (V )*-scaling on
the #;’s, by the product formula, and so the argument used in the 1-dimensional
case carries over essentially verbatim to the general case as long as we
are able to find k-rational points in Zariski-dense open loci of hyperplanes
(parameterized by a dual projective space). This is no problem, since k is
mfinite. (The reduction steps to get to the case of infimite k& also show
that (10.1) 1s valid for finite k.)

The given closed embedding A — P% identifies P € A(K) with a K-point
[g0,--.,9x] of projective n-space with g; € K not all zero. By definition
of hix and the generalized global field structure on K,

hi(P) =) max(—ord,(g)degpy ().

Let A be the k-variety closure of A under the map

¢ A= Pl =PixnCPlx VP xP <P},
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where N = (n+ 1)(m+ 1) — 1. The closure Wp of P in A is the scheme-
theoretic 1image of the rational k-map fp = ¢ o P on V defined by the
tuple [g;h)]; the domain of fp on V may vary with P. By construction, the
projection from Wp C P} x V to V is a birational morphism. Thus, Wp is a
projective k-variety model for K, but (unlike V) it 1s generally not regular
in codimension 1.

We shall now bound the degree of Wp inside of P} . The generic point
fp(1) of Wp is a K -point of P¥ whose standard K -height has an upper bound :

hae x(fo() = D max(— ordy (gily) degpy (1))

< D~ max(— ord, (g;) degp (1)) + D max(— ord, () degy ()

2

= hx(P)+d

by (10.1). We claim that hK‘,N(fp(n))dim We is an upper bound on the k-degree
of Wp as a k-subvariety of P{. Rather more generally :

LEMMA 10.3 (Néron). If f:n = SpecK — PY is a k-morphism and W
denotes the k-variety closure of f(n), then

degpy(W) < g y(fOp) ™"

Although we are presently working under the extra property that k is
mfinite, the lemma makes sense for any & and 1s true in such generality: the
preceding arguments concerning separable algebraic extension of the constant
field show that both sides of the mequality are unaffected by any separable
algebraic extension on k.

Proof. Let [fy,...,fv] be a representative tuple of elements of K not all
zero that induces the rational k-map f from V to P}. We can and do assume
one of the f;’s is equal to 1. The case dim W = 0 is trivial, so we suppose
r =dim W is positive.

Choose dense opens W/ C W and V' C V such that V' lies in the
domain of definition of every f; and f induces a surjective k-morphism
from V' onto W’. Since k is infinite and W is generically smooth with
r = dmW > 0, by Bertini techniques we can find k-rational hyperplanes
Hy,...,H, in PY whose common intersection with W is finite étale over k
and is supported in W’. In fact, we can choose the H;’s so that for 1 < i< r
each ;N ---NH;NW 1s geometrically integral of codimension i and ;. ¢
is “generic” in the dual projective space of hyperplanes. The k-finite étale
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mtersection W N (ﬂa Ha) has k-length dengN(m, and we want to bound
this k-length from above by hg n(f(1)) .

The preimage of H; W in V' is an effective Cartier divisor in V', and
let D; be its scheme-theoretic closure in V, so D; i1s a k-subscheme of V
with codimension 1 having its generic points in V’. The genericity of the
choices of the H;’s therefore ensures that we can arrange that if 1 < i <r
then D;y; does not contain the generic points of D;M---ND;, and so (], Do
1s k-fimte. This intersection contains a closed subscheme surjecting onto the
k-finite étale scheme W (), H.) € W whose k-length is degp: (W), so

degp (W) < £ (ﬂ Da) .

Thus, it suffices to prove & (ﬂa Da) < hg n(f(n)". By Bézout’s theorem

on V in P?,
£ (DDO‘) = H degp;(Doz)z
fe a=1

and so it suffices to prove

e (D) < I () = 3 max(— ord, (£ degy ()

for each 1 <i<vp.

By definition, D; is the closure in V of the zero locus on V' of some
L= Zaj(-’)fj with aj(-’) € k not all zero, and so degp:(D;) 1s the degree in P}
for the part of the zero-scheme Weil divisor divg(L;) € V that meets the dense
open V' C V. Hence,

degp; (D) < degp; (divo(L;))
= degp(—divae (L)) = > max(— ord, (L;), 0) degp, (v).

