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CHOW'S K/k-IMAGE AND K/k-TRACE,
AND THE I ANC? NÉRON THEOREM

by Brian CONRAD*)

1. Introduction

Let K/k be an extension of fields, and assume that it is primary: the

algebraic closure of k in K is purely inseparable over k. The most interesting
case in practice is when K/k is a regular extension: K/k is separable and k

is algebraically closed in K. Regularity is automatic if k is perfect. (For K/k
finitely generated, regularity is equivalent to K arising as the function field
of a smooth and geometrically connected A--scheme.)

In the theory of abelian varieties over finitely generated regular extensions

K/k with respect to some field of "constants" k, there is a generalization
of the Mordell-Weil theorem, due to Néron [26] (in his thesis) and Lang-
Néron [19], and in this theorem a crucial role is played by the K/k-trace
and the K/k -image of an abelian variety A over K. These constructions are

also ubiquitous in many problems concerning families of abelian varieties.

(The family is parameterized by a nice base V over k, and K — k (V For

an arbitrary primary extension of fields K/k, the K/k-trace of A is a final

object in the category of pairs (B,/) consisting of an abelian variety B over k

equipped with a A-map of abelian varieties f: BK —>• A, where BK denotes

the scalar extension MMÈif/K ; we write (Tr^MA), ta.k/Ü to denote such a final

object (if it exists). Likewise, tire K/k -image of A is an mitial object in the

category of pairs (B.f consisting of an abelian variety B over k equipped
with a A-map of abelian varieties /': A —> BK ; we write (Im^MA), \A,K/k)
to denote such an object (if it exists). Roughly speaking, the K/k-image is

tire largest quotient of A that can be defined over k. and the K/k -trace is

* This work was supported by NSF grant DMS-0093542 and the Alfred P.. Sloan Foundation.
I am grateful to the referee for offering many comments that helped to improve the paper.



38 B.CONRAD

the largest abelian subvanety of A tliat can be defined over k. A precise

description along these lines requires some care in positive characteristic.

These concepts are due to Chow ([3], [4]).

Despite the importance of Chow's K/k-trace and K/k-image and the

Lang-Néron theorem in arithmetic geometry, unfortunately no detailed general
reference on these topics has been available entirely in the language of schemes.

The papers of Chow ([3], [4]) and the book on abelian varieties by Lang [18]
discuss the K/k-image and K/k-trace and develop their properties, but entirely
in Weil's framework [34]. Similarly, in Lang's modem book [20] the Lang-
Néron theorem is proved in Weil's language. In connection with my work
in [5], where the Lang-Néron theorem plays a crucial role, I was motivated to

write this expository account of a scheme - theoretic approach to Chow's results

and the Lang-Néron theorem. In some instances the old and new methods

are expressing similar ideas, but in other cases where we make extensive

use of infinitesimal or flat descent methods it is less clear how much overlap
there is. For example, our use of infinitesimal group schemes in the proof of the

fundamental Chow regularity theorem (Theorem 5.5) replaces tire ineffective

"sufficiently large" aspect of the original version of the theorem (as in [3,
Cor. to Thm. 8] and [18, VIII, Thm. 3]) with a simple explicit lower bound.

We begin in §2 with some intuition and examples related to Chow's
work and the Lang-Néron theorem (including a precise statement of the

latter). In §3 we summarize some background facts and terminology from
algebraic geometry (centered largely on Grothendieck's descent theory and

group schemes) and prove some other additional results for convenient
reference later; some of the topics discussed in §3 are used in §2. In
our development of the K/k-image in §4, we prove that the canonical

map X,\_K/k: A —> ImKß(A)K is surjective with connected kernel that may
be non-smooth in positive characteristic (Example 4.4). The behavior of the

K/k-image with respect to extension of the ground field k is treated in §5. The

key result here is that the formation of the K/k -image commutes with linearly-
disjoint extension on k when K/k is regular. This is the most important fact
in Chow's theory, and it is also the hardest to prove.

In §6 we develop the dual theory of the K/k-trace r — TA K/k : Trk//c(A)k —>

A whose kernel is K -finite with connected Cartier dual. We show by example

(Example 6.3) that kerr may not be connected in positive characteristic, and

we also prove the one fact that is not a trivial consequence of duality and

the theory of the K/k -image : if K/k is regular then kerr is connected. In
terms of the dual map A — A^v x/k ' A v —> Im^/ri/Or this means that ker A

has vanishing multiplicative part when K/k is regular. In §7 we prove the
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Lang-Néron tlieorem, following some of the same reduction steps as in [20]
and retaining the key idea of exploiting the fact that certain Horn-schemes

are quasi-compact (a result known in the pre-Grothendieck era in the form
of Chow coordinates). The reader is encouraged to begin with §2 and §7.

We conclude in §§8-10 with a scheme-theoretic development of the theory of
Néron-Tate heights for abelian varieties over rather general ground fields as

in the context of the Lang-Néron tlieorem.

A nice application of the theory of the K/k -trace and the Lang-Néron
theorem is Grothendieck's spectacular proof that an abelian variety of CM-

type over an algebraically closed held must be isogenous to an abelian variety
defined over a finite extension of the prime held. (In characteristic zero

we can replace "isogenous" with" "isomorphic", but in positive characteristic
this cannot be done and hence hie result really is non-trivial.) The key to

constructing hie right abelian variety over a finite extension of hie prime
held is to form a suitable K/k-trace. We refer hie reader to [27] for an

exposition of Grothendieck's proof. In §3 of Raynaud's Bourbaki report [28]

on Grothendieck's generalization of hie Ogg-Shafarevich formula, the reader

can hnd some additional elegant applications of the Lang-Néron theorem.

Some more recent papers that apply the Lang-Néron theorem and discuss

constructions of hie A/A-image and A/A-trace for finitely generated regular
extensions K/k are [15] (which gives a construction of the K/k -image using
Albanese varieties) and 113] and [29] (which give Raynaud's construction of
hie K/k-trace using Picard varieties).

TERMINOLOGY AND NOTATION.: For any held k, a k-variety is a separated
and geometrically integral A--scheme of hnite type. If V is a finite-dimensional

vector space over a held k then P(V- — Proj(SymL) denotes hie projective

space classifying hyperplanes in V. The dual of an abelian variety A is

denoted Av • For any scheme S and 5 -scheme X, if 5' —I S is a map of
schemes then Xy and X/s, denote X xs S' considered as an S'-scheme in
hie usual manner; we use similar notation for base change applied to 5-maps
between 5-schemes. If S' — Spec A' then we may write X&' and X/Ai (and

Z A' if also S — Spec A) radier than X$> and Xß*.

An extension of helds K/k is primary if k is separably closed in K, is

separable if K is a direct limit of finitely generated extensions that each admit

a separating transcendence basis over k (one of several equivalent definitions ;

see [22, Thm. 26.2]), and is regular if it is separable and primary (so in
particular, k is algebraically closed in any regular extension of k).
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We indulge in one notational convention that should not cause too much
confusion: if K/k is a primary extension and E/k is an arbitrary extension,
then EK denotes the fraction held of the domain (E 0k K)led obtained by
passing to the quotient of È>k M by its unique minimal prime ideal. Beware

that if E and K are given as subextensions of an ambient extension L/k,
then the domain (E 0k K)reCi maps to the compositum of E and K inside

of L but this map is an injection if and only if E and K are linearly
disjoint over the intersection of E fl K with the algebraic closure of k in L
(exercise in which case EK maps isomorphically onto the compositum. We

could alternatively speak throughout in the language of linear disjointness, but
this is too cumbersome. The property that makes the notation EK useful is

that EK/E is again a primary extension [7, IV2, 4.3.2] and if E'/E is an
extension then E'(EK) — E'K. This allows us to use transitivity arguments
without having to think twice. Note also that if K/k is regular then EK/E
is regular because separability of K/k is inherited by EK/E.

The duality theory of abelian varieties shows that the concepts of

K/k -image and K/k-trace are dual to each other in an evident manner.

It is not a requirement in the universal property that the universal morphism

t : ErK/k(A)K -> A be a closed immersion. Also, it is not a requirement in
the universal property that the universal morphism A: A —> \mK/k(A)K have
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connected (or smooth) kernel or be snrjective. The behavior of the K/k -image
and K/k-trace with respect to extension of the ground held and the reason
for their existence will depend in an essential way on the hypothesis that K/k
is a primary extension.

If K/k is finitely generated and regular then there is a way to visualize the

K/k-trace, as follows. Consider an abelian variety A over K as an "algebraic
family" of abelian varieties over k in the sense that K — k V for a smooth

A--variety V and (by shrinking V) ,4 is the generic über of an abelian scheme A
over V. Each über A,, has a semisimple decomposition over k(v) in the sense

of the Poincaré reducibility theorem, and the K/k-trace is (roughly speaking)
the part of these hbral decompositions that is "tire same" across all fibers (or,

equivalently, is independent of the parameters in the base V). For this reason,
for any primary extension K/k the abelian variety Tr^y^A) over k is called
the fixed part of A relative to the extension K/k. The scheme-tlieoretic image
of TrK/k(A)K in A (for any primary K/k) is an abelian subvariety of A,
called the K/k-maximal abelian subvariety of A, but beware that in positive
characteristic it is often not "defined over A" (in contrast with Tr^/ri^hr) ;

see §6 for further discussion of this issue.

Suppose that A is an abelian variety over a held K that is finitely generated
and regular over a held A, so K — A(V for a smooth A-variety V. Consider
the problem of whether or not A (K) is finitely generated. Shrinking V if
necessary, let A be an abelian scheme over V whose generic über is A.
Since A is V-separated and V'-llat, A( V is naturally a subgroup of A(K).
(Ill fact, since A. is a smooth and proper group over the normal base V, the

valuatiye criterion for propemess and an extension lemma of Weil [1, 4.4/1]
ensure that A(K) — A(V so all elements of A(K) may be identified with
cross-sections to the structural map A -A V.) This makes it geometrically clear

that if the family of abelian varieties A has a "common isogeny factor" Ao

over A, which is to say that if A admits (Ao)y as an isogeny factor over V,
then A(K) contains "constant séchons" coming from Ao(A) C (Ao)y(E). Such

a subgroup Ao(A) may be very large (e.g., if A is algebraically closed).

Algebraically, if A admits an isogeny factor (,40)/(- with A0 defined over A,

then A0(A) is a subgroup of A0(K) — (AAk(K) and modulo a hnite subgroup
it injects into A(K). In this way, we see that the existence of isogeny factors
defined over A is a geometric obstruction to A(K) being finitely generated
when A is algebraically closed. This motivates consideration of hie quotient

(2.1) A(K)/rÇVrK/k(A){k))

as a more reasonable group which one may hope to prove is finitely generated,
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where r : Tr^CA)^ -A A is the canonical map. Since kerr is an infinitesimal

/("-«roup when K/k is regular (Theorem 6.12), for such K/k we can consider

'\'vKpfA)(k) as a subgroup of A(K) and so we omit r from the notation

iiï (2.1). The reasonableness of considering (2.1) is confirmed by

THEOREM 2.1 (Lang-Néron). If K/k is a finitely generated regular
extension and A is an abelian variety over K, then A(/Q/Tt)f|#|J)($j is

a finitely generated group.

We will prove Theorem 2.1 in §7.

EXAMPLE 2.2. Let K/k be a finitely generated regular extension and let E
be an elliptic curve over K. We say E is constant (with respect to K/k) if
E Ci (E0)k for an elliptic curve E0 over k, and non-constant (with respect
to K/k) otherwise. A necessary condition for constancy is that /(/;') e K lies

in k, but this is not sufficient. In our development of the Chow trace we
shall prove that the canonical map \vK/k(A)K —> A is an isomorphism for any
abelian variety A over k, so the constant case of the Lang-Néron theorem for
elliptic curves is the assertion that EfiK)/Efik) is finitely generated for any
elliptic curve E0 over k.

Now suppose that E is non-constant. In this case we claim AvKpfE) — 0,
and so the Lang-Néron theorem for E and K/k says that /:'(K) is finitely
generated. Letting If frA-pfiE), in the general theory of the Chow trace we will
see that the canonical map r : (Eo)k —> E has finite kernel, and so if Ifi / 0

then Eo must be l-dimensional and r must be an isogeny. Thus, to prove
\ vKnJ.E) 0 for a non-constant elliptic curve E over K, it suffices to show

that a non-constant elliptic curve E over K cannot be K -isogenous to an elliptic

curve of the form E'k with E' an elliptic curve over k. Suppose otherwise,
so there is an isogeny / : E'k -A E. The kernel G Ç E'k is a finite K -subgroup
of E'k, whence E'K/G e±E and so to get a contradiction it suffices to prove :

THEOREM 2.3. Let K/k be a regular extension of fields, and let E' be

an elliptic curve over k. Every finite K -subgroup G in E'K is induced from
a (necessarily unique) finite k-subgroup of E'.

The main issue in the proof of this theorem is that the coimected-étale

sequence of G may be non-split when K is not perfect. The comiected-étale

sequence and other background concerning group schemes are discussed in §3.
Note also that if we consider replacing elliptic curves in Theorem 2.3 With
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liigher-dimensional abelian varieties (such as a product of two supersingular

elliptic curves) then there are counterexamples to the A--descent conclusion
when char(A) > 0 and G is not K -étale.

Proof. If the identity component G° is the base change of a finite

A-subgroup of E' then passing to the quotient by this subgroup would reduce

us to the étale case. Hence, it is enough to treat separately the cases of
connected G and étale G. The connected case is trivial in characteristic 0.

The étale case in any characteristic is settled by Leimna 3.11 (taking H in
this lemma to be /;''[A'| for a nonzero integer N killing G).

It remains to treat the connected case in characteristic p > 0. In this

case G must have p-power order (Example 3.10), say p"" with n0 >0. The

key point now is that an elliptic curve over a held with characteristic p > 0

(unlike liigher-dimensional abelian varieties) contains a unique infinitesimal

subgroup of length p" for each n > 0. Indeed, for any régulai- curve over a

held there is a unique infinitesimal closed subscheme with any desired length
supported at a rational point, and in hie case of elliptic curves and subgroups

supported at the origin we use the kernel of hie relative p" -I robenius map
(Definition 3.15) to settle the existence aspect for order p" for each n "> 1.

The unique inhmtesimal subgroup of E' with order p"° therefore gives the

required descent from K to A.

EXAMPLE 2.4. Let K0 be a global held and let K — K(j (r,,.... t„)
with n > 1. If A is an abelian variety over K then A(K) is finitely generated

by Theorem 2.1 because \ivK/Kri(A)(Kt)) is finitely generated (by the usual

Mordell-Weil theorem over K0 and there is a nonempty open U C JfL such

hiat A extends to an abelian scheme A over U. Thus, for all u0 G U(K0)
we get an abelian variety Am over Kq and there is a natural map between

finitely generated groups

pUo : A(K) - A{U) -A Am{Kn).

If A has large rank over K and one can control the kernel of hie specialization

map at u() then one can hope to find hbers ,/l„0 with large rank over K().

Eor example, it is a theorem of Silverman [30, Thin. C] that if n — 1

and Trk/k0(A) - 0 then kerpm 0 for all but finitely many uq g U(Kq) ;

Silvennan's proof requires characteristic 0, due to a use of resolution of
singularities, but the argument can be modified to avoid resolution and to

thereby work in any characteristic (for n — 1). Néron [26] proved a weaker

specialization result for all n > 0 : there are infinitely many uq G U{Kf) for
which p„0 is injective.
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3. Some preliminary results

To make our arguments as self-contained as possible, we need to review

some background facts and terminology related to Grothendieck's fpqc descent

theory (which vastly generalizes classical Galois descent) and group schemes

over a base scheme (which vastly generalize classical group varieties over a

held). We also give proofs for some other results that will be needed in what

follows.
An excellent introduction to Grothendieck's descent theory is [1, Ch. 6]

(along with [7, IV2, § 2.2-2.7]). A basic question in the theory is the following :

given a faithfully hat and quasi-compact (fpqc) map of schemes S' —> S, such

as Spec(A') Spec(A) for a faithfully hat map of rings A —> A' (the

main example for us being an extension of helds A -a K), can we identify
the category of S-schemes as a subcategory of the category of S'-schemes '?

We also want to relate properties of an S-morphism /: A —> Y (such as

propemess, surjectivity, hniteness, smoothness, etc.) with the corresponding
properties of the induced .S'-morphism /y : Ay —> and to relate "structures"

on an 5 scheme A (such as quasi-coherent sheaves, closed subschemes, group
scheme structure, etc.) with corresponding "structures" on As» equipped with
suitable descent data with respect to 5' —1 S. See [1, Ch. 2] and hie references

hierein for the fundamental débilitions and results related to smooth and étale

morpliisms of schemes.

In general the natural map I Iomv(A. Y) —s I Iouiy(Ay, fy is injective,
and one of the first important results in fpqc descent theory is to characterize

hie image of this injection. To formulate hie answer, we introduce some

notation: if Z! is an S'-scheme then we write p[(Z' and /A(Z') to denote

hie schemes over S" - S' Ks S' induced by base change along the projections

p 1. /?2 : S" njj S'. For example, consider a finite Galois extension of helds k'/k
with Galois group G, and take S' —I 5 to be Spec(k') -p Spec(/t). The natural

map of A--algebras

(3.1) If 0k k' -p k'

S6G

defined by a tfib^P (ag(b))geG is an isomorphism, and this identifies p\(Z')
with hie disjoint union U9gg ^ °' c°pies of Z' indexed by G and it identifies

P2 fZ!) with the disjoint union f \ (j g*(Z') of the various "Galois twists" of the

A'-scheme Z! with respect to hie G-action on A'. The problem of descending

objects over A' to objects over A was described by Weil and his contemporaries
in tenns of invariance with respect to suitable Galois actions, and hie preceding
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description of the p*(Z'Ys as disjoint unions via (3.1) provides a mechanism

to translate such statements about Gafetis-invariance into statements concerning
schemes over the fiber product Spec If Xspec/tSpec k'. This makes Weil's theory
of Galois descent fit into the framework of the following descent theorems

with respect to general (not necessarily algebraic or separable) field extensions

and even general fpqc base change S' — S.

If Z is an S-scheme, then for the S'-scheme Z! — Zs< there is a canonical

5"-isomorphism ipz'- p\(Z') p^Z') via the common identification of each

side with S" XjZ. Using this ipx, the main result on descent of morphisms
is the following (see [1, 6.1/6(a)] for a proof):

THEOREM 3.1 (Grothendieck). If S' —> S is a faithfully flat and quasi-

compact map of schemes and X and Y are S -schemes then an S'-morphism

/': Xy —> YSi has the form fs> for a (necessarily unique) S-morphism

f: X —» Y if and only if p\(f) — fiàtf ln ^le SM®? that these maps
correspond under the canonical S"-isomorphisms <pX'- PifXg*) — Px(Xs>) and

flY- P*flYs>) ~ pflYy

EXAMPLE 3.2. If S' s- S corresponds to a finite Galois extension of
fields k'/k, the isomorphism (3.1) converts the criterion m Theorem 3.1 into
the classical Galois-equivariance criterion for descending a k' -rnorphisin to a

/t-morphism. This is worked out in [1, 6.2/B]. In another direction, a diagram
chase shows that if Xy is endowed with an S' group scheme structure then

this descends (necessarily uniquely) to an .S'-group scheme structure on X if
and only if the induced S" -group scheme structures on p flXs' and pflXs'
coincide via the canonical S" -isomorphism ip:X: pl(Xg>) MpSÜCgrf.

REMARK 3.3. Even if one is only interested in Theorem 3.1 or other
descent theorems for the special case $' — Spec K and S Spec k

corresponding to a field extension K/k, it is crucial in some proofs to apply the

descent machinery to the fpqc morphism T' — Xy —t X — T tliat is generally
not a map between spectra of fields. Thus, even for practical purposes it is

useful to allow the generality of S' —r S as above.

Âs we have noted already, in practice one does not just want to (uniquely)
descend morphisms but also quasi-coherent sheaves (from Xy to X), closed

subschemes, properties of morphisms, etc. For many standard properties P of
morphisms of schemes (such as propemess, suijectivity, finiteness, smoothness,
etc. ; see [7, IV2, 2.7.1] and [7, IV4, 17.7.3(//)| for typical properties) one has
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that an .S'-map f: X —> Y satisfies P if and only if /y : Yy ->•YS. does. The

problem of descent of an S'-scheme to an .S'-scheme in general is a subtle

one, even for finite Galois extensions of fields, but in a special case we have

a simple criterion that notably applies to abelian varieties (and is a special

case of a general criterion of Grothendieck [1, 6. l/6(b)]) :

COROLLARY 3.4. Let k' fb be a finite Galois extension offields and let X'
be a quasi-projective k' -scheme. Let G — Gal(A'/A). To specify a k-scheme

X equipped with a k' -isomorphism Xfi — X' is equivalent to giving the

data of k' -isomorphisms a.g: g*(X') ~ X' satisfying the cocycle condition

agig2 am o gl(ag2) for all gi,g2 G. Such an X is necessarily quasi-

projective over k.
A k' -group scheme structure on X' descends to a k -group scheme structure

on such an X if and only if each ag is a k' -group scheme map.

To funetorially descend a quasi-coherent sheaf on Yy to one on X there

is a necessary and sufficient criterion that is the natural generalization of a

classical Galois-action criterion (see [1, 6.1/4], applied to the fpqc inorphism
Yy —f X). In tlie case of quasi-coherent ideal sheaves this leads to the

following key fact that we will often use without comment :

THEOREM 3.5. Let S' —» 5 be faithfully flat and quasi-compact, and let X
be an S-scheme. The map Z h-> Zs> from the set of closed subschemes of X
to the set of closed subschemes of Yy is injective, and a closed subscheme

Z' ^ Yy descends (necessarily uniquely) to a closed subscheme Z <—y X if
and only if p\(Z') — p\(Z') as closed subschemes of p](Yy) ÊA p^jXy).

In particular.; if X is an S -group scheme and Z is a closed subscheme of X
then Z is an S-subgroup scheme of X if and only if Zy is an S'-subgroup
scheme of Yy.

EXAMPLE 3.6. If k'jk is a finite Galois extension of fields and Y
is a A--scheme then the theorem says that a closed subscheme Z' in Ye
descends to one in Y if and only if the natural isomorphism g' (Xkr) s Yy
for each g £ Gal(A'/A) carries g*(Z') to Z' ; this is the classical Galois-

stability criterion. If K/k is an arbitrary extension of fields, A is an abelian

variety over A, and B' C AK is an abelian subvariety over K that descends

to a closed subscheme B C A then B is necessarily an abelian subvariety
of A.
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In the theory of group schemes, the main results that we require take

place in the category of group schemes of Unite type over a held A. We

will sometimes have to work with possibly disconnected A--group schemes,

but in the connected case over k there is never disconnectedness arising
from extension of the base held because a connected A-scheme X with
X(k) / 0 is geometrically connected over A (i.e., X /./, K is connected for

any extension held K/k); tins geometric connectivity is a special case of [7,

IV2, 4.5.13],

THEOREM 3.7. Let A be a field, and let G be a A -group scheme of finite
type. For any closed A -subgroup scheme H in G there is a unique H -invariant

faithfully flat k-map n: G—> G/H to a separated finite type A -scheme such

that the action map G x H —> G Xc/h G 's an isomorphism, and it is initial
for H -invariant morphisms from G to other schemes. In particular, if K/k is

an extension field then the natural map Gk/Hk ~> (G /1I)k is an isomorphism.

If G is a smooth A -group then G/H is A -smooth, and if in addition H is

normal in G in the sense that the action map G x H -x G via {g, h) m? fjhg~l
factors through I I—r (J then G/H has a unique k-group structure compatible
with that on G.

Proof. Tins follows from [12, IVA, 3.2] and Theorem 3.1. In the special

case that // is a A-hihte commutative group scheme, these results are special
cases of [25, Tlnn. 1, p.111].

EXAMPLE 3.8. If /: G —t G' is a A-group morphism between limte type

A-group schemes then G/(ker/) is naturally a A-group scheme of hnite type
and G/(ker/) —> G' is monic, hence a closed immersion [12, Yip,, Cor. 1.4.2].
That is, G/(ker/) is naturally a closed A-subgroup of G'. In particular, if
/ is surjective and G' is smooth then G/(ker/) ~ G'. As a special case, if
/ : ,4 —> B is a map between abelian varieties over a held A then A/(ker/)
is an abelian variety and so it is naturally an abelian subvariety of B.

EXAMPLE 3.9. If G is a hnite commutative group scheme over a held A

and II C G is a closed A-subgroup then #G - HI! !!(GjII) where the order
#X of a hmte A-scheme X is hie A-dimension of its coordinate ring. Indeed,
since G x. Il ~ G X-c/n G we just have to check that hie hnite hat map
G -£ G/H has constant fibral degree equal to HI and this equality is clear
because its geometric hbers are isomorphic to // via translation. As a simple

consequence, we see that if G has prime order then H — 0 or H — G.
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EXAMPLE 3.10. Let G be a finite commutative group scheme over a

field A, and let G° be its identity component ; this is geometrically connected

over k and (for topological reasons) is a subgroup scheme of G. Since

the formation of the finite commutative A--group G/G° is compatible with
extension on k, by extending sealars to an algebraic closure k of k and using
that each connected component of Gj contains a unique k -rational point we

see that Gj. is uniquely and functorially the product of G° and a constant

group (that in turn is canonically identified with G%/G° — (G/G°)i). Hence,

G/G° is A-étale. By [8, Ch. I, 9.1, 9.5/2], the case G° / 0 can only occur in
characteristic p > 0, in which case G° ~ Spec A[.V|.... gkxjjf).

as pointed A-schemes for some N >0 and ei,,.. ,e^ >0, so tlie order of G°

is a power of p.
We call the diagram

0 -? G° -> G -> G/G° 0

tlie connected-étale sequence of G and we call G/G° the étale part of G and

denote it Get ; the formation of this diagram is functorial in G and commutes
with any field extension on A. We have just seen that the connected-étale

sequence uniquely and functorially splits over an algebraic closure A, so by
Galois descent it uniquely and functorially splits when A is perfect (i.e., when

A/A is Galois). This sequence can fail to split when A is imperfect, and this

possibility will arise in a crucial step in our proof of an important result of
Chow (Theorem 5.5). For this purpose, the following descent lemma (along
with Lemma 3.14) will be useful.

LEMMA 3.11. Let K/k be a regular extension of fields and let H be a

finite commutative A -group. If G f I Ik is an étale K-subgroup then it arises

by base change from a unique étale k-subgroup of H.

Note that tlie regularity of K/k is a crucial hypothesis in this lemma.

Indeed, one gets many counterexamples in characteristic p > 0 for purely
inseparable K/k by taking K — k(al p) for a e Ax not a /;th power in A

and H equal to the non-split p-torsion extension of Z/pZ by pp classified

by tlie non-trivial element a mod (Ax )p f k/ /(k / )p as in [16, 8.7.1]. In any
characteristic, another source of counterexamples in tlie absence of a regularity
hypothesis is A-étale H and K/k a finite Galois splitting field for H.

Proof. The uniqueness is clear by Theorem 3.5. Pick a separable closure A'

of A, and let K' — k' -0j K. Since A is separably closed in K we see that
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K' is a field and K'/K is Galois with the same Galois group as k'/k.
Hence, if we can solve the descent problem for K'/k' then the A'-descent

r' of Gic C Hk> in Ht is a Gal(A'/k) -stable A'-subgroup because of the

uniqueness of descent and the fact that F' gSfe K' G/c t Hk> is visibly
Gali/f'/'/fj-stable. Using Galois descent with respect to k'/k, the A'-descent

r' in II/;i then must descend to a A-subgroup F of II that solves the original
problem: F has K-fiber in Hk that coincides with G because its K' -liber
in Hk< is Gk> by construction. This shows that it suffices to treat the case

when A is separably closed, so we now assume A to be separably closed. In
particular, II"1 - II/II0 is a constant A -group. By expressing K as a direct
limit of finitely generated regular extensions of A we can assume that K/k is

finitely generated. Hence, K k(V for a smooth A-variety V.
The composite map G —> Hk —> 11/ has kernel G Gil1/ that vanishes since

G is K-étale, so G is identified with a closed AC-subgroup of 11/. But Het

is constant, so each closed If-subgroup of 11/ arises by base change from
a unique closed A-subgroup of Het. By replacing H with the preimage of
this latter A -subgroup under the quotient map H Het we can assume that

G maps isomorphically to 11/. In other words, the data of G amounts to a

splitting of the coimected-étale sequence of IIk and we wish to prove that

this forces the comiected-étale sequence of H to be split. More generally, if

0 H' -> H -A H" -> 0

is a short exact sequence of finite commutative A-groups (i.e., //' is closed

in H and H/H' ~ H" and if there is a splitting after extending scalars to

K — k(V) then we claim that there is a splitting over A. By "smearing out"
from the generic point Specif of V, a K-splitting extends to a Vo-splitting
of the diagram

0 -4 H'Vo —»• % —> Hyo —> 0

for a suitable dense open Vo r- V. The set VVA) is non-empty since Vo is

smooth over the separably closed field A, so specializing a Vo -spl itting at any
f'o fc Vo(A) gives a splitting of the original exact sequence over A.

The methods in [25, § 14] show that if A is a field and G is a finite
commutative A group then the functor S H- I I()ni(ip/ V(Gv, G,„ v) on A-schemes

(where Gp/.S' denotes the category of group schemes over 5) is represented by
a finite commutative A-group D(G), the Cartier dual of G, and the canonical

map G —> D(D(G)) is an isomorplfism ("double duality isomorplfism"). For

example, D(Z//;Z) — G„,[«] — //,,. The same methods work over any base
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ring, so for any base scheme So and any finite locally free commutative group
scheme G over So there is a finite locally free commutative group scheme

D(G) representing the functor S M- I Iom(ip/v(Gv. G„, s) on the category of
So-schemes, and G is D(D(G)). If S'0 —* So is any So-scheme, then we have

naturally D(G)v' — D(Gy as S'(l -groups. In the special case tliat the base

So is Spec A- for a field A, since an inclusion between Hopf algebras over
a field is faithfully flat [33, 14.1] it follows that that a map /: G' —» G

between finite commutative A-groups is a closed immersion (resp. faithfully
flat) if and only if D(/) is faithfully, flat (resp. a closed immersion), Using
Nakayama's Leimna on fibers and fibral flatness criteria [7, IV3, 11.3.10], the

same assertion carries over to maps between finite locally free commutative

group schemes over any base scheme So-

EXAMPLE 3.12. A finite commutative group scheme G over a field A

is multiplicative if D(G) is étale over A. If A is Separably closed then this

says that D(G) is constant, or equivalently (by double duality) that G is a

finite product of groups of the form D(Z/«Z) //,, (hence the terminology).
In particular, if A has positive characteristic p then a multiplicative group
is connected if and only if it has p -power order. In the case of perfect A

with characteristic p > 0, we may apply Cartier duality to the uniquely and

fuiictorially split comiected-étale sequence of G to uniquely decompose G

into a product of four kinds of finite commutative A-groups: étale with étale

dual (this is the prime \o p part of Get), étale with connected dual (this is

(kx\p K |). connected with étale dual (this is D(D(G°)et), the multiplicative part
of G), and connected with connected dual (this is D(D(G°)°), the local-local

part of G). These four factors are respectively denoted G„, Gr1, Gir, and

G] 1 since a finite scheme over a perfect field is étale if and only if it is

reduced. In the case of algebraically closed A, tins is all worked out in [25,

p. 136].

EXAMPLE 3.13. If/': A —V.B is an isogeny between abelian varieties over
a field A and /vJ Bv —> Av is the dual isogeny then the finite commutative

A-groups ker/ and kerf ' are each canonically isomorphic to the Cartier
dual of the other (in a manner respecting extension of the base field). Tins
is stated over an algebraically closed field in [25, § 15, Tlnn. 1], but the

proof there works without restriction on the base field. There are more refined

questions that one can ask concerning double duality for finite A-groups and

abelian varieties over A, but we do not need to address such matters for our

purposes.
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LEMMA 3.14. Let k be a perfect field with characteristic p > 0 and let
H be a finite commutative k-group with associated four-fold decomposition

II — //,, A //,| X //|, X II\\

as at the end of Example 3.12. For any extension field K/k and any closed

K-subgroup G C ///s the natural map

(3.2) (G n (H^k) x (G Pi (Hri)K) X (G H (Hlr)K) x (G n (H\\)k) —> G

« a« isomorphism.

Proof. If K is perfect then we have (//„ R — dIk)it and similarly for the

other three factors of //, so the functoriaiity of the fonr-fold decomposition
over K (applied also to G) gives the result in this case. For general K, since

the forination of G H G fl (H\\)k commutes with arbitrary extension

on K we see that the map (3.2) between finite commutative K-groups becomes

an isomorphism after extension of scalars to the perfect closure of K. Hence,
it is an isomorphism.

The final general concepts that we shall review from the theory of group
schemes are the relative Frobenius and Verschiebung morphisms. Fix a prime

p and consider F;, -schemes. For any F^-scheme S, let Fs: S —/ S be the

absolute Frobenius morphism (identity on underlying topological spaces, the

/jth-power map on 0.s ; this is functorial with respect to arbitrary maps
of F;, -schemes. For any S-scheme X and n > 0, we let Xip ' denote the

S-sehe me S /. p .s X obtained from X by base change through Roughly

speaking, X ' 1 is obtained from X by replacing coefficients in the "defining
equations" of X over S by their p" th powers. This is well-behaved with respect
to base change in the sense that if 5' —> 5 is a map of Fp -schemes then there

is a natural S'-isomorphism (X^f ' — (X<!' fs' due to the functoriaiity of
Fs and Fs> with respect to the map S' —t S. If f: X —f Y is an S-morphism
then /'p"' : X(•" 1

—> Y{p' ' denotes the induced map after base change.

DEFINITION 3.15. For n > 0, the relative p" -Frobenius morphism

Fx/s.n'- ^ - Xip * is tire unique 5-map whose composite with the projection

X^ -p X (over If: S -> 5) is /''(•. For n — 1 we also use the notation
and this is called the relative Frobenius morphism for X over 5.

This definition makes sense since the absolute Frobenius morphisms If
and F$ are compatible via the structure map X -p S. Note that Fx/s.n is mi
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S-map whereas #§| generally is not (unless is tlie identity, such as for
S — Spec« with n a finite held satisfying [« : F;,| n). Roughly speaking,

Fx/s.n is die map induced by raising "coordinates" (over S) to the p" th power.
Explicitly, for n > 1,

(3-3) Fx/s.n — ß o • • • o Fx/s-

The map Fx/s.n is functorial in the .S'-scheme X, is compatible with the

formation of products in X over S, and is compatible with any base change
5' —5 in the sense that (Fx/S.„)s> Fxs/S'.n v'a the natural isomorphism
(X^p'^s' ~ (Xs'fp). In particular, for an S-group scheme G the map FG/s„
is a morphism of S-groups and F*Gßn — FG,,m,ßn for any m > 1.

For an S -group G that is coimnutative and .S'-llat, there is a canonical

5-group map Vq/s'- G(p) —>• G [12, VIIA, 4.2-4.3] called the relative
Verschiebung morphism tliat satisfies VG/soFG/g \p\c The fonnation of
commutes witli any base change on S and it is functorial in the S group
G. If G is a finite locally free commutative group scheme over S then

VG/S - [12, VIIa 4.3.3], For n > 1, we dehne hie S-group map

Vç/S.n Vc/s° ' ' ' ° fiijrmHkmi G{p ' G

so VC/s,n ° FG/s,n Iri" Ig - In particular, \p"\(, - 0 if Fc/x„ 0, and so

by Examples 3.9 and 3.10 we see that any finite commutative group scheme

over a held is killed by its order.

EXAMPLE 3.16. The map vanishes because FGaS/s is faithfully hat

and Iplc, ; - 0. The subgroup aPjS - kcr/ (; ,- Specs(0s[T]/(Tp)) C Ga,lS

is the 5"-group scheme of pth roots of 0 (with additive group structure), and

it is a tautology that sß — 0 whereas V,, sfg — 0 due to the vanishing
ol V6a.s/s-

EXAMPLE 3-17. By working over an algebraic closure k of k and using
the explicit description of hie relative Frobemus in terms of pth-power maps,
we see that (i) FGß is an isomorphism if and only if G is étale over k, and

(ü) FG/k,„ 0 for large n if and only if G is connected. Hence, by (3.3)

we can hlter the connected part G° by kernels of successive iterates of relative

Frobenius so that the successive quotients in the filtration have vanishing
relative Frobemus. On the maximal local-local quotient of G° (the Cartier
dual to D(G°)°) we can apply the same procedure and then refine it further

by using kernels of iterates of hie relative Verschiebung morphism (i.e., we
form kernels of Frobenius iterates on the Cartier dual, mid then dualize back).
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In this way we can filter the local-local part of G with successive quotients
whose relative Frobenius and relative Verschiebung morphisms both vanish.

This motivates the question of describing all finite commutative A--groups

G for which /G/i and VCß vanish. In case A is perfect (e.g., algebraically
closed), such G's are precisely products of finitely many copies of the A-group
scheme op. Indeed, by Dieudomié theory over A [8, Ch. III, 1.4, 3.2, 3.3] the

category of G 's with Fcß — 0 and VCß — 0 is antiequivalent to the category
of finite-dimensional A-vector spaces, with G of order // going over to a

vector space of A-dimension r, and the A-group a.p of order p corresponds
to a 1-dimensional A-vector space under this anti-equivalence. (As a special

case, ci ap over Spcc(F;)) and hence over any F;, -scheme by base

change.) Ä useful consequence of this classification is the following result
that will be used in our proof of Chow's regularity theorem.

THEOREM 3.18. Let A be a perfect field of characteristic p > 0 and let
G be a finite commutative A -group such that FCß and Voß vanish. For any
extension field Efk, the operation Fl h-> lo(II) is a bijection from the set of
closed E-subgroups of Ge to the set of E-subspaces of Tq(Ge). Moreover.;

If C H2 if and only if 7„(//|) C 70(//2).

Proof. Since A is perfect, we may and do fix an isomorphism G ce ap Ç G"
over A and then we claim (with slight abuse of notation) that the operations
W t-> W fi ap e and H H* T0(H) Ç T0(G" E) m G" E are inverse bijections
between the set of vector subgroups of G" F and tlie set of closed £-subgroups
of ap e ; this claim certainly implies the theorem. It suffices to check this

general claim over an arbitrary algebraically closed extension field E/k. Every
closed A-subgroup of apE for such £ is a product of copies of rt;, /,, and
I Iom/: (n;) 2 o:pj;) £ via the scaling action, so we easily get that the two
operations are inverse to each other.