2

It therefore suffices to prove that for a generic [ag), — ,ag)] e PV,
max(—ord, (D _ a)’f), 0) < max(— ord, ()
i

for all v. Since one of the f;’s 1s equal to 1, the night side 1s always
nonnegative. We therefore just need to consider those codimension-1 points v
at which > y aj(-')fj (for fixed i) has a pole. The only such v are those at which

some f; has a pole, and the pole order of the sum J.aj(-") ; 1s certainly no
worse than the maximum pole order of any of the f;’s at such v. So in fact

we do not even need a genericity condition on the aj(-i) 5. O
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To summarize, for every P € A(K) with hg(P) < M, the corresponding
rational k-map fp from V to A C PY is a generic immersion whose image
has k-variety closure Wp = (¢ o P)(17) with dimension ¢ = trdeg,(K) that is
independent of P and has k-degree in P} that is uniformly bounded above
by (M +d)°. Thus, we may now abandon K -heights and instead aim to prove
that for any M’ > 0, the points P € A(K) satisfying degpy (Wp) < M’ lie in
finitely many classes in A(K)/Trg ;. (A)(k). This statement does not involve
heights, so it does not matter for this assertion that the projective k-model V
is regular in codimension 1. Thus, even though the integral k-scheme V; may
fail to be regular in codimension 1, we can nevertheless replace k& and K
with ¥ and K ®¢ k to reduce to the case when k is algebraically closed.

The Wp’s are geometrically integral closed subschemes of PY with dim Wp
mdependent of P and dengN(WP) bounded independently of P. Thus, as
Grothendieck explains in the discussion of “limited families” in his work on
Hilbert schemes (see [10, §2], especially Lemma 2.4 there), an application
of Chow coordimates and Grothendieck’s basic results on constructibility loci
for fibers of morphisms ensures that there exists a k-scheme S of finite type
and an S-flat closed subscheme Z — § x Pf such that all fibers Z, are
geometrically integral and each Wp arises as such a fiber over some s € S(k)
(here we use crucially that &k is algebraically closed). By replacing § with
a suitable closed subscheme without losing any of the above properties, we
can impose the extra requirement that 2 lies in S Xspeck A since the fibers
Wp C P} lie in A. We can also assume that S is a disjoint union of k-varieties.

We now claim that if Wp and Wy occur as fibers over the same irreducible
component of S, then P and P’ have the same image in A(K)/Trg/(A)(Kk) ;
this will certainly solve our problem. The case P = P’ is trivial, so we can
assume we are working over an irreducible base component with positive
dimension. By [25, p. 56], on an irreducible variety of positive dimension
over an algebraically closed field, any two rational points lie in a common
irreducible curve in the variety. Thus, it suffices to suppose the base of our
family is an irreducible curve X , which we may moreover suppose to be
k-smooth by base change to its normalization (recall that & is algebraically
closed). Thus, we have an X -flat closed subscheme

Z < X Xspeck A

such that the closed subscheme Z, C A C P) is geometrically integral for
all x € X, and for suitable xo,x; € X(k) the fibers Z, and Zy 1n AC PY
coincide with Wp and Wp respectively. In particular, Z is integral with
dimension dim Wp + dimX =dimV + 1.
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Consider the composite map
(10.2) ZSXxAS AV,

where the final step uses that A is constructed inside of P} x V. The map (10.2)
1s dominant, since even Wp = Z,, C Z maps birationally onto V', so Z hits the
generic pomt 1 € V with fiber Z, that must be mtegral and have dimension
dimZ — dim V = 1. Thus, the proper map

ZsXxASXxV

has restriction over Xg that is a proper map &: Z, — Xx between imtegral
curves over K. Since Xg is a K -smooth curve, £ is either constant or finite
and flat. The fibers of £ over the K-points {xo} Xgpeck K and {x} Xspeck K
of Xg are (Zy)y, = (Wp)y and (Zy), = (Wp),, and these are non-empty
because Wp — V and Wp — V are dominant (even birational) morphisms.
Thus, { must be finite and flat. Since Wp — V is birational, so (Wp), — 7 1s
an isomorphism, £ has degree 1 and thus is an isomorphism. It follows that for
some dense open VO C V, the restriction of the composite Z < XxA — XxV
over X x V? is an isomorphism.

Hence, we can consider Z|yo as a section Pyo: Xpo — Xypo Xyo Apo.
Restricting this over the generic point n of V° and recalling that (by
construction of A) the map A — V has generic fiber equal to the abelian
variety A over 7, we arrive at a section Pgx: Xx — Xg X A over Xg such
that Px({xo}x) € A(K) is the K-point P that was used to define Wp via
closure, and likewise Px({x;}x) € A(K) is P’. It is therefore enough to prove
that for all x € X(k), the points Px(x) € A(K) coincide modulo Tr /. (A)(k).
The argument with Albanese varieties that we used to conclude the proof

of the Lang-Néron theorem may now be carried over verbatim to prove this
final claim. [
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