Thi? concludes our background review of descent theory and group
schemes, and now we provide proofs for a few other necessary results. Let
us begin with a crucial result due to Chow (see [3] or [18, Ch. II, Tlun. 5]),
for which we give a Grothendieck-style proof via descent theory.

Theorem 3.19 (Chow). Let A and B be abelian varieties over a

field A and let Kjk be a primary extension. Any map of abelian varieties

f: Ae —7 Bk is defined over A in the sense that the injective map
I Iom/(,4. B) —> I Iom/('(,4/(-, BK) is bijective.
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This theorem is especially useful for separably closed k, in which case

every extension K/k is primary. In the proof of Theorem 3.19 and throughout
later sections we will find it useful to invoke some elementary concepts related

to abelian schemes (i.e., smooth proper group schemes with geometrically
connected fibers). In [24, Ch. 6] there is given a systematic treatment of the

basics (and much more) concerning abelian schemes.

Proof. Let K' — K 0k K. Since K is a primary extension of k, Spec K'
is irreducible and in particular is connected. By Theorem 3.1, it suffices to

show that the two pullbacks pj (/ : AK> —> Äg» of / along the projections

pI. /j2 : Spec K' Spec K are equal. To prove that pj(f — pj (/' we first
check such equality on a single über over SpecfC. Consider the canonical

point Spec K —> Spec K' defined by the diagonal. The pullback of each pj (/
via this point is /, so the desired equality is achieved on the über over the

diagonal point.

With equality achieved ou one fiber, now consider the K' -maps induced by
the /;,"(/')'s on ("-torsion for n > 1, with I a fixed prime distinct from the

characteristic of k (so § is a unit on Spec K' These torsion subschemes are

finite étale over the connected base Spec K', and a map h : Z! —¥ Z between

finite étale schemes over a connected scheme S is uniquely determined by
its restriction Z[ —> Zs to fibers over a single geometric point .v of the base

scheme S [7, IV4, 17.4.8]. Hence, p\(f) and pj if coincide on each AK/ [/"]
for all n > 1.

To infer equality of p\(f and pj(f on A, we want a map between

abelian schemes over K' to be uniquely detennined by its restricton to all

(-power torsion subgroup schemes. We shall appeal to a more general sufficient
claim: if ,/l —? S is any abelian scheme over a scheme S and if is any
prime then the collection of closed subschemes b4|J®J for all n > 1 is

universally schematically dominant ill A with respect to § in the sense of [7,

IV3, 11.10.8] (we only need the case when i is a unit on §). To prove tins,

by working locally on § one can reduce to the case of noetherian §, in which
case [7, IV3, 11.10.4, 11.10.9] reduces the problem to the classical schematic

density of such torsion-levels on geometric fibers.

Theorem 5.5 ensures that the concept of "defined over A" for abelian
varieties over K is both well-defined and functorial when K/k is primary.
We shall use this repeatedly without comment. An important corollary is

the validity of the Poincaré reducibility theorem over an arbitrary base

field:
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COROLLARY 3.20. Let A be a field. If Y is an abelian subvariety

of an abelian variety X over k then there exists an abelian subvariety
Z CI such that the natural map Y x Z -4 X is an isogeny. In particular;
the isogeny category of abelian varieties over a field is artinian and

semisimple.

Proof. A proof is given in [23, § 12] when the base held k is perfect.
(The proof is inapplicable for non-perfect k because the underlying reduced

scheme of a finite type A"-group scheme can fail to be a subgroup scheme

when k is not perfect.) In the general case, if K/k is the perfect closure

and Y '—r X is an abelian subvariety then we may pick an abelian subvariety
Z' C Xf( such that the natural map f: YK / Z' —t XK is an isogeny. Let

-X- YK x Z' be an isogeny whose composite with f is multiplication by a

nonzero integer. The composite K -map

XK —- /. Z' ' > XK

descends to a k map X X by Theorem 3.19, and its schematic image

Z C X is an abelian subvariety that is an isogeny-complement to Y in X
(as we may check after the faithfully flat extension of Scalars k Ht. K

COROLLARY 3.21. Let K/k be a primary extension offields and let A be

an abelian variety over k. Any abelian subvariety of An has the form A'K for
a unique abelian subvariety A' of A over k. In particular, if k is separably
closed then an abelian variety over k acquires no new abelian subvarieties
under any extension on the ground field.

Proof. By Theorem 5.5, passage from k to K does not change Horn-

groups, and in particular does not introduce new idempotents in the isogeny

category, So if {A,} is a collection of mutually non-isogeneous A-simple
abelian varieties such that A is A-isogenous to ] J Af (with e, >0), then the

Aj/K 's are A'-simple and AK is K -i sögeneons to YI^/k- Thus, by Poincaré

reducibility over K, any abelian subvariety B in ,4 K is the schematic image

of some Tit-map of abelian varieties n ai/k ~ak for suitable e'i < et, By

Theorem 3.19, tliis map descends to a A -map of abelian varieties ]~[ ,4': —> A.
The schematic image of this map is an abelian subvariety A' in A. Since

the formation of schematic image commutes with the flat extension of
scalars from A to K, we conclude that B A'K as abelian subvarie des

of Ak.
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4. The K/k -image

Throughout this section, K/k denotes a primary extension of fields. We

begin with a definition:

Definition 4.1. Let A be an abelian variety over K. A K/k-image of
A is an initial object (Im^(A), A) in the category of pairs (B.f consisting
of an abelian variety B over k and a /f-map of abelian varieties /: ,4 -a BK.

It is obvious that a K/k -image is unique up to unique isomorphism if it
exists. An important example is :

THEOREM 4.2. Let A be an abelian variety over k. A K/k-image of Ak
is given by the pair (A, l/ts).

Proof. The assertion is that if B is any abelian variety over k and

/: Ak —r Bk is a map of abelian varieties over K, then it arises as the base

change of a unique A'-map of abelian varieties A —* B. This follows from
Theorem 3.19, since K/k is primary.

THEOREM 4.3. For any abelian variety A over K, the K/k-image exists.

Proof. I f f \ A —T ßK and f *
: A —t B'g are maps of abelian varieties with

B and B' abelian varieties over k, then (/,/'): A —> BK / B'K — (B x B')K
is a map of the same sort. The image of this map is an abelian subvariety of
(B x B')k, and so by Corollary 3.21 it has the form Xk for a unique abelian

subvariety X in B / B'. It is clear that / and /' respectively uniquely factor

through the K -übers of the natural k -maps of abelian varieties X —7 B and

X —> B> so we have shown that the collection of pairs (B.f admits finite

suprema.
Each object (B.f is uniquely dominated by an object (C. h) where C is

an abelian subvariety of B and h : A —> Ck is a surjection of abelian varieties

(namely, take C to be the unique abelian subvariety of B such that CK is

the image of /; here we once again use that K/k is primary). Thus, it is

enough to make an initial object in the category of pairs (B.f such that

/ is surjective. Any such object is determined by the K-subgroup ker/ Ç A,
and the construction of finite suprema shows that this collection of kernels

is stable under finite intersection in A. The descending chain condition in A

thereby produces an initial object.
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EXAMPLE 4.4. We give an example such that the map to the K/k -image
has non-smooth kernel. Let K/k be a non-trivial extension in positive
characteristic p with k algebraically closed. Let E/k be a supersingular

elliptic curve, so the self-duality of E (see the proof of [16, 2.1.2]) implies
that kcr/•'/./1 ~ ap due to Examples 3.13 and 3.17. Let

G t (ftp X ap)K Ç /'. /,* \p I X Spec K i'-K \p I

be an olp.k tliat is not defined over k as a A-subgroup of (ap x ov)k
(By Theorem 3.18, to pick such a G amounts to picking a A-line L in the

plane Tfo/K) — K To(ap) such that L does not arise from a line in the

A--vector space Tq(cvp).) Lor A — (ExE)k/G, we have ImA ,s( -l) E x E
and the natural map

A: A (A x E)K/(ap x ap)K -EKP) x Ef
is tlie K/k -image. The kernel of A is isomorphic to aJKK, so kerA is not
smooth.

Let us now treat some formal properties.

THEOREM 4.5. Let A be an abelian variety over K.

(1) If k/ko is primary and (Im^^Chn^/itlA)), Ao) denotes the k/ko-image of
ImK/k(A) then

(IiW/io(hnÄyi(A)), \0/K o A)

is a K/k0-itnage of A.

(2) If K'/K is a primary extension then (Img/A(A), A^-') is a K' jk-image of
Ajc

(3) The canonical map A: A—f\mK/tfA)K is surjective with (geometrically)
connected kernel.

Proof. The first part is a tautology. The second part follows from the first

part and Theorem 4.2. Lor the filial part, let H — ker A. This is a (possibly non-
smooth) closed subgroup of ,4. The quotient A/H is an abelian subvariety of
ImK/k(Ä)K by Example 3.8. By Corollary 3.21, A/H must have the form A7<-

for a unique abelian subvariety X in Im^/AA). Lor any A-map of abelian

varieties h: A —> Bk with B an abelian variety over k, there is a unique
k morphism of abelian varieties /: ImK/k(A) —> B such that h f)( o A, so

h uniquely factors through the A-extension of /' ,v : X —r B via the natural

map A — XK induced by A. By universality, we conclude that the inclusion
of X into ImK/k(A) must be an isomorphism. Hence, A is surjective.
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It remains to show that H -=- ker A is connected. Let H° be the identity
component and consider the quotient A/H°. This is an abelian variety over K
and the natural map

p: A/H° Ht A/H - Im^fA)^
is a finite surjection with kernel H/H° tliat is étale over K, so p is a

finite étale covering. Let n be the degree of this covering, so the map
[«|/( : In^k/AA)k H- Imk/i(A)k factors tluough p. The connected part of
ker[/z |/(- is killed by p, so ß is dominated by the base-change to K of the

finite étale cover
hnA7t(,4)/(kcr[«|)° -> lmK/k{A)

induced by [«]. We claim that the subgroup

kertlm^Ak/tkertuk)0 H- A/H°) Ç fker[/z |A )/(ker[/z |,v )° (ker[«])|
descends to a subgroup of the finite étale (ker[/z |)ct. This holds because for
compatible separable closures ks/k and Ks/K, tlie natural map Gal(/é,/A') H
Gal (A,/A) is surjective (as K/k is primary, so ksÇPnK is naturally a subextension

of Ks/K). Thus, there exists a unique abelian variety Ao over k equipped
with a finite étale map k: Ao -f Im^^(A) tliat descends the canonical map

pi A/H° H- A/H.
For any abelian variety B over k, any A"-map of abelian varieties

h: A —f l)K admits a unique factorization as fK o A where f": Iin^MA) H B is

a A--map of abelian varieties. Writing A as p oA° ~k A° for the projection
A0: A -f? A/H°, clearly there is also a factorization of h as <y/(- o A0 for a

unique map of abelian varieties g o n: Aq —y B over k (uniqueness of g
follows from suijectivity of A0). Thus, tire pair (Ao,A°) has the universal

property of a K/k -image, and so tire map ttk carrying A0 to A must be an

isomorphism. Tins shows that fi ll0 is connected.

REMARK 4.6. Theorem 4.5(2) is false if the primality condition on K'/K
is dropped. To give a counterexamples with regular K/k in arbitrary
characteristic, let Eo be an elliptic curve over k such tliat Eq has geometric

automorphism group {±1}, let K'/K be a quadratic Galois extension with k

algebraically closed in K' (so K'/k is regular), and let A be the nontrivial

quadratic twist of E0/K associated to K'/K. In this case A cannot arise from
an elliptic curve /:) over k because otherwise the resulting K' -isomorphism

EyjK< ~ Ak> E0/k, would descend to a /.-isomorphism /:) ~ E0 (since

K'/k is primary) and so would give a A"-isomorphism ,4 ~ E(j/K, a
contradiction. Tins non-constancy of A with respect to K/k forces Im^dA) — 0

by Example 2.2 and duality, yet ImK, ß(AK> — /:'o.
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Note that the functor hn^yN') carries hnite products to finite products
(since Hom(AxA',X) — IIom(A, X) x IIom(,4',X) for abelian varieties A, A',
and X over a field). Also, it carries isogenics to isogenics since isogenics

are characterized as having a two-sided "inverse" (up to multiplication by a

non-zero integer). Thus, for many questions about the K/k-image that take

place in the isogeny category, there is often no loss of generality by restricting
attention to the case of A'-simple abelian varieties. The following useful result
reduces many questions about the K/k-image to the case when the canonical

map A =« A^/j : A In\K/k{A)K is an isogeny.

COROLLARY 4.7. For any abelian variety A over K there exists

a unique abelian subvariety A' C A such that Img/ifA') — 0 (so

Im^lA) —f Imr/i(A/A') is an isomorphism) and A/A' —v Im^/jlA/A'lis:
is an isogeny.

Proof. Since the additive functor Im^yj commutes with products and

carries isogenics to isogenics, by Corollary 3.21 and Theorem 4.2 we see that
A' is the unique maximal abelian subvariety of A whose A"-simple isogeny
factors are iCisogenous to an abelian variety defined over k.

5. The K/k-image and base change

We now consider extension of the ground field. As before, K/k is a

primary extension of fields and A is an abelian variety over K. For any
extension Fik. there is a unique ii-map of abelian varieties

(5-1) Ip/k- ImEK/EiA-m) lui/,- A'D/

characterized by the property that composing

A -An. .I K-1:: AEK ÜB

with (I/-/F)i;k yields the base change

AEK- AEK —> (ImKfk(A)K)EK (IlriK/H(A)e)EK

of A — ^A,K/t- We remind the reader that EK denotes the fraction field of
the domain (F <$k K)reCi, and it is not tlie compositum in an arbitrary coimnon
extension of E and K over k (unless we restrict attention to composites
that satisfy a linear-disjointness condition over a suitable purely inseparable
extension of A
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THEOREM 5.1. The canonical map lEß is a purely inseparable isogeny.

Proof. Since A' and \EK are surjective with connected kernels by
Theorem 4.5(3), IEp is suijective and the PK -«.»roup scheme (ker Ie/Ùek
(ker A)£/f/(ker A') is connected, so kerIE/k is coimected. Hence, it remains to

compare dimensions. Quite generally, for a primary extension K/k we wish to

give a "geometric" description of dim Imk/AA) ï® a maimer that is unaffected

by replacing K/k with EK/E (and replacing A with Aek)-
If X(t and X()o are a Indian varieties over k such that X0/K and Xm/K are

/C-isogenous then Xq is A-isogenous to Xoo (since K/k is primary). Thus, for

any abelian variety X over K there is a well-defined A-isogeny class Qx.Kfk
of abelian varieties of maximal dimension that are /f-isogenous to a factor
of X, and any abelian variety over A admitting a K -isogeny to a factor of X
is A-isogenous to a factor of any member of the distinguished A-isogeny class

Qx.K/k- Roughly speaking, Cx.K/k corresponds to a maximal isogeny-factor
of X that can be defined over A. It is obvious that Ii% j(A) is a distinguished
member of tliis isogeny class for X A, and so the dimension of Im^/if.A)
is equal to the common dimension of the members of CA Kß.

The problem of hniteness of jgp is thereby reduced to showing that the

scalar extension k —* È carries members of CA.K/k to members of Qabk,ek/e-

If A' denotes an isogeny-factor of A over K that is complementary to

Img/jt(A)k then the proof of Corollary 4.7 shows that Img/fA') — 0. Thus, it
is enough to show that if \mKß(A) — 0 then Im/;/</) — 0. That is, if A
admits no nonzero maps to abelian varieties If; with B defined over A, then

we must show that Aek admits no nonzero maps to abelian varieties BEk

with B defined over E. This property is transitive in If so it is enough to

treat separately the cases where E/k purely inseparable, separable algebraic,
and separable in general. In each case, what we will really prove is that if
1 mEk/ f.A u{ / 0 then \mKß(Ä) f 0. More precisely, since

\ .I K, I ' AEK -A Imek/EIAEK)EK

is a suijection, it suffices to prove that if Aek admits an PK -isogeny factor Bf K

for a nonzero abelian variety B over If then there is a nonzero K -map of
abelian varieties A —> XK for some abelian variety X over A (and hence

Im^(A)^O).
First consider the case when E/k is purely inseparable, so EK/K is

primary. By expressing P as a direct limit of subextensions of finite degree

over A, we may assume E to be of finite degree over A. We can also assume

that A has positive characteristic p (as otherwise E — A and we are done), so

some relative q-Frobenius twist if'" (with q — p" for some n > 0) is defined
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over k. Hence, A/// admits a nonzero isogeny-factor that is defined over k.

A projection to such a factor descends from EK down to K since EK/K
is primary, so A(q) has a nonzero A-isogeny factor that is defined over k.

However, the relative ^-ITobenius A —- A(q) is a K -isogcny, so we conclude

that A has a nonzero /("-isogcny factor that is defined over k. This takes care

of the case when E is purely inseparable.

Now assume that E is separable algebraic, so we can assume E/k is

a finite Galois extension. In particular, EK — E <2>k K. The Weil restriction

Resek/k(Aek) (see [1, 7.6]) is a product of copies of A, and it lias a /('-isogcny
factor given by the nonzero abelian variety Res^yjç(Bek) — Resej±{B)k \ this

equality is due to compatibility of Weil restriction and base change. We thereby

get a nonzero K-map of abelian varieties from A to an abelian variety over K
that is defined over k.

Finally, we may assume that E/k is separable, and since the separable

algebraic case is settled we can use a direct limit argument with E/k to see

that it is enough to treat the case when E — k(t) is purely transcendental

of degree 1 over k. At the expense of separable algebraic increase on k

(permissible by the steps we have just settled), it may be assumed that k

is separably closed and in particular infinite. Let us assume that there is an
abelian variety B over k(t) and a nonzero map /: AKilj -a Bko) over K(t).
Since B extends to an abelian scheme T> over a dense open U in Pi, the

infinitude of k allows us to find to U(k) such that / extends around t — to

and so may be specialized to define a nonzero K -map of abelian varieties
from A to (B,„)K with Bh] an abelian variety over k. (Non-vanishing of
the specialization follows from considering the finite étale ("-power torsion
subschemes over U in the abelian scheme Œ> for a prime f ^ char(A) and

all n > 1.

The following corollary gives a criterion for an abelian Variety A over K
to be defined over k (i.e., for AA.K/k to be an isomorphism) via a descent

hypothesis on Aek relative to E for a separable extension E/k.

COROLLARY 5.2. Let K/k be a primary extension of fields and let A be

an abelian variety over K. If there exists an abelian variety B defined over
an extension E/k such that AEk is EK-isogenous to a factor of BEk> then

the natural map
A ^A.K/k A —r Im^/t(A)^

is a purely inseparable isogeny. This map is an isomorphism if A^k is

EK-isomorphic to BEK and E/k is separable.
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Proof. We first claim that A/k has the same dimension as its EK/E-image ;

that is, we claim that the canonical surjective map

AAek,EK/E ' AEK -A Imek/B(AEK)EK

is an isogeny. Tins property is isogeny-invariant and is inherited by direct
factors, so since Aek is an isogeny factor of Bek the desired result follows
from the fact that Bek has EK/E-image equal to B (by Theorem 4.2). By
Theorem 5.1 we conclude that

dim \mK/k(A) dimlnqj^fA^) dim A,

so hie map A: A —> lmKß(A)K that is a priori surjective with connected

kernel must be an isogeny and hence is purely inseparable.

Now assume that E/k is separable and that there is an EK isomorphism of
abelian varieties p : Bek — Aek- We want to show that A is an isomorphism.
Equivalently, in view of Theorem 4.2, we need to show that A can be defined

over k. By direct limit considerations with the separable E/k we can assume

E — k'(V') for a smooth variety V' over a finite separable extension k' jk,
and by smearing-out of p over a dense open U' C V and specializing at

a closed point u' E U' for which k'(u')/k' is separable we may assume

E/k is finite and separable. By increasing E/k to be normal, transitivity
(as in Theorem 4.5(1)) reduces us to treating hie case when E/k is finite

Galois, so EK — E®^ K and hence we may transfer hie Galois descent data

on Aek (via hie A'-structure A) into Galois descent data on Bek relative to the

extension EK/K. However, Gal(EK/K) — Gal(E/k) and any EK -isomorphism
Bek — (BekT — (Bct)ek of abelian varieties (for a E Ga\(EK/E) — Gal(E/k))
uniquely descends to an /:'-isomorphism B ~ Bn~ because EK/E is primary.
Thus, we have Galois descent data on hie abelian variety B relative to E/k,
and so by Corollary 3.4 we conclude that B — Xe for an abelian variety X
over À, with this equality respecting hie actions of Gal(/:'//t). Thus, Aek
is EK -isomorphic to XEK — (Xk)ek hi a maimer hiat respects the actions of
(in\(EK/K) — Gal(E/k) on bohi sides. By Theorem 3.1, this A"-isomorphism
descends to a K-isomorpliism A ~ XK, so A is defined over k as desired.

The proofs of Theorem 5.1 and Corollary 5.2 use direct limit arguments
with E/k, but they avoid the issue of how hie K/k-image behaves with
respect to direct limit processes. Now we address this issue; the next result
reduces most questions about the AVA-image (and base change) to the case

of finitely generated extensions :
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LEMMA 5.3. If E — hm ij§ is a rising union of extensions of k, then the

natural map

%/£; : ^mEK/E^AEK)

is an isomorphism for large i. Also, if K - lim X, is a rising union ofprimary
def

extensions of k and A/0 is an abelian variety over some Kj0 with A, — Aio/Kj
def

for i > i0 and A — Aio/K, then the natural map

Imw/^A) -¥ ImKi/k(Ai)

is an isomorphism for all large i.

Proof. To show that IE/Ej is an isomorphism for large i, first recall that

I m/ // (A/ [{ )/;[{ is constructed as tlie largest quotient of Aek that is dehned

over E. The kernel of the quotient map Aaek.ek/e is a closed subgroup
scheme of ^ek and so is the base change of some closed EfA-subgroup T

of for some large i. The quotient AE.E/T over E,K might not be

dehned over £), but since its /W-liber is dehned over E it is clear that by
replacing i with some i' > i and T with r / /;,/< E^K we may arrange that the

quotient AE.E/T is dehned over If. We have now shown that for sufficiently
large i there is a quotient X, of Ae,k over EtK that is dehned over If and

has EK-ùber (X, )EE equal to the quotient ImeK/e(Aek)ek of Am that is
dehned over E. Consequenhy, the maximality of this latter quotient over EK
forces the maximality of X, as a quotient over IfK that is dehned over
Tins implies that the £,-descent of hie abelian variety X,, equipped with its

quotient structure over E,K, is an E/K/If image of AEjE. Hence, is an

isomorplhsm for such large i.
ÎSText, we turn to hie behavior with respect to limits in K. The morphism

A : A — lWYK/kiA)K

descends to a map
A' : Au -A ItïiKfiÇêAMfè

over some subextension Mit /Kin. It is clear via faitlil'ulness of the scalar

extension K$ K that tliis gives a Ky/k-image of A,v. !_!

We conclude our discussion of base change by studying an important case

when hie fonnation of hie K/k-image commutes with any (linearly disjoint)
extension on k relative to K ; without a doubt, tins is the most important
theorem in the theory and all of the difficulties in its proof are related to

purely inseparable extensions in positive characteristic :



64 B.CONRAD

THEOREM 5.4. Let K/k be a primary extension of fields and let E/k
be an arbitrary extension of fields. Assume either that E/k is separable or
that K/k is regular. For any abelian variety A over K, the natural map IEß
in (5.1) is an isomorphism. In particular; X/jf) is an EK/E-image
°f Aek-

Note that the separability and regularity assumptions both hold if k is

perfect.

Proof. By transitivity, it suffices to treat two cases : when E/k is separable,
and when E/k is purely inseparable with K/k regular. We first treat the

separable case. By Lemma 5.3 it suffices to handle separately the cases when

E/k is finite separable and when E — k(t). In the hnite separable case, so

EK E K, it is easy to reduce to treating the case when E/k is hnite
Galois. In this case we have Gal(EK/K) — Gsl/E/k), and the universality of

AEK fdÂEKfM

gives a natural action of Gal(EK/K) on the target that is compatible with
the action on the source. This descends to a Galf/s/A)-action on Im,ek/e(Aek)
because EK/E is primary ; let us write X to denote the descended abelian

variety over k. The natural map

AEK —>• lmEK/E(AEK)EK (XE)EK — (XK)ek

is equivariant with respect to the actions of (\n\(EK/K), so it descends to a

map A —* XK as abelian varieties over K. Tins latter map factors through the

K -fiber of a unique map of abelian varieties

Iiîhr/jtOD ~i> X

over k. Extending scalars to E thereby gives a map of abelian varieties

Ihfze/fOfjl —^ XE — ImEK/EIAEK)

respecting projections from AEK, so this is an inverse to %/&. Thus, l[:/k
is an isomorphism, as desired. This settles the case when E/k is finite and

separable, and so when E/k is separable algebraic.
Since we have verified compatibility with separable algebraic base change,

by a transitivity argument we may now assume that k is separably closed, and

hence infinite. To handle E — k(t), it is enough to show that for any abelian

variety B over k (f), any map /: A!<(Jj —> BI{(1) over EK — K(t) uniquely
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factors through

ba$ ' AKW —ï ^K/kWm)

Certainly B extends to an abelian scheme B over a dense open U in P|, and

so / extends to a map of abelian schemes / : Aw —r BK\W over a nonempty

open W C Uk It is obvious that U(k) is contained in W(K) with at most

finitely many exceptions (as we are working in P1

For each t0 G U(k) n W(K), the specialization fi0 uniquely factors

through A. Thus, kerA is contained in ker/,0 for all to U(k). In other

words, tlie induced map

/: (kerA)«/ —>• Bk\w

over W specializes to zero over U(k) C W(K). This map factors through
Bk [ h 11 u< witlr n — // ker Xko) and the resulting map (kerA)«/ -A Bk[h\ |«/

between hnite flat W-groups specializes to zero over the infinite set U(k)r'\ W(K).
Since IT is a nonempty open in Pt, tins implies that / vanishes on (ker A)«-,
and hence / — //(-(;) kills ker Aku) Thus, f uniquely factors through A^qj as

desired.

Finally, we suppose that K/k is regular and E/k is purely inseparable
(hence algebraic). Since k is separably closed, E must be separably closed.

By Lemma 5.3, we can assume [/;' : £] is finite. Clearly EK — E ' K since

K/k is regular. If k has characteristic 0 then E — k and there is nothing to

prove. Thus, we may assume that the separably closed field k has positive
characteristic p.

We shall reduce to the case when the natural maps

À ^A,K/k Ä > ]mK/k(A)K, A' AAek,EK/E A,EK —> ImEK/E(AEK)EK

are isogenics. Let us first check that Im^^(A) — 0 if and only if
Int/^ (.1//, — 0. Since the map Aek —I Imk/AA)ek is suijective and

factors through Imek/e(Aek)ek (via (Ie/Ùek), if lmEK/E(AEK) 0 then

Ini/^Yi(.4) — 0. Conversely, assuming Imek/e(Aek) / 0 let us show that

Imk/AA) / IF' assumption, there exists a nonzero morphism Aek Bek
for an abelian variety B over E, so composing with a relative 17-Frobenius

B —f Bu,) such that B('" is defined over k (e.g., q — [E : k]) allows us

to assume that B is defined over k. In this case we may descend to get a

nonzero morphism of abelian varieties 4 —- BK because EK/K is primary.
Thus, lmK/k(A) / 0.
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We now reduce to the case when A and A' are isogenics. Since EK/K
is primär}', base change from K to EK carries K simple abelian varieties to

EK-simple abelian varieties. We have proved the equivalence of the vanishing
of K/k- and EK/E-images for any abelian variety over K, and these "image"
functors carry isogenics to isogenics and commute with the formation of
products. Thus, by Corollary 4.7, we can replace A with the quotient by its

unique abelian subvariety that splits (in the isogeny sense) the quotient map A

so as to reduce to the case where A is an isogeny without changing either
the -image or the EK/E -image of interest. Since kerA' C (kcr A)//(-, we
conclude that the surjective A' also has a finite kernel and so A' is an isogeny.
This completes the reduction to the case when A and A' aie both isogenics.
Since the map /g/j satisfies

QE/Ùek 0 A' AEK i

IE/k must be a purely inseparable isogeny. In concrete terms, G — kerA and

G' - kerA' Ç G!K are the unique minimal connected finite subgroups of A
and Aek such that A/G and AEk/G' are respectively defined over k and E.
We wish to prove that G' — G/.g, but such a concrete formulation is not the

way we will make progress since it is hard to directly exploit the minimality
properties that define G and G'. Instead, we are going to indirectly show that

the purely inseparable isogeny t:m%, is smooth, and so it is an isomorphism.

By Lemma 5.3, we may assume that the regular extension K/k is finitely
generated, so K — k (V for a smooth k-variety V. By shrinking V we may
assume that A extends to an abelian scheme A over V and that the isogeny
A: A —> lMgfö(A):K extends to a map of abelian V-schemes

X: A —> Iiur ,ä;(A)v •

Thus, for all v V(k) we have a well-defined specialization Xv : Av —?

ImK/k(A). Since EK is the function field of the smooth /^'-variety V):, by
possibly shrinking some more on V (in fact, no shrinking is needed) we also

have a map
A' : A x y Ve —> ^EiEKfE{AEK)vE

of abelian schemes over VE that smears out the map A' : A/ k ~> imEK/i:(Ai:K)i:K
on generic fibers over VE-

We now must formulate (and prove) Chow's regularity theorem. This
theorem pleasantly disentangles the roles of E and k : it says that for any
sufficiently large integer m there exists a dense open \\nl) in the m-fold
product V" — V xspeck ' ' ' x Spec k V over Spec k such that for all extensions
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F/k and all (vj) Ç V(,n)(F) C V(!•')'", the specialized surjective /'-map of
abelian varieties

: A,,j x • • • x A„m —f Im^-^fAlf

is smooth (or equivalently, tliis map induces a "regular extension" of function
fields in Weil's terminology). In other words, the universal flat suijective
addition morpliism

m

Pj (4) -^ ImK/k(A)v>"

i= i

of abelian V" -schemes is smooth on übers over Üie generic point of V" for
large m.

Granting such a general result and also applying it to the situation with
the EK/E -image over the separably closed E, for large m we similarly
get a dense open V'(m) in the /»-fold product of V' — V/ over E with an

analogous specialization property. Since E/k is a purely inseparable extension

we can arrange for V'(m) to map into V(m) under the canonical morpliism
from V'"' onto V" for all large m. This has the fantastic consequence
that for a common large m and an algebraic closure E of E and k, for
Épi G V'(m){E) C V(m)(E) the £-maps JfXvj and V A', are both smooth.

However, ('JeJÙë carries the first of these smooth surjections to the second,

and hence (IeïÛe 's smootli, so is smooth! Tliis forces the purely
inseparable isogeny IE/k to be an isomorphism, as desired. The regularity
theorem of Chow is presented below. Q

THEOREM 5.5 (Chow's regularity theorem). Let V be a smooth variety
over a field k. Let A be an abelian variety over K — k(V) such that A
extends to an abelian scheme A over V. Let

X: A —! Im-s/jXAXtv

be the unique map of abelian V-schemes that extends the canonical map
X : A —1 ImK/k(A)K- For any m ï> dimA there exists a dense open Yfyfa tit
Y" over which the flat surjective summation morpliism

(5.2) $>/$) : PÏ(A) X g» x p;„(Ä) -» Imx/,(A)v»

is smooth.

The fact that A extends to A over all of V is a special casé of a general
extension lemma of Weil [1, 4.4/1] (extending the Néron mapping property of
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abelian schemes to the case of a normal noelherian base), but for our purposes
in the proof of Theorem 5.4 it is enough to use elementary denominator-chasing
to initially shrink V to a smaller dense open over which A extends to a map
of abelian schemes, thereby bypassing the need to use Weil's lemma.

Proof. The case of characteristic 0 is trivial for any m > 1, so we

may (and do) now assume that k has positive characteristic p. By using

Corollary 4.7 and shrinking V, we can assume that the canonical map

A : A —y \viK/kiA)K

is an isogeny. By Theorem 4.5(3), kerA is (geometrically) connected, so A

is a purely inseparable isogeny, Ttence, A is an isogeny.
The compatibility of Im.K/k with respect to separable extension on k has

already been established in the part of above proof of Theorem 5.4 that is

not conditional on Chow's regularity theorem, so we may (and do) assume

that k is separably closed. Let Av and A be the duals of A and A (see [2,
Ch. I, Thai, 1.9] for the general existence of the dual abelian scheme, or
shrink V to make A-tl7 projective so that Grothendieck's construction of
the dual may be applied), and let

r: TrK/k(Av)K -4 Av

denote the dual of the purely inseparable isogeny A (since this dual map r
will later be called the K/k-trace of A'). A key technical problem is that

we do not yet know that the finite kerr is connected. The proof of such

connectivity will be given later (Theorem 6.12), using the general validity
of Theorem 5.4 whose proof lias not yet been finished. (See Example 6.3

for examples of non-regular primary extensions K/k with A rv a purely
inseparable isogeny and kerr disconnected.)

Duality translates the universal property of A into a universal property
of r: it is a final object m the category of pairs (rl.f consisting of
abelian varieties B over k and maps of abelian varieties / : BK —f Av

def
over K. This finality implies that the finite /i"-subgroup Hn — kerr inside

of TtKß(Av)K cannot contain any nonzero K -subgroup defined over k in

Tr/j/i (Av)k as otherwise we could replace TrK/k(Av) with a non-trivial

quotient to contradict the minimality property of r. In particular, the connected

-subgroup — (kerr)0 in Tr^^(Av)[A]^ (with N the order of //,; cannot
contain any nonzero /("-subgroup in li'^yAA /)[/V|^ that is defined over k.

—V ~
Let r: [YK/k(A )v —> A denote the isogeny that is dual to the isogeny A.

The kernel H — ker r is a finite flat V -group, so by working on the K -fiber
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we see that H ç FrA-A(Av)[/V|v- For ally m > 1, any extension /•'//>:, and

any (r;) g V([<')"', the F-map of abelian varieties

(5-3) (rm,..., riw) : Tr^fi-L -4 A,^ x • • • x

is dnal to and its kernel is the schematic intersection flHVj inside of
'\'vk/i,(A j)/ If this intersection vanishes then (5.3) is a closed immersion of
abelian varieties, and hence its dual ^2 Ar, is smootli. This motivates us to

consider the following rather concrete assertion concerning finite connected

A'-groups and generic specialization of certain finite K -groups.
Let B be a finite commutative connected A -group (such as I i"a /a('4 v )[/V |°

above) and let G C By be a finite flat V-subgroup (such as the V-group
H fl TrK/k(Av)[N]y that is open and closed in H). Assume also that the

generic fiber G,( contains no nonzero /("-subgroups that are defined over k as

subgroups of Bk. For m > dim^ Zb(G>() we claim that there exists some dense

open V'(m) in V" such that for all F/k and all Vj) G V[m){F) the intersection

p| G„ in Bp vanishes. Rouglily speaking, the claim is tliat for a family of
subgroups {G,} of B tliat is parameterized by a smooth A-variety V and

is truly varying in the sense that the generic fiber Gn contains no nonzero
subgroup arising from a A-subgroup of B (there is no nonzero "fixed part" in
the family), an intersection flGVj of sufficiently many generic specializations
of tlie family is equal to 0 (where "sufficiently many" can be taken to mean
"more than diiri/(- 70(G,()").

Once tliis general claim is proved, we can apply it to the preceding situation
with the A -group B - Tr7r/lt(Av)[A]0 and G - Il f i Bv (so Grj — //'j Tliis
gives tliat for m > dim A — dim/.- 'l'o(A) the kernel of (5.3) for any extension

field F/k and (vj) G V[m)(I') lias vanishing comiected pait, and so is /'-étale.
Fix such an m and consider the special case that F - k(V'n) and (vj) is the

generic point of V". Since F/k is regular, by Lemma 3.11 the étale kernel

of (5.3) in tliis case arises from an étale A-subgroup r„, of B. Smearing out
from Spec F - Spec A (V") provides a dense open U C V'(m) such that the

restriction over U of the canonical map

(ri(r). • ,pUt))-- Tr*A(AvV ^ pHA •. x y»

has kernel (T,,,);/. Letting q: V'" —> L'"-1 denote the flat projection away
from the first V-factor, pick Ç G V"'~1 (A) in tlie non-empty Zariski-open
q(U) C V'"~x (such Ç exists since A is separably closed and L'"-1 is

A-smooth). Specializing at the generic point Spec K of tlie fiber q~x(0 — V
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thereby realizes (T,„)/i as a K-subgroup of 'ËL kerr tliat is defined over A

as a subgroup of TrKß0*)g. Ibis forces r„, — 0, whence (5.3) at the generic

point of V" is a closed immersion. Hence, the dual map is smooth on fibers

over the generic point of V"', and this is (5.2) over the generic point of V".
We conclude that (5.2) is smooth over a Zariski-open neighborhood V(,„) of
the generic point in V" as desired.

It remains to prove the above general claim concerning a connected finite
k group B and a finite flat V-subgroup G C By. We can assume G,. / 0.

Since a nonzero finite connected commutative K -group has nonzero kernel for
its relative Frobenius morphism, we have ker F(j p( / 0. Thus, by shrinking V
so that kcr/(, s is V-llat, we can replace G with kerF(pv and B with
kcv Fipk to reduce to the case when Fß/k — 0-

For any m > 1, generic flatness over the reduced V" provides a dense

open in V" over which the universal m -fold intersection of fibers of the

subgroup G > Bv is flat over the base. Within this dense open locus in V",
die vanishing condition on the /»-fold intersection p| Gr is a Zariski-closed
condition. We seek to prove that if m > dints '/»(G,,) then this locally-closed
locus in V" contains a non-empty open and hence (by irreducibility) is Zariski-
dense in V". Since k is separably closed, for an algebraic closure A/A we

see that V —) V"' is a homeomorphism. Hence, it is enough to solve our
finite-group problem with k replaced by k and V replaced by Vj ; that is, we

can assume k is algebraically closed. Here we use crucially that extending
scalars to k does not destroy the irreducibility and reducedness properties
used above. With k algebraically closed, the connected finite A--group B is

naturally a product of a local-local group Bt and a multiplicative group B2 •

The intersection G,( P B2K must vanish because it is a K -subgroup of the

multiplicative B2j< and all such K -subgroups arise from A-subgroups of B2

(as we can see via Cartier duality and the constancy of D(/i2)). Lemma 3.14

implies that G,( (G,, H Bt!<) x (G;J H B2.k) inside of BK — B] K x BlK, so

Gtj is contained in B\ Hence, G Ç (B\ )v and so we are reduced to the

case when B is local-local.

Just as we reduced to the case Ftpk — 0, now that B is local-local we can
reduce to the case when the relative Verscheibung morphism V/p/. vanishes

too. Thus, by Theorem 3.18, for any extension E/k the Lie functor on the set

of E-subgroups of Bt sets up an inclusion-preserving bijective correspondence
between the set of such E subgroups and the set of /•.'-linear subspaces of
the tangent space To(B)e — 7o(/i/ The main consequence of interest to us

is that 7(i(G,() must be a /("-subspace of Tq(B)k that contains no nonzero
A-rational subspaces.
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Working with the relative tangent spaces for G and By along their identity
séchons over V, onr problem now translates into relative linear algebra:
7o(G) is a subbundle of l„{B) t 0y whose generic über contains no nonzero
A--rational subspaces, and we seek to prove that if m > dim;(- 7o(G,() then

on some dense open locus of m-tuples (vj) in V" the intersection of the

Tii(G),- % in To(B) is equal to zero. It is obviously enough to work with vfs

that are A-points of V, as A is now algebraically closed. For any positive m

at all, consider hie universal map

cj>m: T0(B)y,„ -4 (r0(B)v»/pî(r0(G))) © • • • © <T0(B)v~/p*m(T0(G)))

over Vm. The induced map on fibers over a point (vj) £ V(k)m is the natural

map
T0(B) -> (T0(B)/T0(G)Vl)(B • • • © (T0(B)/T0(G)VJ,

and hence tins hbral map is injective if and only if fj 7'o(G),, — 0.

Since é,„ is a map of vector bundles on V", if it is injective on the

fibers at some A-point £ then it is a direct summand over a Zariski-open
neighborhood of jf in V'". Thus, the locus of points f — (r;) G V(k)"' such

hiat fj T0(G)Vj — 0 is a Zariski-open set in VTA)'". Since V" is iiTeducible,
it hierefore suffices (for any particular m to find some r.) V(k)"' such

hiat | j 7(i(G)r, — 0. We may assume that the rank r of 70(G) is positive. To

prove hie existence of such a (vj) if m > r, it suffices to prove (by induction

on /) that for 1 < / < r and any fr»--,® £ V(A) such hiat fj,/"(G').-
in T0(B) has dimension at most r — (i — 1), hiere exists v-l+i V'(A) such

hiat To(G)„i+1 does not contain PI,<î^'ô(G),. in T0(B). More generally, for

any nonzero subspace T in T()(B) we claim hiat there exists r G V(k) such

hiat T0(G)V does not contain T. If no such v exists then the composite

map

r (Sit CW (To(B) % 0v)/To(G)

vamshes on all A-hbers and hence vanishes, so 'lo(G) contains T ' 0y and

hierefore the K-subspace To(G,;) in To(B)k contains the nonzero A-rational

subspace Tk, a contradiction.



72 B.CONRAD

6. THE K k TRACE

As usual, we let K/k be a primary extension of fields.

DEFINITION 6.1. Let A be an abelian variety over K. A K/k-trace is a

final object (Tr^^(A), r) in the category of pairs (B.f where B is an abelian

variety over k and f: BK —f A is a map of abelian varieties.

In view of the double-duality theorem for abelian varieties, the existence

of hie K/k-trace is obvious by dualizing the K/k-image of Av and using the

dual of its universal morphism. Combining this with Theorem 4.5(3) we get :

THEOREM 6.2. Let K/k be a primary extension offields, and A an abelian

variety over K. The K/k-trace

T — TA.K/k ' ^t:Kß(A)K —> A

exists, and the associated dual morphism is the K/k -image AjpfAJg of the

dual abelian variety Av.

The image of the map r as above is an abelian subvariety of A and

it is called the K/k-maximal abelian subvariety in [18]. By Theorem 3.19

and Theorem 4.5(3), tins subvariety is defined over k if and only if kerr
descends to a k subgroup of TI'/v//,(A), and (by the universality of r) this

happens if and only if kerr — 0, or equivalently r is a closed immersion. In

characteristic 0, r is a closed immersion because it is dual to the surjective

map

^Av,K/k: ^ ''»A'.A-I k

whose connected kernel must be smooth (by Carrier's theorem [25, p. 101])
and hence is an abelian subvariety of Av.

In characteristic p > 0, the /("-subgroup kerr may be nonzero, or
equivalently the connected kernel of the dual map rv may not be smooth.

Example 4.4 gives many examples for which tins possibility happens with
kerrv ap(so r is an isogeny and kerr ~ D(op,is:) — olp.k). For

general primary extensions K/k the kernel of r might not be connected

(but see Theorem 6.12 below for the absence of tins phenomenon when K/k
is regular); the following class of discoimected étale examples was suggested

by hie referee.
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EXAMPLE 6.3. Let E be all ordinary elliptic curve over a field k of
characteristic p > 0 such that the comiected-étale sequence of /:'[/? | is not

split. (Many examples of such E are provided by Serre-Tate theory, applied
to the generic fiber over kf) [| q || of a sufficiently generic deformation of an

ordinary elliptic curve over a field k0 of characteristic p. The standard Tate

curve over k0([q} is another example of such an elliptic curve.) Since the

sequence splits over a perfect closure of k, it splits over a sufficiently large
finite purely inseparable extension K/k. Such a splitting over K is unique
(since there are no nonzero maps from an étale commutative group scheme

to a finite connected commutative group scheme over a field), and we let
G C E[{\p\ be the unique étale K-subgroup of order p.

Define E' — Ek/G, and consider the degree-/? étale isogeny Ek —> E'
over K. This isogeny factors uniquely as r' o hK where r': ArK/fill' )K —> E'
is the K/k-image and /;:£—> '\vK/k(If) is a map of abelian varieties over
k. This forces Trto be nonzero and h and r' to be étale isogenics of
elliptic curves with degh • degt' — p. The map h must be an isomorphism
because if it is not then it is étale with degree p and so the étale subgroup
ker h C E\p] with order p defines a A--splitting of the comiected-étale sequence
of /:'[/? | (winch we assumed is not split over k). Hence, the universal morphism

t' : \vKp(E')k —* E' is a degree-p étale isogeny, so its kernel is disconnected.

Some basic properties of the K/k -trace with respect to extensions of fields

are formal consequences of the theory of the k-/A-image by means of duality.
For example, dualizing Theorem 4.2, Theorem 4.5, and Corollary 4.7 gives:

Theorem 6.4. Let K/k be a primary extension of fields, and let A be

an abelian variety over K with K/k-trace r Vax/l'- —> A.

(1) If A Xk for an abelian variety X over k then t is an isomorphism.

(2) If k/ko is a primary extension and (Tr^.^fTr^ ,((4)4, To) denotes the

A/A0-trace of TrKß(A) then

(Trt/to(TrK/k(A)), r o t0/k)
is a K/ko-trace of A.

(3) If K'/K is a primary extension then (TrK/ki^),TK') is a K'/k-trace
of Ak,

(4) The canonical map r: Trk/Ic(A)k —> A has finite kernel.

Moreover, there exists a unique abelian subvariety A' C A such that

Trk/Ic(A/A') 0 (so Tr^/^A') —> TrKfdA) is an isomorphism) and

tA'Xfk- TrKfk(A')K -tr A' is an isogeny.
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The abelian subvariety A' Ç A at the end of Theorem 6.4 is the

K/k-maximal abelian subvariety of A. Combining Theorem 6.4 with
Theorem 4.5(3) gives an interesting property of the finite K-group kcr takp, :

COROLLARY 6.5. Let K/k, A, and r be as in Theorem 6.4. The finite
K -group kerr has connected Cartier dual.

Proof. By the final assertion in Theorem 6.4, we easily reduce to the

case when r is an isogeny. Hence, the Cartier dual of kerr is the kernel of
the dual isogeny AiV, and the connectedness of this latter kernel follows
from Theorem 4.5(3).

Dualizing Theorem 5.1 gives :

THEOREM 6.6. Let K/k be a primary extension offields and A an abelian

variety over K. For any extension E/k, consider the unique E-map of abelian
varieties

IE/k ' ^rK/k(Ä)E —> TreK/e(Aek)

such that tAeKjEK/e o (I'B/k)EK - {TpK/k)EK. The map I'E/k is an isogeny and

its kernel has connected Cartier dual.

Remark 6.7. Corollary 5.2 and Leimna 5.3 are of an essentially technical

nature, and their analogues for Kjk-traces are iimnediate via either dualizing
from K/k -images or (better) copying the earlier proofs in our new setting

(which is possible, due to the preceding results), so we do not state tlient

formally here.

The dual of Theorem 5.4 is very useful, so we record it here for later
reference :

THEOREM 6.8. Let K/k be a primary extension of fields and E/k an

arbitrary extension, and assume either that E/k is separable or that K/k
is regular. For any abelian variety A over K with associated K/k-trace
rj TrK/k(A)K -A A, the pair li'A .<(.!)/. 77 is an EK/E-trace of AEE.

By working with /("-isogeny factors of A that are defined over k (as in
the proof of Theorem 5.1), we deduce an unsurprising relationship between
the K/k-image and K/k-trace:
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THEOREM 6.9. Let K/k be a primary extension offields and A an abelian

variety over K. The unique map

Tf/f|§(A) —» ImK/k(A)

of abelian varieties over k that descends the K-map \a,ka ° TA,Kß ® an

isogeny.

Another simple but useful consequence of duality is a dual version of
Chow's regularity theorem (Theorem 5.5):

THEOREM 6.10. Let V be a smooth variety over a field k. Let A be an
abelian variety over K — k(V) such that A extends to an abelian scheme A

over V. Let

P: I l'fc/k(A)v A

be the unique map of abelian V-schemes that extends the canonical map

t: Ttj|yjI43yr —> A. For all m > dim A, there exists a dense open V,(„l5 in V'"

over which the morphism

(6.1) (jfiCr),.. ,p*(T)): WxßiAh« - p\{A) x ^ • • • xv» p'JA)

is a closed immersion.

REMARK 6.11. Theorem 6.10 is not a formal consequence of the statement

of Chow's regularity theorem. Indeed, from the statement of Chow's theorem

one gets smoothness of the kernel of the surjective dual of (6.1) over
some dense open in Y" for all m > dim A, but in general the dual of a

smooth surjection between abelian varieties need not be a closed immersion.

Fortunately, it is the stronger closed immersion condition for (6.1) over some
dense open in V" for all m > dim A that was established in the proof of
Chow's regularity theorem.

It is natural to seek a criterion for kerr to be connected (and hence

infinitesimal, by Theorem 6.4(4)). The proof of the following criterion requires
the full strength of Theorem 6.8 (allowing E/k to be inseparable):

THEOREM 6.12. Let K/k be a regular extension offields. For any abelian

variety A over K, the finite K -group ker tAik/l & connected with connected

dual.
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Proof. The connectedness of the dual holds for any primary extension

K/k (Corollary 6.5), and to prove connectedness when K/k is regular we
first use that the formation of r commutes with passage to EK/E for any
extension E/k (by Theorem 6.8). By taking E to be an algebraic closure

of k, we may assume that k is algebraically closed. In particular, for any
extension K'/K the extension K'/k is regular. By Theorem 3.19, for any
primary extension K'/K the map

tK' ' TrK/k(A)K' —> AKI

is a K'/k-trace of AK>. Thus, by taking K' to be a perfect closure of K we can

assume K is perfect. This perfectness ensures that the comiected-étale sequence
of the ßnite K -group ker r is split, and its étale factor G descends to a Unite

A--subgroup of Tr^.ß(A) by Lemma 3.11 (applied to H — TrK/u{A)[n\ With

n — #G). We conclude that r factors through the AT fiber of the projection

map Tttc/k(A) —> Tr^/k(A)/G, and so by finality of the K/k-trace it follows
that G must be trivial. Hence, kerr is connected.

7. The Lang-Néron theorem

Theorem 6.12 implies that if K/k is regular and A is an abelian variety
over K then tire map r ~ ~i~A K/k : Trk/Ic(A)k —>• A is injective on /( -points,
so Tric/k(A)(k) is naUxrally a subgroup of A(K).

THEOREM 7.1 (Lang-Néron). Let K/k be a finitely generated regular
extension of fields. Let A be an abelian variety over K. The quotient group
A(K)/TrKß(A)(k) is finitely generated.

The reader who is only interested in the case K — k (C) with algebraically-
closed k and a smooth proper connected A-curve C can skip ahead to
the paragraph containing (7.2). For non-constant elliptic curves E over such

a K (i.e., non-constant elliptic fibrations £ —»• C), the K/A-trace vanishes

by Theorem 2.3. The argument following (7.2) therefore gives a proof that

/:(K) — £(C) is finitely generated for such E over K without using any of
the material in §4—§6.

Since an abelian variety over a finite field obviously has a finitely generated

(even finite) group of rational points, and an abelian variety over a number
field has a finitely generated group of rational points (the classical Mordell-
Weil theorem), a special case of the Lang-Néron theorem is the main result

of Néron s tiresis [26] :
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COROLLARY 7.2. Let K be a field that is finitely generated over its prime
field, and let A be an abelian variety over K. The group A(K) is finitely
generated.

To prove the Lang-Néron theorem, the first step is to reduce to the

special case when k is algebraically closed and K/k is finitely generated
of transcendence degree 1; that is, K — k(C) for a smooth proper connected

curve C over k. The reader may find it interesting to compare our arguments
below with those in [20, Ch. 6].

Let us now tum to the reduction steps.

LEMMA 7.3. If k'/k is an extension, it suffices to prove the Lang-Néron
theorem for the regular extension k'K/k' instead of K/k.

Proof. Let K' — k'K and A' — AK>. We know that TrK'ß'iA') —

TrK/k(Ä)k< » by Theorem 6.8, so fki{A'){ld) AxK/k(A){k') inside of A(K')
(recall that r and r' are injective on field-valued points, by Theorem 6.12).
Thus, by hypothesis A{K')/TrKfk{A)(k') is finitely generated, and so it is

enough to prove that the natural map

A(K)/TvK/k(Afik) -p A{K')/TrK/k{A){k')

is injective. That is, we want the natural inclusion

TrK/dAfik) C A(K) n Tr^X*')
inside of A(K') to be an equality.

Let be the fraction field of the domain Kx"' (tensor product over k

and let pp. Spec —> Spec K over Spec k be tlie map induced by the / th

standard projection. By Theorem 6.10, for sufficiently large m the map of
abelian varieties over

(7.1) TrKfk{A)Fm -p pl(A) x ••• x p*(A)

is a closed immersion. Let F'm denote the fraction field of K' "' (tensor

product over Id so F'm - k'Fm. Since k is algebraically closed in we
have Fm C Id k inside of F'm, so to show that a A'-point of TrK/k(A)
inducing a K point of A (inside of A(K' is a A-point of Tr^fA) it is

enough to prove that an F'm -point of Tr^ «(A) inducing a K-point of A is

an -point of T%pl(AJ„ Concretely, if we let Fmj and F'm i denote F„, and

F'm viewed as ^-algebras via tlie ith tensor-factor, then the assertion to be

proved is that if x G A(K) is a point such that tlie points pj(x) P A(Fmj) are

all induced by a common point
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y « TrÄ/t(A)(F^;) - p* (TrK/k(A))(F'mi)

tlien y e TrK/k(A)(Fm).

By descent tlieory (Theorem 3.1), it suffices to show that y has the saine

image under the two maps TrA7<fi3)(/•'„) : Ir^ (A )(/•'„ Since (7.1)
is a monomorphism of functors, it is enough to check that the two natural

maps

MK,i) X • • • X A(F'mm) A(F'm l 0Fmti F'm l) x • • • x A(F'm m 0Fra m
F'm m)

have the same composite with the diagonal embedding

A(K) ^ A(F'mffi x xA(F;„).
Thus, it suffices to show that for each /, the two composite maps

K Ku =1 K,J <%,; F'mj

coincide. Tins equality of maps is obvious, since the map K —> K: to
the /tli tensor-factor factors through the map K —> Ky'"' to the /th tensor-
factor.

By the preceding lemma, if we wish to prove the Lang-Néron theorem

for any specific abelian variety relative to a given finitely generated regular
extension K/k then it suffices to treat the analogous situation relative to kK/k
for an algebraic closure k/k.

LEMMA 7.4, For any intermediate extension K/E/k such that K/E is

regular, it suffices to separately treat the cases K/E and E/k.

Note that, under the hypotheses in the lemma, K/E and E/k are

automatically finitely generated and E/k is automatically regular.

Proof. Since FrEjk(TxK/E(A)) is a K/k-trace of A (Theorem 6.4(2)), via
the commutative diagram

Trk/E(A)K

(rE/k)K

Tr£/it(Tr^£(A)£)^

1~K/E

T~K/k

Trk//C(A)K

we are done.
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We now may and do assume A to be algebraically closed, and we can
choose a smooth A--variety V such that K — k (V). The case dim V — 0 is

trivial (as then K — k). If dim V > 1, then by Bertini methods we can shrink V
so that there is a smooth map f: V M V' with V' a A-variety of dimension
dim V 1 and all fibers of / geometrically connected of dimension 1. In
particular, K is regular over E — A V' with trdeg£(K) — 1. Using Lemma 7.4,

we are thereby reduced to the case when A is algebraically closed and the

finitely generated extension K/k has transcendence degree equal to 1.

Let C be the proper smooth connected curve over A with function held K.
Let U be a dense open in C such that A extends to an abelian scheme A
over U. Note that A(K) — A(U). Letting m > 1 be an integer not divisible

by the characteristic of A, the Kummer sequence

(7.2) 0 M A\m\ M ,4 M N M 0

on L'ét induces an injection A(K)/mA(K) Mr II1!,t(6'../l[/»|). Since A is

separably closed and A\m | is a locally constant constructible sheaf of
Z/7nZ-modules on the smooth A-curve U (with m a unit in A), the group
I I(!,(L'../l[/u |) is finite by a general hniteness theorem [9,1, 8.10] for compactly
supported cohomology, together with Poincaré duality [32, Tlnn. 4.8] on U.
(See [6, Tlnn. 1.1] for a much deeper hniteness theorem.) Hence, A(K)/mA{K)
is finite. This is an analogue of hie so-called weak Mordell-Weil theorem in
hie classical case (with K a global held).

Using the standard normalized valuations on K arising from the points
of C(A), we have a product formula and thereby get a logarithmic height-
function on A(K) via a choice of projective embedding of A M- Pf- over K.
We will show that the set of elements of A(K) with height below any given
bound M has finite image in A(K)j'YrK/k(A)(k) ; once tins is proved, the

classical proof of the Mordell-Weil theorem (combining the weak Mordell-
Weil theorem and the elementary parts of hie theory of heights) may be easily
adapted to show that A(K)/'\vK/k(A)(k) is finitely generated.

Now choose a projective embedding A M- P|- and let h be the resulting
logarithmic height on A(K). Let AsPJxC be the closure of A ; this is a

projective A-variety. By the valuative criterion for propemess,

A(K) {f I HornelC, Ä) \ pr2 of lc} A(C)

where pr2 : A 'M P" x C M C is hie second projection and is used to view A
as a C-scheme.
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LEMMA 7.5. Choose a projective embedding C —> P as a degree- d

curve. For P G A(K), the associated Segre-map

fP: C -4ÀhP??(C4 p(»+i)(!"+i)-i

is a closed immersion and the projective curve fp(C) has degree < h(P) + d.

In particular; as P varies with bounded height, the map fp varies with
bounded degree for its image.

Proof. The map C <—S-- P is given by a tuple with
hj G k (C) — K and not all hj equal to zero. The point

P G A(K) C P"(K) - I Iom/TC. PJ,')

is given by a tuple [<-/0 -... ,<?„] with 5, G A (C) not all zero, so fp is given by
the tuple of gjifs (by the definition of the Segre embedding). Thus, viewing
fp as & /( -point of p("+1)('"+l>-1 ; it has naive logarithmic height equal to

Y2 max(—orddft/i,)) < max(-ordv(r/,)) + ^ max(~ oixIv(/i7)>

x£C(k)
^

xdzC(k) x£zC(k)
^

h(P) + max(— ordx(hf)).

We claim as a general identity that

(7.3) max(— ordv(/!;)) — d ;

xklCU.)

tliis would complete tlie proof, since applying it to fp would also show that
the naive height just shown to be bounded by h(P) + d would in fact coincide
with the degree of fp(C), as desired.

Note that, by the product formula, the left side of (7.3) is unaffected by
a common k (C)*-scaling on the /;, 's. Hence, this left side is intrinsic to the

embedding of C into P and is independent of the choice of representative

homogeneous rational coordinate functions /z0..... hm. Let I ffajXj be a

generically chosen nonzero linear form over k, with zero-scheme H in P.
By genericity, C is not contained in H and all as are nonzero. Clearly II f) C
is the zero-scheme of the nonzero rational function ffafij on C. Thus, d
is the degree of the zero-scheme of this rational function (by the dehnition
of d as the degree of C as a curve in P"'), and so d is also the degree

of the polar-scheme of the rational function ff "ßlj • I°r generic choices of
the af s, w'" have its poles exactly where the hp g have poles, witli
tlie pole-order of V a,It, at each such point equal to the maximal pole-order

among the hf s at tlie point. Hence,
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cl — > max(— ord,(/'.))
aA C{k)

as long as the hfi s have no common zero (this lack of a common zero ensures
that the contribution to the sum at each x is non-negative, and is positive
at precisely the points where some hj lias a pole). By making a common
A (C')x-scaling on the hfi s we may suppose some hj is equal to 1, so this

eliminates common zeros.

By Lemma 7.5, as P varies over A(K) with h(l') < M (for fixed A4), the

curves

fp: c ^
have degree < M+ d. It is therefore enough to show that the set of points
P e A(K) for which the closed immersion

fp- c ^ p(n+iX'»+i)-i

has a hxed degree (or equivalently, a fixed Hilbert polynomial) has finite

image in A(K)/TrK/k(A)(k).
By the quasi-compactness aspects of Grothendieck's representability results

on Hilbert and Hom-schemes [10], the functor of morphisms I': C —> ,4 such

that pr2 o /' - lc and fp has degree 5 in p<"+ DO"—1 >—1 js represented by the

"degree-Ô" Horn-scheme H,> tliat is of finite type over k. Thus, it suffices

to restrict attention to those Ws corresponding to A'-points on a common
irreducible component of H2. The case of a 0-dimensional component is

trivial, so we may focus attention on positive-dimensional components. Any
two A-points on an irreducible finite-type A-scheme V of positive dimension
lie in a common irreducible curve X in V (see the Lemma on p. 56 in [25]),
so it remains to check that if P. P' : G ~ ,4 are two C -maps lying in an

algebraic family of maps parameterized by an irreducible A-curve X then P

and P' coincide in A(K)/'lvK/ifiA)(k). To be precise, by an algebraic family
of maps we mean an X x C-map

:P:.Y\C >.Y\,i.
and for all x G X(k) we will show that the points A(C) — A(K) represent
a common class modulo TxK/k(A)(k).

Using pullback by the finite suijective normalization X —> X, we may
assume that X is A-smooth. Let X denote the A-smooth compactification
of X. Passing to fibers over the generic point SpecK of C, we get a section

fx ' %K —>> XR x A,
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or equivalently a K -map X;< —> 4, and by the valuative criterion for properness
this uniquely extends to a K -map

F : XK —y A.

Since X(k) / 0, upon choosing .v0 ç X(k) we can use Albanese functoriality
to hnd a unique factorization

XK (Albf/,k
1)

A

where i)(0) — F(x„) G A(K). Here, / : (X,Ao) —> (Alby/t,0) is the universal

pointed map to an abelian variety over k, and its fonnation commîtes with
extension on k. Since rf — F{xq) respects origins, it is a map of abelian
varieties over K. (For example, if A is a non-constant elliptic curve over K
then 7] — F(xo) vanishes because XvK/fA) - 0 by Theorem 2.3.)

We apply the universal property of

m TrK/k{A)K I—> A

to get a factorization jf: — F(x0) — r o fK for a unique map of abelian

varieties f: Alb^k —> TrK/kiA) over k Thus, composing with lk gives

F — /'(-V(,)+ ro(fo/,)K. Composing this identity with the map x: Spec K -+ XK
dehned by .v G X(k) gives that 'J:,v : Spec K —'¥ A in ,4(K) is equal to

F(x0) -f t o (/ o l)k(x) so the JVs agree as elements in A(K)/TrKß(A)(k) :

they all represent the residue class of the point F(x0) G A(K) that has nothing
to do with a. Tliis concludes the proof of the Lang-Néron theorem.

8. Generalized global bii.lds

In the final three sections, we give a scheme-theoretic development of the

theory of heights in the "geometric" context of the Lang-Néron theorem. The

theory of canonical heights on abelian varieties over a global held K provides
— def —

a natural positive-definite quadratic fonn on ,4(A)|^ — R 4(A) for any
polarized abelian variety (A, à) over K such that the polarization <j> satisfies an

auxiliary symmetry condition: the ample line bundle 38$ — 1, <p)''((P) on A is

symmetric (i.e., [—1]*(38$) ~ Mil), where IP is tlie Pointaré bundle on AxAv
There are many such (•> for any A, such as q> — <j)r : x -A t*(£.) ' 1 for any
ample symmetric line bundle £ on A, in which case 3\f^ [2]*(£)®£®(_2).
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For any regular and finitely generated extension of fields K/k and any
polarized abelian variety (A. ©) over K such that 1, (CP) is symmetric, we
wish to put a similar structure on (A(K)/'\'vk,k(A)(k))g once K is endowed

with a collection of absolute values resembling the "product formula" situation

in hie classical special case trdcg^i/f) — 1 (using || • |r — e-WW®1! as v

runs over the closed points of the urnque regular proper A--curve with function
field K). In this Section we shall develop the theory of fields endowed with
a "product formula" structure, and in §9 we use it to develop a theory of
heights. Applications to positive-definileness are given in § 10 (and also see

Corollary 9.12).

Let K be a field. Two absolute values j j and j • |' on K are equivalent
if they define the same topology on K. By [20, Ch. 1, 1.1], it is hie same to

say I ~f for some r > 0.

DEFINITION 8.1. A generalized global field is a field K equipped With

an infinite set of equivalence classes v of non-trivial absolute values on K
and a choice of representative absolute value [] • ||„ for each v such that

1. all but finitely many v are non-archimedean, each non-arcliimedean v is

discretely-valued, and each IG Ky is a r-unit for all but finitely of the

non-archimedean v ;

2. for all x G the product formulci IL IMS' — 1 holds, where e„ — 2

if v is complex (that is, if v is archimedean and Kr ~ C) and ev — 1

ohierwise ;

3. for all non-archimedean a, hie discrete valuation ring 0„ for v on K is

excellent (this is equivalent to K„/K being a separable extension, so it is

always satisfied when K lias characteristic 0).

Remark 8.2. Beware that for non-archimedean v hie notation G,, denotes

hie discrete valuation ring for a in the field K, and it is not to be confused with
hie complete discrete valuation ring of hie v -adic completion Kv of K ; this

latter valuation ring will never arise below. To keep the distinction clear, note
that complete discrete valuation rings are always excellent whereas general
discrete valuation rings (with positive generic characteristic) may fail to be

excellent. We refer the reader to [21, Ch. 13] for a development of the basic

properties of excellent rings. See [7, IV3, 7.8ff] for further results concerning
excellence.

Let us give two important classes of examples.
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EXAMPLE 8.3. The arithmetic case is when K is a number held. In this

case, we use the traditional set of normalized absolute values |]»j|,, : for non-
archimedean « we require the value group of jj • []« in R>o to be q7: with
(•/,, equal to tlie size of tlie finite residue held at e, and for archimedean v

we use the standard absolute value on hie topological held K, (satisfying
||f|[# — \q\ for q 6 Q). An element x £ Kx sahshes ||a"||„ ~ 1 for all v if
and only if x is a root of unity.

EXAMPLE 8.4. The geometric case with constant held k is when K is

a finitely generated over a held k with k algebraically closed in K and

tidcg/(/v*) > 0 ; we do not assume K/k is separable. In this case, let V be

a proper integral £-scheme with k(V) K and assume V is regular in
codimension 1 (for example, normal projective V). The codimension-1 points

v £ V give rise to inequivalent non trivial discrete valuations on K with local

ring Öv.r and associated normalized order function denoted ord„ : K y — Z.
If dim V > 1 then tins collection of local rings depends on the choice of V
(though V is urnque if trdcg^A) 1), and for each m £ KA we have

ord„(x) — 0 for all but finitely many v. Since schemes of limte type over
a held are excellent [7, IV2, 7.8.3], each Oy.« is excellent. To give K a

structure of generalized global held, we want to find constants 0 < c,, < 1

such that defining || jj„ c°rd" makes the product formula JJ |W]S 1 hold
for all x £ Kx (A special property of the generalized global held structures

{[] • on K aiising in tins way is that an element x £ Kx satishes

11*11« — 1 for all v if and only if X £ kx since k is algebraically closed

in K and the normalization map V ^ V is a hihte birational map that is an

isomorphism away from a closed subset of codimension >2 in V.)
To find such ct, 's, hrst assume there exists a closed immersion i: V P£

over k. We can use cvj — with degki(v) the k-degree of the

closure of /'(?•) as an integral closed subscheme of P" : the product formula is

the classical fact that on an integral closed subscheme of PjJ that is regular in
codimension 1, any principal Weil divisor has k -degree 0. More generally, if
there exists an ample line bundle ]\f on V then we can use cvde%x(,,)
where

degLv([{y}] n dWhmV-1) degi,{7T(ci(Kl{7j)dim{t'})

dim V — l
Since c„jn 0» — c" :x for all positive integers n, reduction to the very

ample case shows that the absolute values || |satisfy the product
fonnula.
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Whenever we speak of the "geometric case" for K/k, it is always
understood that we use a generalized global held structure arising from such

a pair (V. X). Note that replacing V with its normalization V and X with its

ample pullback to V does not affect this construction, so there is no serious

loss of generality in restricting attention to normal projective k -models for K.
In the special case dimV - I, V is unique and both degtjM - !* <'•>: *1

and logjj • [Us1 — [£(.©) : k|ord„ are independent of X-
Of course, when k is finite (the "overlap" of the arithmetic and geometric

cases), it is traditional to use 1 f#k rather than 1 je in the above construction.

In Remark 8.7 we will recall the justification for this convention, but we
note here that since this change merely scales all log || • || ,,'s by the universal

positive constant log Ilk, it has essentially no impact on the theory of heights
and so does not affect the meaning of any of the theorems of this paper (when
applied to the geometric case with k finite).

Let us now explain the canonical procedure for extending generalized global
held structures through finite extensions (and in Example 8.5 we will make it
explicit in the arithmetic and geometric cases). Let K be a generalized global
held and let K' jK be a hmte extension. Each ff on K lifts to finitely many
equivalence classes ©' on K', and each such ©' admits a unique representative

|| j|,,' defined by the requirement that its restriction to K is || • ||[N'

(where ev — 2 for complex v and e,, - 1 otherwise, and similarly for
ev>). Note that for archimedean © we are requiring || • || • jji>, and

obviously at most finitely many ©' are archimedean. For x' G K'x, if g
(resp. 1 '.»:') is non-integral at a non-archimedean place v' of K' over a

place v of K then one of hie coefficients of hie minimal polynomial of if
(resp. 1 fx1) over K is non-integral at ©, Ltence, x' is a ©'-unit for all but

finitely many non-archimedean v'. Also, for non-archimedean v the excellence

requirement on the ö„'s is inherited by the 0,/ 's because excellence is

preserved under normalization m finite extensions [7, IV2, 7.8.2]. The rings
K' K,: are reduced because Kv/K is separable for all v (thanks to the

excellence hypothesis in the non-archimedean case), and hence hie natural

map
K' %kKv -g ] [ K'r,

v'\v

is an isomorpliism for all v. Thus, for all f and all x' G K'y we have

n - n (nNr,/^(*')n 1=(NA.7A<.F)nf,%

v'\v v'\v



86 B.CONRAD

and so the product formula holds for the |j JLr % This gives K' the sought-after
natural structure of generalized global field, and the procedure is transitive

in towers of finite extensions. This construction is the algebraic method for
putting a generalized global field structure on K' (via the one given on K).

EXAMPLE 8.5. Ill the arithmetic case, the algebraic method for endowing
a finite extension K'/K of a number field K with a structure of generalized

global field does give the number field K' its traditional collection of
normalized absolute values as in Example 8.3.

Consider the geometric case K/k with a generalized global field structure

{|| {li&.X'ls as m Example 8.4, using a choice of pair (V, IN"), so c„ — e~

for all codimension-1 points v G V. The algebraic method as above gives any
finite extension K' a structure of generalized global field via absolute values

having the form j| • ||^ cf"' on K'x for suitable 0 < c„i < 1, with v'
ranging over the codimension-1 points on the V -finite normalization V' of V
in K'. Since V' is £-proper, integral, and normal with function field K',
clearly the A--finite tTV'. Sp) Ç K' coincides with tlie algebraic closure k'

of k in K'. In particular, V' is naturally a A'-scheme. The only elements
xJ K satisfying ||v'||:4,/ 1 for all ©' are the nonzero elements in A'.

(Note that K'/k' need not be separable even if K/k is.) We would like to

describe the cB< s explicitly, in a maimer similar to the #a's.
Let W be tlie ample pullback of X to V'. In proofs it is sometimes

necessary to replace K/k with K'/k', and so it is crucial to know that the

generalized global field structure put on K' via tlie algebraic method (with
respect to tlie given "geometric" generalized global field Structure {|| • ILjr}»
on K) is closely related to the generalized global field structure {|j * [|#fN«}#
put on K' via A', V', and X', at least up to a constant factor in tlie exponent.
First, observe that for both constructions the resulting set of equivalence
classes of valuations on K' is the same, namely tlie equivalence classes of
tlie discrete valuations on K' lifting the ones arising from the generalized

global field structure on K. Hence, die absolute values on K' arising from
the algebraic method may be denoted {|j ||,,'} with index set given by the

codimension-1 points v' V'. The relationship between jj L,s and || [!««?•
is explained in the following lemma.

Lemma 8.6. For all codimension-1 points v' V we have

r — Jk'M _ -degj.,c" — Nj'.N' — e '

Thus, || IL» — || • Ë for all such v'.
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Proof. Using the defining property of jj • ]Ja.^- and the general formulas

ord„!|^x ;= e(;v'\v) • ord„, \Kf : K,,\ ;= [A'(p') : k(r)]e(v' r)

with e(v'\n) denoting the ramification degree for v' over v, tire problem
comes down to verifying the identity

[A' : A|deg,. v(r') - fV(e) : A (c)| deg, N(r).

Letting X and X' denote tlie closures of v and v' in V and V' respectively,

we are reduced to proving that if k'/k is a finite extension of fields, f: X' —>• X
is a finite dominant map from an integral proper A'-scheme to an integral

proper A -scheme, and "N" is a line bundle on X with pullback W on X', then

[A-' : A-]degt, x,(X') \k'(X') : A(X)]degtiW(X)

with deg, N(,V) deglt(ci(7f)dimA) and likewise for (X',N',A').
Equivalently, since dim X — dim X', we want the polynomials

I A' : AI • XkfX\ y "). \k'(X') : k(X)\ xfX.y*"}
in n to have the same leading coefficients. Since

[A"' : AI - u t.Y'.X' ") U(X,/.(.Y "")> U(.Y. (/..V) "')

and ffH' — ff*Jk — (/*Öx') ®ö.v Y with f*Qx' generically a vector bundle

of rank \k'(X') : k (X)\, it suffices to show that if JF is a coherent sheaf on
an integral proper A-scheme X and if has positive rank r at the generic

point, (hen Xk(X-, SLpX®") has leading coefficient that is r times the leading
coefficient of \k(X. Xx"). Tins is proved in [25, §6, App.].

REMARK 8.7. For function fields of varieties over finite fields, the equality
(1/#A)^ 1/#A' enables us to eliminate the intervention of [A' : A] in
Leimna 8.6 by using 1/#A rather than 1 je in Example 8.4.

9. Review of heights

Let K be a generalized global field with associated set of absolute values

{|| ||,,}„ as in Definition 8.1, and choose an algebraic closure K. For n > 0,
tlie standard K-height hx.n ' P'k(K) — (K"

11
— {0})/A'x —> R is

hxAlto,f Ol)
^K,

\ mp(log llfill"?1) > 0
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where K' C K is a finite subextension over K that contains the tfs and

we canonical]} endow K' witli a structure of generalized global held via the

algebraic method as in §8. This formula is independent of the choice of K'
(because [K" : K'] =$ : I 'or iß v' on K'), it is well-defined

(by the product formula), and it is invariant under the action of /\ul(K/K) on
P!'k(K) (so it is essenhally independent of the choice of K). It would be more
canonical to not choose K and to work instead with Iik.,, as a function on
the set of closed points of However, we are interested in applications to

abelian varieties and so we prefer to work with the set of K -points because

for a locally finite type K-group G the Set of K-points G(K) is naturally a

group whereas the set of closed points of G is not naturally a group.
For any T AulK(P'j{), hK n — hKn o T is bounded (in absolute value)

on P"k(K) For proofs of this and all subsequent unattributed assertions in this

section concerning K • heights, see [14, §B] and [25, §4, Appendix II], where

proofs are given for number fields but carry over essentially verbatim to any
generalized global held. Many basic proofs in [14] aie written with restrictive
smoothness hypotheses, though as noted in [14, B.3.6] such hypotheses can
be avoided with better definitions in tenns of Cartier divisors rather than Weil
divisors. (The proofs of hie basics in [25] make no smoothness restriction.)

For any K -vector space V of dimension n — 1 > 1, transporting hg „ by
means of any linear isomorphism V 3? K"+i gives rise to a common (and
hence intrinsic) residue class hK V in the R-vector space of R-valued functions

on P(V )(K) modulo 0(1) (by which we mean: modulo hie R-subspace of
bounded functions). This residue class is denoted hK V.

Remark 9.1. In hie arithmetic case it is traditional to work with
h„ hKn/\K : Q] and hy ~ Iik.v/[K : Q] because these are invariant
under finite extension on K. There is no "smallest subfield of finite index"
analogous to Q in the geometric case, and so we must keep track of the

ground held K in general.

Let A be a projective k'-variety. For any very ample line bundle 11 on
X, the closed immersion

le : A M- P(H°(A,L))

defines a K -height function (modulo 0(1))

(9.1) f'K.L — llK,H°(-A'X) ° te
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on X(K). In what follows, all equations and inequalities involving fa* are

understood to be taken modulo 0(1), though we may sometimes repeat this

explicitly for emphasis.
Since h^zxSL' — kKj; + for any two very ample line bundles £

and £' on X, and Iik.l — hjC-W if ~ — £' on X, if £ is an arbitrary line
bundle on X then we may dehne

hm^s Ibysi - ''rx,
where il «s il, /)Xk' with very ample line bundles £1 and £2. This is

independent of the choice of £1 and £2, and £ Iikj: is a homomorphism from
Pic(X) to the R-vector space of R-valued functions on X(K) modulo 0(1).

REMARK 9.2. Let K'/K be hnite and give K' a generalized global held
Structure via the algebraic method as in §8. Upon picking a /("-embedding
of K' into K, we have

(9.2) IK' : K\hKJi hK,^K,

on X(K) — XK'(K) (modulo 0(1), as always). Thus, for applications where

one considers sets of bounded height it is harmless if we replace K with a

finite extension K' and X with the projective K' -variety Xk> •

The identity (9.2) has a useful application for K/k as in hie geometric
case when K' — K Xi, k' for an algebraic extension k' /k such that either

k'jk or K/k is separable (so K' is a held and k' is algebraically closed

in K' Fix a choice of generalized global held structure on K using a

pair (V, INT) as in Example 8.4. The hypotheses ensure that is integral.
Let V' be hie normalization of Vf and let X' be the ample pullback of X/,-

to V'. Upon choosing an algebraic closure K/K, we pick a k-embedding
of k' into K and thereby realize K as an algebraic closure of K'. Dehne

to be the mod-O(l) class of functions on Xk>(K) dehned via the line
bundle £and hie generalized global held structure on K' corresponding to
the pair (V1, X'). Beware that when \k' : k] is hnite and larger than 1, this

"geometric" generalized global held structure on K' is not the one assigned

to K' as a hnite extension of K via the algebraic method as in §8: there is

a discrepancy by a factor of [k' : k] due to Lemma 8.6.

The advantage of tins "geometric" procedure for making K' and K into
generalized global helds via such pairs (V. X) over k and V'. X' over k'
is hiat it gives a variant on (9.2) in which there is no intervention of held

degrees and so is well-suited to the case of algebraic extensions k'/k with
possibly Infinite degree (such as k' taken to be a separable closure of k):
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THEOREM 9.3. With notation and hypotheses as above,

I geomh-KX -
on X(K) - Xk,{K).

Proof. Since heights are calculated as finite sums, by descending through
direct limits we may reduce to the case when [k' : k] is finite. In this case,

(9.2) translates the problem into that of proving the identity

h/C. L f '! geom

[k' : k\
~ lK''M*r

on Xfc(K), where the K'-height on the left is defined using the generalized

global field structure on the finite extension K' / K via the algebraic method

in §8, and the K' height on the right is defined in terms of the pair
V'. Jf) as we have explained above. The desired identity is a special case of

Lemma 8.6.

Here aie some basic properties of K -heights :

• (functoriality) If / : X —r X' is a map of projective /("-varieties and £'
is a line bundle on X' then /z— %:.#» °f • This follows from the

Nullstellensatz over K.

• (positivity of ample K -heights) If £ is an ample line bundle on X
and £o is an arbitrary line bundle on X then for some c > 0 we have

/z/cXo < c • hKJ; modulo 0(1) on X(K). This follows from the fact that
the two line bundles £®* <fi £^><±1) are very ample for N sufficiently
large, together with the fact that the standard K-height /z/s- „ on P"(K) is

non-negative at all points.

• (quasi-equivalence) If £ and £' are algebraically equivalent (that is, they

give rise to geometric points in the same connected component of the

Picard scheme I'icv_//^ and one of them is ample (so the other is also

ample [17, 4.6]), then

///, ,; (A

as x ranges over X(K) (in tliis limit we must choose representative
functions on X(K) for the mod-O(l) residue classes Iik.l and hKc, but

a priori these choices do not affect the limit).
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• (positivity away from the base locus) If £ is a line bundle on X then

hK!i is bounded below on (X — B)(K) — X(K) — B(K), where

is the base locus of £ (so X — B is a non-empty open set in X if and

only if H°(X,£) / 0).

EXAMPLE 9.4. Let K/k be as in the geometric case, endowed with a

generalized global held structure as in Example 8.4. Let F be a projective
A--variety and X a projective K-variety, and let f: YK —rX be a map over K.
I sing the algebraic closure k C K, we claim that Iikm of on Y(K) is bounded

on Y(k) for any line bundle £ on X. By functoriality, we may assume X - YK

and / is the identity, so the claim is that if X Xo HÉ Jt f°r a projective
A-variety Xo, then Iik.c is bounded on tlie subset Xo(A) C X(K). It suffices

to check this for a single very ample £, so we choose £ to arise from a

A-embedding X0 '-r P". Since all points in tlie subset P"(A) Ç P"(K) have

standard /£ height 0, the claim is proved.

EXAMPLE 9.5. For a proper X-variety X endowed with a projective
K -embedding cXhPJ it is traditional to consider Iik° i as the "induced

height function" on X(K). This ad hoc construction represents the mod- 0(1)
residue class hK ,.«©«, m dehned via tlie associated complete linear system (a' *
fact we shall use below without comment). Indeed, the AT height hK m
on PnK is represented by the function h^.n, so Hm,» 0 t represents the residue

class A/c.o .„.(I) ° and this residue class is Iik.i-o^ (i) by functoriality of
K -heights.

In tlie special case of abelian varieties A over K, one has a much
finer theory of canonical K-heights in the sense that the mod- 0(1) residue

class hk£i admits a canonical representative function, the canonical K-height
function hkm ' A{K) —? R attached to £ by Néron and Tate. Let us recall
how this is constructed. For g — ±1, a line bundle £ on A is s-symmetric
if £ ~ [—l]*(£)s (we also say symmetric if e — 1 and anti-symmetric if
£ —1), If £ is e-symmetric, then the limit

B « supp(coker(I I°(X. £) Xk A -4' ^))

(9.3) lim RÄ"ü «-S-OG n2

for s — I and

(9.4) ?- / i i- llfcMna) ^ 0/î r (a) — lim —2 G R
' n^-oo n
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for § - — 1 exists for all a e A(K) ; tlie formation of these limits uses a

fixed choice of representative function for hKx » the choice of which does

not affect the limit. If £ is symmetric then h\ L is a quadratic form, and

if £ is anti-symmetric then h~^ L is additive. The dependence of ht c on

symmetric £ and of hZ' r on anti-syimnetric £ is additive.

For any line bundle £ on A, define the symmetric and anti-symmetric
line bundles

£+ £v;| l|'(£). £ £ I 11'(£) 1,

and define the quadratic function

7 + %.£x
liK,c - — ^ — : A(K) -4 R

as a sum of a quadratic form and an additive function. Strictly speaking,
this "quadratic" function may have vanishing quadratic part, so it is really
of degree < 2 with value 0 at the origin; we shall nonetheless often
refer to it as being a quadratic function. If £ is symmetric (resp.
antisymmetric) then this quadratic function coincides with j: (resp. h~J( l: and

hKM&Kti - on A(K) in general.

REMARK 9.6. By Remark 9.2, if K' jK is a finite extension and we choose

a £-embedding K' <—> K, then for £ on A we have hi<>.ck <=>- \K' : K\hKji
on A(K) — A/(/ (K) when K' is made into a generalized global field by the

algebraic method in §8.

Clearly the function Iik.c on A(K) is a representative for tlie residue

class hKx j and it only depends on the isomorphism class of £. Functoriality
holds for canonical K -heights in tlie sense that if / : A —> B is a K -map of
abelian varieties (so /(0) - 0) then for any line bundle £ on B,

(9.5) hK.fm Iikx of-

Indeed, botli sides are R-valued quadratic functions on A(K) tliat vanish at

tlie origin, so the boundedness of their difference (due to functoriality of the

mod- 0(1) object /z,vx forces tlie difference to be zero. We can improve (9.5)

by allowing / to be merely a map of K-varieties (with /(0) / 0 permitted) :

tlie general identity is

(9.6) h-£^>.c — Î'kx °f ~ hfc,c(f(°))>
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and to prove this we use the factorization / fa» o (/ —/(0)) with f —/(0)
a homomorphism and t/, the translation by b 6 fi(if) to reduce ourselves to

treating the special case of translation morphisms by points in B(K). Slightly
more generally:

LEMMA 9,7. Let K be a generalized global field with algebraic closure

K and let A be an abelian variety over K. For any finite subextension K'/K
inside K, any a &A(Kr), and any line bundle £ on AK., we have

(9.7) hK,.,*fi hKqC °ta~ (a)

as functions on A(K) — Ak>(K). Here, K' is endowed with its canonical

structure of generalized global field as a finite extension of K.

Proof. The height function /z/cx is defined as a sum of a quadratic fonn
and a linear fonn by constmction of canonical heights, and since K' height
functions as in (9.1) are functorial modulo 0(1) with respect to arbitrary
morphisms of K'-varieties we see that the mod-O(l) residue class htc.ii. ° £
of the function /z/ex o ta is the class liK'.rC that admits a representative

function /z/xr c • Thus, the two sides of (9.7) are functions of degree < 2

that lie in the same residue class modulo 0(1), and so they differ by a

constant. Comparing values at the origin shows that this constant is zero.

The property hK i_ > 0 (modulo 0(1)) for ample L implies hKj_ > 0

on A(K) for symmetric ample il because hKn is a bounded-below quadratic
fonn for such il.

The "quasi-equivalence" for K -height functions acquires a stronger fonn
for canonical K -heights in the symmetric case (even without ampleness) :

THEOREM 9.8. For symmetric invertible £ on A, the quadratic form
on A(K) only depends on £ up to algebraic equivalence.

Proof. Choose a symmetric ample £', and pick a large n so that the

symmetric £ <S> £' '' is ample too. Since %j, Ajxo-C}«®» ~ nl'KX '
> it

suffices to prove the result for symmetric ample line bundles.

Now let £ be a symmetric ample line bundle, and £' another symmetric
line bundle algebraically equivalent to £, so £' is ample. We want to prove
hK i\ — hKr_i on A(K). By ordinary quasi-equivalence, applied to the canonical

fil-heights as representatives of the residue classes Iikji and hKj;j, we have
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as liK,c(a) -a oo. For arbitrary a A(K) with /z/oi'h/) / 0 we have

liK.c(na) n2hKx>(a) —> oo as n —»• oo (since ampleness of £/ ensures

fcic.&iflI > 0), so as « —> oo we obtain

hjrx(a) _ hK,z(na)
^

hK,C'(na)

and hence Iikjl(u) liK.C'(ti). We likewise get such an equality when

7*- 0, and of course when both canonical A'-heights vanish they

are still equal.

The canonical Â'-height construction is important because it gives rise to

a canonical K -height pairing

(;-)AX: A(K)xAv(K)^ R

defined by

t rr s
hK',c(a)

for a E A(K') and il a representative line bundle on ,4 for a hnite extension

K' jK inside of fil (with K' given its canonical structure of generalized global
held via the algebraic method as in §8) ; by Remark 9.6, tire choice of K' C K
adapted to the K -points a and [£^] does not matter. This is Z -bilinear because

line bundles associated to geometric points of 4 ' — l'ie" K are anti-symmetric
(by the theorem of the square). Thus, we can extend scalars to R to get an

induced R-bilinear pairing

(•• -).\.k.R ' A(K)R x 41 (K)k —» R

Also, if K' jK is a hnite extension (given its generalized global held structure
via the algebraic method in §8) and we choose a K embedding K' K,
then under the general identification X(K) =Xk'(K) for A"-schemes X (such

as A and A' we have

(9.8) ••••Aa \K' : k|- '•••ivA •

The functoriality of canonical AT heights immediately implies adjointness with

respect to dual maps : for / : 4 -a B a map of abelian varieties over K,

(9.9) {ajy(b'))A,K (f(a),b')B.K.
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REMARK 9.9. If f denotes the Poincaré line bundle on A X Av then

(s"|Â.K: (À x A^)(K) — Ris also equal to Indeed, consider a finite
extension K'/K inside of K, a point a g A(K'), and a line bundle L
on ,4/c that is algebraically equivalent to 0 (i.e., A is classified by a

/("'-point of the identity component 47 of I'icA/A- We want to prove

(4/W k] — h[( p(a. il), and by Remark 9.6 we can rename K'
as K. By the universal property of the Poincaré bundle, the slice inclusion
i: A —> A x Av defined by x Ht (x. il) satisfies i* ('!') ~ il. Thus, since

/(o) — (a. A), the generalized functonality (9.6) for canonical heights gives

hK 'j>(a. H) liK.c(a) +' liK.i>(i(0)). We therefore just need to prove that

/i,v :i'('(0)) — iiK -p((), £) is equal to 0. This reduces us to the special case

a — 0. But now we can view A as dual to Av (retaining the fact that !P is

the universal line bundle) and so running the same calculation with roles of
the factors swapped gives /;^.y(0, T) Ar:.3>(0, 0^) => 0.

The quadratic fonn Iikji for symmetric 11 is naturally recovered from the

canonical K-height pairing {•, UP to a factor of 2, by means of the map
<Ac : A -A Av (a i—y /,'(£) •:•, il 1

)• Tliis reflects the correspondence between

quadratic forms and symmetric bilinear forms :

THEOREM 9.10. For any invertible 11 on A we have

(9.10) {ai, <t>c{ai))A.K hiecitti + ai) ~ l) — hR.£Äflz)

for all È A(K), where (j>c(x:) f*(H)0ll_1. In particular; this pairing
is symmetric and if L is symmetric then {a,<f>n{a))AX — 2/îa'x(o) for all
a g A(K).

Proof. By functonality of canonical K -heights,

hfc,T ° (1A X 4>jr) /îâ',(1x4£,)ï(35J

-K.m' CCépl _ l Pl'l X ~ 1

Iik,l o m - hKvo o pi - hK.c o p2

Thus, by Remark 9.9 we get (9.10). The rest follows immediately (e.g.,
the final assertion for symmetric 11 holds because hK ,\ is a quadratic form
for such £).
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COROLLARY 9.11. Let Ol* A—>AVV be the double-duality isomorphism.
For any (a, a') G A(K) x Av (K) we have (a,a')A.K — (a'» t(a))Av x •

Proof. Again using Remark 9.9 and the functoriality of canonical
AT heights, we just have to recall that if .v : ,4 x ,47 ~AvxA is the flipping
isomorphism and is a Poincaré bundle on Ay xAvv then i*((l^v xtA)*(lP^v))
is a Poincaré bundle on A x Av.

COROLLARY 9.12. For any polarization (f>: A —> Av, the induced

R -bilinear pairing

A(K)r x A(K)r -G R

defined by (ä^Sgfß - (fli, ^(o2))a.x,r « symmetric. If the ample line bundle

(1, </>)*(T) on A is symmetric then (•. • is positive semidefinite (i.e.,
(a, a)$ > 0 for all a G A(A)r

Proof. By replacing K with a finite extension and using (9.8), we can

assume 4> — 4>z for some ample L on A. This gives the symmetry, by
Theorem 9.10. If we define N — (13 <£)*((P) |2|"(£)'.4£ 1 2) then H is

ample and 2— fbf by die tlieorem of the square. Hence, in case H
is symmetric it is harmless to replace <p with 2c> to reduce tire positive
semidefiniteness claim to the case <p — for a symmetric ample £ on A. It
therefore remains to recall our earlier observation that the quadratic form hKn
on 4(AT)J> is non-negative for any symmetric ample line bundle £ on A. LI

The preceding discussion of heights is valid for any generalized global
field K. We now tum our attention to the geometric case. Let K/k be a

finitely generated regular extension, and give K a generalized global field
structure using a pair (V. Xj as in Example 8.4. This generalized global field
structure on K gives rise to a theory of heights for abelian varieties over K.

LEMMA 9.13. For a generalized global field K/k as in Example 8.4, let
A be an abelian variety over K and let £ be a line bundle on A. For all
a G 4(K) and oo G ^K/k{A)(k) n't' have /i^x(° + flo) fixx-cX0)- In particular;
the quadratic (or additive) function h^.c, uniquely factors as a quadratic (or
additive) function

(9.11) hxx : A(K)/TxK/k(A)(k) -G R.
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We let hfc.n.r : (MK)/TTx/k(A)(k))R —> R denote the induced function after
extension of scalars to R on the source. This is a quadratic fonn if il is

symmetric.

Proof. By Theorem 6.8, Theorem 9.3, and the definition of Iik.l we

can replace K/k with kK/k to reduce to the case that k is algebraically
closed. Since a G A(K') for some finite extension K'/K inside of K, and

K'/k is regular (since k is algebraically closed), by Remark 9.6 we can

assume a G A(K). By Lemma 9.7, we just have to prove that vanishes

on TrK/k(Ä)(k). For any line bundle X on A, applying Example 9.4 to

t : Trk/Ic(A)k —> A gives that any representative function for on A(K)
is bounded on the subgroup \rK/fA)(k) C A(K). Hence, the quadratic (or

additive) function /z/a:\ on A(K) is bounded on TrK/k(Ä)(k) with value 0 at

tlie origin, and therefore it vanishes on this subgroup.

REMARK 9.14. Assume K/k in Lemma 9.13 is regular, so K 0% k' is a

held for any algebraic extension k'/k. By the proof of Lemma 7.3, for any
algebraic extension k'/k and any extension K' of K^^k', the natural map

A(K)/'\rK/fA)(k) —» A(K')/'\vK/ifAfk1 is injective (clearly the key case is

K' — K0kk'). Thus, by expressing k/k as a direct limit of hnite subextensions,
the source in (9.11) is a direct limit with injective transition maps when K/k
is regular.

Recall that when A is a global held of the classical type (a number held

or function held of a curve over a hnite held), then for a symmetric ample line
bundle il on an abelian variety A over K, hie positive semidehnite canonical

K height on A(K) has positive-definite scalar extension to A(K)k Thus,
this Scalar extension is also positive -definite (or equivalently, non-degenerate)

on each finite-dimensional subspace A(X')r for finite K'/K inside of K, and

we can use Theorem 9.10 to rephrase this non-degeneracy in more canonical

terms : when A is a global held, the canonical K -height pairing

(*, ')a,K,r : A(K)r x AV(K)R —> R

restricts to a perfect duality between A(K')R and A"' (K' )K for all hnite K'/K
inside of K. In the classical global function held case with hnite constant
held k C K, the subgroup Trg/k(A)(k) is a torsion group and so it is killed by
hie operation of tensoring against R. Thus, in this case we can equivalently

say that h^.a.r is positive -definite on (A(K j/'fr^,/, (,4)(A))r In general, we
have :
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THEOREM 9.15. Let K be a finitely generated regular extension of a

field k with trdegt(K) > 0, and endow K with a structure of generalized
global field by means of a pair (V,N) over k as in Example 8.4. For any
abelian variety A over K and any symmetric ample line bundle L on A, the

quadratic form
/*axr: (A{K)/TrKa(A)(fk)h -a R

is positive-definite.

This is proved in [20, Ch. 6, §5] using pre-Grothendieck methods, and

in § 10 we shall give a proof in the language of schemes. Let us now give the

reduction steps that eliminate the appearance of algebraic closures, as this also

leads to a reformulation of Theorem 9.15 in terms of the canonical A'-height
pairing.

Observe that by expressing K as a direct limit of finite extensions of kK,
we see that among the finite extensions of K inside of K, a cofinal set is

given by those K' that are regular over the algebraic closure k' of k in K'
(this regularity is automatic when K'JK is separable or k is perfect). Thus,

by Theorem 6.8, Example 8.5, Lemma 8.6, Remark 9.6, and Remark 9.14, by
suitable renaming of the constant field it suffices to prove positive-definiteness
on (A{K')/TxKß(A)(k))R in general for finite extensions K'/K such that K'/k
is regular. (In case K'/K is separable, the extension K'/k is regular if and

only if it is primary.)

Lemma 9.16. For A and K as above, let K'/K be a finite extension
with K'/k regular. The natural map

(9.12) A{K)/TrK/k{Am -+ A{K')/T%?/Ä<Ar )(A)

has finite kernel.

Before proving the lemma, let us show by example in arbitrary characteristic

that the kernel of (9.12) can be nonzero. Let K'/K/k and the elliptic curves Eo

over k and A over K be as in Remark 4.6, so TxK//fA) — 0. By construction,

A(K) C A(K') ifi(K') is the — 1 -eigenspace Eq{K')~~ for the natural action

by G?A(K'/K). Hence, (9.12) is the map Eo(K')~ —» Ifi(K')/Efik) that has

kernel lfi(k)\2\. We can choose !fi so that tins latter group is nonzero.

Proof. Let Ko/K be the separable closure of K in K'. Since K'/Kq
is purely inseparable, Theorem 6.4(3) settles tire case of K'/K,) and so it
remains to treat the case when K'/K is Separable. Let K" be a Galois closure
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of K'/K, and let A"/A be the algebraic closure of k in K". The extension

K"/k" is regular, but we need to first circumvent the possibility that k" / k.
To this end, let F — K ®k k" and F' - K' 0% k" considered as subhelds

of AT". Theorem 6.8 and Remark 9.14 imply that the natural map

is injective. The composite of tliis injection witli (9.12) is equal to the

composite of natural maps

A(K)/TxK/k(A)(k) A(F)/AxF/k„{A)(k") -A A{F')lAxF,fk„(.AF,){k")

with injective hrst step (by Theorem 6.8 and Remark 9.14). Hence, we

can replace K/k with Fjk" to reduce to the case when k" k (i.e.,

K"/k is regular). It clearly suffices to treat K"/K instead of K'/K, so

we can assume K'/K is Galois. Hence, we need to prove that when K'/K
is Galois and K'/k is regular (or equivalently, finite), tlie quotient group
(A(K)mxK,ß(AK,)(k))/TxK/k(A)(k) is finite.

For 7 Gal(K'/K), tliere are canonical isomorphisms

h ' A*(JrK'/k(ki-K')K') — Trk>//c(Ak>)k', j*, — 4tr'

as abelian varieties over K' (encoding the evident Galois descents to K). By
tlie universal property of the K'/k-trace tAk, K'/k, there is a unique A--map of
abelian varieties [7]: Trk'/AAk') —> Tr^y^A^/) such that the diagram

AxKr/k{AK')K' T*(TrK'/k(AK')K')
0r'(rA,.,,K>/Ä

Mr ^
li~K'/k(AK')K> — ^ Afc — J*(AK>)

iMK J-,

commutes, Uniqueness gives [1] id and [7172] — |-11 |. so each [7] is

an automorphism and we get a natural action of the finite group Gal(K'/K) on
tlie abelian variety TrÄyy(/U<) over k. For M 7 \vF'/iAAk>)(K) and v 15 A(K)
we have U(-; Ax)) — x and jL (7* (v)) — v, so this action by (\n\(K' / K) is the

identity on all points in A(K) UiTrk>/k(AK>)(k).
The Zariski-closure Z of A(K)p Tr^yi/A)(k) in Tiy-<y(A/r is a smooth

closed A-subgroup of Tr^yk(Afc), so the identity component Z° is an
abelian variety (perhaps Z° =• 0). The triviality of the Gal(K'/K) -action

on A(K) f i '\ vKtß(A[(r )(k) implies (by Zariski-denseness considerations) tliat
tlie map t': ZK> —> AK> induced by TAi;, Ki/k is Gal(K'/K)-equivariant w ith

respect to the K'/K -descent data on both sides, so it descends to a /(" -map
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of A'-groups t: ZK —t A. The restriction r": '/fK -a A of t factors uniquely as

TA.K/k ° f i< f°r a unique A"-map of abelian varieties ip:Z°—t TrK/k(A). Hence,
the image of Z°(A) in A(K) lies in TxKu(A)(k) Ç A(K), so by working inside

of Trk'/ki^K'){k) we have that the subgroup A(K) Ç\TxKi/fAfc'Xk) C Z(A)
meets Z°(A) in a subgroup of I xKß(A)(k). The group

(MK) fl Trjr,/i(AÄ-0(A))/Trx/jt(A)(A)

is therefore a quotient of the subgroup

(A(K) n TxKiß{AK )(k))/(Z?(k) C A(K) n TrK,/k{AK,)(k)) ^ Z(A)/Z°(A),

so hniteness of Z(A)/Z°(A) hnishes the proof.

By Leimna 9.16, the natural map

(A(fO/Tr^(A)(A))R —> {MK!)/TxK,/k{AK,){k))^

is infective for hnite K' jK such that K'/k is regular, and so (again using
Example 8.5, Leimna 8.6, and Remark 9.6) by renaming K' as K we see

that to prove Theorem 9.15 it is equivalent to prove positive-dehniteness
of the positive semidehnite quadratic form Iikja.r on the R-vector space
(,4( K )/ ti"K t('l K A )r in general. Tliis result will be proved in §10.

In view of the preceding reduction steps and Theorem 9.10, the Lang-Néron
theorem enables us to reformulate Theorem 9.15 as follows:

COROLLARY 9.17. With hypotheses and notation as in Theorem 9.15, the

canonical K -height pairing restricts to a perfect duality

(A(r)/TrxA(A)(A'))R x (Av(^/)/Trjr/i(Av)(A'))R -> R

between finite-dimensional vector spaces for any finite extension K'/K that
is regular over the algebraic closure A'/A of A in K'.

The regularity condition on K' jk! in the corollary is satisfied for all
separable hnite extensions K'/K, and also for all hnite extensions K' /K
when A is perfect.

10. Proof of Theorem 9.15

We begin by recalling a general leimna of Minkowski that reduces the

pos i t ivc -defini teness problem over R to a hniteness assertion on a lattice.
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LEMMA 10.1 (Minkowski). Let A be a finitely generated Z -module and
let q: A —f R be a quadratic form such that q(A) > 0 for all À G A. Let

</k • V — R */. A R be the induced quadratic form. If for all C A* 0, there

are only finitely many À G A such that q(X) < C, then qu is positive-definite.

Proof. See [31, Ch. VIII, Lemma 9.5].

This lemma and the reduction steps in §9 reduce us to showing that for
all C > 0, the elements P G A(K) satisfying hfe.c(P) < C represent only
finitely many residue classes modulo '\rK /fA)(k). We can replace iL with a

very ample power TA5", and we can work with a K -height function arising
from a choice of ordered A'-basis of L(A, L) and the associated projective
K-embedding of A (as this function differs from the corresponding canonical

height by a bounded amount). Thus, by the reduction steps in §9, Theorem 9.15

is reduced to:

THEOREM 10.2. Let K/k be a finitely generated regular extension offields
with trdeg^A') > 0, and fix a pair (V, 3\f) over k giving K a structure of
generalized global field as in Example 8.4. Fix a projective K-embedding
A '—f J"f and let A(K) —> R be the resulting K -height function. For all
M > 0, the elements P G A(K) satisfying hK(P) < M represent only finitely
many residue classes modulo TrKß(A)(k).

The special case trdeg^/f) — 1 with k algebraically closed was proved as

the key ingredient in the proof of the Lang-Néron theorem in §7. The case

of higher transcendence degree requires more care because we have to work
systematically with rational maps fP on V whose domain of definition in V

may vary with P. The diligent reader will observe that the reduction of our
task to proving Theorem 10.2 did not use the Lang-Néron theorem, nor does

the following proof of Theorem 10.2 use the Lang-Néron theorem, and so

(at the expense of using the foundational discussion in §8-§9) Theorem 10.2

gives a proof of the Lang-Néron theorem that avoids the need to initially
reduce to the case of transcendence degree 1 with an algebraically closed

constant held.

Proof. Let k'/k be a separable algebraic extension and dehne K' — Kg:fid,
so we get a standard K' height on P"(Kr) by using the generalized global
held structure on K' arising from (Vo. N,;<) as in Example 8.4; note that VV

is integral and regular in codimension 1 since Idjk is separable and V
is geometrically irreducible over k (and regular in codimension 1). By



102 B.CONRAD

Lemma 8.6, if [A' : k] is finite then this is generally not the generalized

global held structure put on the finite extension K' /K via the algebraic method

in §8; there is a discrepancy factor of [k1 : k] - \K' : K\. Even worse, there

is no uniform discrepancy factor when [kf : k | is inlinite. Fortunately, by
Theorem 9.3, the standard K' height on P"(K') dehned via the generalized

global held structure on K' arising from (V/, Jfjp has restrichon to P"(K)
hiat coincides with the standard K-height dehned via the generalized global
held structure on K arising from (V. 3\l). Thus, by Remark 9.14 we can extend

scalars to a separable closure of k to reduce to hie case when k is infinite.

Let t] be the generic point of V. Replacing the ample X with a very
ample power X®" causes AT heights to be multiplied by a universal constant
wdimv-i _ /;trcicgi(A')- i

^ SQ wc call assume that hiere is a projechve /. -embedding

l\ V S- P that induces hie structure of generalized global held on K — k(y)
(with held of constants k We let \ho,.... h,„ | be a representative ordered

(in 1)-tuple of rational functions on V not all of which are zero and which
dehne i as a rational map. We let d be the A--degree of V in P. Here is a

formula for d :

(10.1) degp,„(L) hK.m(t{n)) V max(— ord,,(/îj)degp,„(«)),
* ^—' j 1

V

where the sum runs over all codimension-1 points y V and degp„(i') is the
k

degree of the closure of / (/>) as an integral closed subscheme of P. For the

case trdcghf/f) — 1 and k algebraically closed, (10.1) is the identity (7.3). In
general, the right side of (10.1) is invariant under a common A(l')v scaling on
hie hj 's, by hie product formula, and so hie argument used in the 1 -dimensional

case carries over essentially verbatim to hie general case as long as we

are able to find A-rational points in Zariski-dense open loci of hyperplanes

(parameterized by a dual projective space). This is no problem, since A is

infinite. (The reduction steps to get to the case of infinite A also show

that (10.1) is valid for finite A.)

The given closed embedding A <—> PJ- identifies P G A(K) with a K-point
\<lo,.... //„ I of projective ?!-space with <y, G K not all zero. By definition
of ha and the generalized global held structure on K,

hK(P) - y^max(-ord„(p,)degp,„(u)).
Z ' I k

V

Let A be the A-variety closure of A under the map

A H. P"; Pf x y Ç P£ xkV^ Pf x Pf ^ Pf,
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where N — (n — I )(m + 1) — 1. The closure Wp of P in A is the scheme-

theoretic image of the rational A'-map fP — <f> o P on V defined by the

Uiple \fijiij I ; tlie domain of fP on V may vary with P. By construction, the

projection from WP C P" x V to V is a birational morphism. Thus, WP is a

projective A-variety model for K, but (unlike V) it is generally not regular
in codimension 1.

We shall now bound tire degree of Wp inside of Pf. The generic point
fp(il) of Wp is a K-point of P*¥ whose standard K-height has an upper bound :

hR,N{fp(n)) Vmax(-ord„(5/fy)degpr(u))
V

< Y max(— ordv(fji) degp,„(c)) + V max(- ord,.(h,) degp,,,(«))
z ' I k ' i k

V V

— !1k{P) + d

by (10.1). We claim that hKN(fP(ri))dimWp is an upper bound on the A-degree

of Wp as a A-subvariety of P¥. Rather more generally:

LEMMA 10.3 (Néron). If f: 7] - Spec K —s» P^ is a A -morphism and W
denotes the A -variety closure of f(rj), then

degMW) < hKM(mfmW -
k

Although we are presently working under the extra property that A is

infinite, the lemma makes sense for any A and is true in such generality : the

preceding arguments concerning separable algebraic extension of the constant
field show that both sides of the inequality are unaffected by any separable

algebraic extension on A.

Proof. Let [f0,... ,Jy] be a representative tuple of elements of K not all

zero that induces the rational A -map / from V to P¥. We can and do assume

one of the f's is equal to L The case dim W 0 is trivial, so we suppose

r — dim W is positive.
Choose dense opens W' Ç W and V' G V such that V' lies in the

domain of definition of every f and / induces a surjective A-morphism
from V' onto W'. Since A is infinite and W is generically smooth with
r — dim W > 0, by Bertini techniques we can find A-rational hyperplanes

Hi.in P¥ whose common intersection with W is finite étale over A

and is supported in W". In fact, we can choose the //, 's so that for 1 < i < r
each If fl • • • f] //, H W is geometrically integral of codimension i and f§Jp
is "generic" in the dual projective space of hyperplanes. The A finite étale
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intersection WD (fjr. ^o) has A--length degp«(W), and we want to bound
this A length from above by hfcMfivW

The preimage of Hi D W' in V' is an effective Cartier divisor in V', and

let I), be its scheme-theoretic closure in V, so D-, is a A-subscheme of V
with codimension 1 having its generic points in V'. The genericity of the

choices of the //,'s therefore ensures that we can arrange that if 1 < i < r
then Di+i does not contain the generic points of Di fl • • • flD,-, and so pL Da
is A-fini te. Tliis intersection contains a closed subscheme surjecting onto the

A-finite étale scheme W H (nm C W' whose A-lengtli is degp„(W), so

degp-fW) <h(f)Da)
a.

Thus, it suffices to prove i\ p],, } < /z/c v(/'(r/)>'. By Bézout's theorem

on V in P",
r

4^'P)öa) ]Jdegp„(Da),
ex. a.—1

and so it suffices to prove

deg(Di) < hKjtfm ma\( ord..(/.)degp (/•))
1 k ' f J j k

V

for each 1 < i < r.
By definition, D, is the closure in V of the zero locus on V' of some

Li af'fj Atili oj!) g A not all zero, and so degp„ (/),) is the degree in P£

for the part of the zero-scheme Weil divisor div0(L,) C V that meets tlie dense

open V' C V. Hence,

degp„(A) < degp„(div0(L,))
k k

degp„(—diVgofL,)) V max(- ordt,(L/), 0)degp„ (u).
k t * k

V

It therefore suffices to prove that for a generic [c/j,0.. \ G PA'(A),

max(— ord,.(^3 °) i max(~ ord„(^))

for all ©. Since one of the ffs is equal to 1, the right side is always
noimegative. We therefore just need to consider those codimension-1 points v
at winch V, a]"/, (for fixed i) has a pole. The only such v are those at which

some fj has a pole, and the pole order of the sum
f
u- fj is certainly no

worse than the maximum pole order of any of the f's at such v, So in fact

we do not even need a genericity condition on the o'!) 's.
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To summarize, for every P G A(K) with Iik(P) < M, tlie corresponding
rational A -map fP from V to A C is a generic immersion whose image
has A*-variety closure Wp - (<p o Pjfjj) with dimension S — Irtlcg^(K) that is

independent of P and has A-degree in Pf that is imifonnly bounded above

by (M — d'f Thus, we may now abandon K-heights and instead aim to prove
that for any M' > 0, tlie points P G A(K) satisfying deg„\ (Vk/>) < M' lie in

k

finitely many classes in A(K)fYvK/k(A)(k). This statement does not involve

heights, so it does not matter for this assertion that tlie projective A-model V
is regular in codimension I. Thus, even though the integral k scheme Vj. may
fail to be regular in codimension 1, we can nevertheless replace A and K
with k and K 3H A to reduce to tlie case when A is algebraically closed.

The Wp 's are geometrically integral closed subschemes of P^ witli dim Wp

independent of P and deg,,v(VlV) bounded independently of P. Thus, as
k

tGrothendieck explains in the discussion of "limited families" in Iiis work on
Hilbert schemes (see [10, §2], especially Leimna 2.4 there), an application
of Chow coordinates and Grothendieck s basic results on constructibility loci
for übers of morphisms ensures that there exists a A-scheme 5 of finite type
and an 5-flat closed subscheme Z <—f 5 X Pf such tliat all fibers Zs are

geometrically integral and each Wp arises as such a fiber over some s> G 5(A)

(here we use crucially that A is algebraically closed). By replacing 5 with
a suitable closed subscheme without losing any of the above properties, we

can impose the extra requirement that 2) lies in S Xspeck A since the fibers

Wp C P" lie in A. We can also assume that 5 is a disjoint union of A-varieties.

We now claim that if WP and WP> occur as fibers over the same irreducible

component of 5, then P and P' have the same image in A(K)/'\vK/t(A)(k) ;

this will certainly solve our problem. The case P — P' is trivial, so we can

assume we are working over an irreducible base component with positive
dimension. By [25, p. 56], on an irreducible variety of positive dimension

over an algebraically closed field, any two rational points lie in a common
irreducible curve in tlie variety. Thus, it suffices to suppose the base of our
family is an irreducible curve X which we may moreover suppose to be

A-smooth by base change to its normalization (recall that A is algebraically
closed). Thus, we have an X-ilat closed subscheme

Z c 1 X X Spec k A

such that tlie closed subscheme Zx C A C P^ is geometrically integral for
all X G X, and for suitable a"o,Vq G X(k) tlie fibers XVo and ZT' in ,4 C P*
coincide with Wp and WP> respectively. In particular, Z is integral with
dimension dim WP + dim X — dim If-f L
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Consider the composite map

(10.2)

where the final step uses that A is constructed inside of P" x V. The map (10.2)
is dominant, since even Wp — Z.XO Ç Z maps birationally onto V, so Z hits the

generic point i/fV with über Z.n that must be integral and have dimension

dimZ — dim V - Ï, Thus, the proper map

Z^-tXxÄ-tXxV
has restriction over XK that is a proper map (j : IL —4 XK between integral
curves over K. Since XK is a IT-smooth curve, £ is either constant or finite
and flat. The fibers of £ over the K-points XspecaX and {vq} xSpCc/> K
of Xk are {Zxf)n (Wp)n and (/., ),; (Wp')n, and these are non-empty
because Wp —¥ V and Wp> —> V are dominant (even birational) morphisms.
Thus, f must be finite and flat. Since Wp —> V is birational, so (Wp).t/ —> 7] is

an isomorphism, Ç has degree 1 and tlius is an isomorphism. It follows that for
some dense open V° Ç V, the restriction of tlie composite Z s-XxA-t Xx V
over X X V° is an isomorphism.

Hence, we can consider Z\vo as a section lPp»i Xvo —x Xv« xvoAvo.
Restricting this over the generic point // of V° and recalling that (by
construction of A) the map A —> V has generic fiber equal to the abelian

variety A over 7], we arrive at a section !P/(- : XK —r XK x A over XK such

tliat '.P/idf-Vo l/i') 6 A(K) is the K -point P tliat was used to define Wp via

closure, and likewise ri'/c({Ar',}p) e A(K) is P'. It is tlierefore enough to prove
tliat for all x X(k), tlie points 'Pplx) e A(K) coincide modulo TxKjk(A)(k).
The argument with Albanese varieties tliat we used to conclude the proof
of tlie Lang-Néron theorem may now be carried over verbatim to prove this

final claim.
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