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L’Enseignement Mathématique (2) 52 (2006), 3-36

SUR LES SURFACES NON-COMPACTES DE RANG UN

par Gabriele LLINK, Marc PEIGNE et Jean-Claude PIcAUD

ABSTRACT. We consider in this paper a complete noncompact riemannian surface §
of finite type, with nonpositive curvature. Ends of such surfaces were studied in 1979
by P. Eberlein, from topological and metrical viewpoints. We first prove that the two
classifications of ends arising in his work are equivalent, as he conjectured. Then, we
explain how it is possible to define the Gromov product of two points in the limit set
of the fundamental group of §; the continuity property of this Gromov product and
the conformal action of isometries on the limit set with respect to the Gromov product
allow us to investigate topological-dynamic properties of the geodesic flow and of the
horocycle foliation on §.

Soit § une surface non-compacte de type fini, i.e. I' = m((S) est libre
non abélien et engendré par un nombre fini d’éléments. On munit § d’une
métrique riemannienne g complete, de courbure K négative ou nulle et non
identiquement nulle. La surface (S, g) est alors de rang un, ¢’est-a-dire qu’il
existe une géodésique sur § n’admettant pas de champ de Jacobi paralléle
perpendiculaire. I'objet de ce travail est d’amorcer une étude géométrique
et dynamique des flots géodésique et horocyclique de telles surfaces. Nous
nous concentrons ici sur la dynamique topologique du flot géodésique et du
feuilletage horocyclique, en soulignant les propriétés nouvelles qui résultent
de I'absence de compacité. e cas compact de rang un, sans restriction sur la
dimension, est étudié (de différents points de vue) dans [3], [12], [13].

On note X le revétement universel riemannien de S sur lequel I" agit par
1sométries pour la distance d induite par le relevement de la métrique g. Cette
action s¢ prolonge en une action par homéomorphismes respectant I’ orientation
sur le bord a I'infim X(o0) de X. Soit v € I'; le déplacement de v est la
quantité¢ positive ou nulle :

d, ::;g(d(x,fy LX) .

Lorsque la courbure est négative pincée: —b* < K < —a* < 0, il est bien
connu que le déplacement d’un élément hyperbolique est la longueur de
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la géodésique périodique sur S associée a sa classe de conjugaison et que
le déplacement d’un élément parabolique est nul. Lorsque la courbure est
seulement négative ou nulle, certains éléments paraboliques peuvent avoir un
déplacement strictement positif et jouer un role intermédiaire entre les éléments
hyperboliques et les éléments paraboliques classiques. Le déplacement dun
tel élément parabolique (exceptionnel dans la terminologie qui suit) peut alors
étre considéré comme une longueur de géodésique a l'infini associée a la
classe de conjugaison de cet élément parabolique (voir section 3.1).

On dira que ' est a spectre arithmétique si le groupe engendré par
les déplacements des éléments de T' est discret dans R et a spectre non-
arithmétique dans le cas contraire. On note R la partie récurrente du flot
géodésique (g;);cr sur le fibré unitaire 77S et on rappelle que ce flot
est topologiquement mélangeant si pour tous ouverts U,V C R, 1l existe
to = to(U, V) > 0 tel que pour tout r € R vérifiant [t| > 5, ona g UNV #£ @.
D’autre part, a chaque point du fibré unitaire « € 71X, on peut associer une
horosphere passant par le point base de u et centrée au point u(oco) € X(o0)
déterminé par u. Ceci permet de définir une relation d’équivalence sur le
sous-ensemble T-invariant {# € T7\X ; u(o0) € Ar} ot Ap est I’ensemble
limite de T". La projection des classes d’équivalence correspondantes sur le
fibré unitaire 7S est appelée restriction a ‘R du feuilletage fortement stable
et on note F, cet ensemble. On dit que F est topologiquement transitif
s’il admet une feuille dense.

Le principal résultat de cette note est une généralisation du Théoreme A
de [7] et de la Proposition 2.1 de [8] que l'auteur établit dans le cadre
des espaces Cat(—1). La formulaton de ce résultat, dans notre cadre, est la
suivante :

THEOREME A. Soit S une suiface non-compacte, de type fini, qui n’est
pas homéomorphe a un cylindre, et qui est munie d’une métrique riemannienne
de courbure négative ou nulle. Alors :

1) ['=m(S) est a spectre non-arithmétique,
1) le feuilletage F. est topologiquement transitif,

1) le flot géodésique en restriction a Q2 est topologiquement mélangeant.

La non arithméticité ressort d’un argument de nature purement topologique
et se démontre comme dans [8], sans modification. La démonstration consiste
par conséquent a établir /’éguivalence des trois propriéiés comme dans [7],
résultat qui présente un intérét en soi. La difficulté est de montrer que les
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arguments cruciaux pour prouver I’équivalence sont encore valables dans notre
conlexte :

Le premier de ces arguments est la minimalité de 1’action de T sur son
ensemble limite, et son corollaire, la densité des orbites périodiques dans la
partie récurrente du flot géodésique. A notre connaissance, ces points n’avaient
été démontrés que sous I’hypothese Axiome 1 (i.e. lorsque les couples distincts
de points de X(oo) peuvent €tre joints par au moins une géodésique).

Le second argument est I’existence d’un birapport continu, qui permet de
lire le spectre des longueurs au travers ’action de I' sur Ap. La construction
est tautologique lorsque 1’on a prouvé le:

THEOREME B. Le produit de Gromov sur X x X se prolonge en une
application continue sur Ar X Ar a valeurs dans R™ U {4o00}.

Notons que, dans notre cas, le produit de Gromov ne permet pas de
construire, comme dans [5], une structure conforme sur Ar, c’est-a-dire une
famille de distances (indexée par X) avec une action conforme des 1sométries.
La propriété de cocycle satisfaite par les fonctions de Busemann permet
toutefois de «mimer» cette action conforme.

La démonstration du Théoreme B s’appuie sur une analyse précise des
bouts de S. Cette analyse a ét¢ menée par P. Eberlein dans [9], tant du
point de vue métrique que du point de vue de la dynamique topologique.
[ auteur étudie en détail I'incidence du relachement de I’hypothese K < —a?
(a > 0)en K <0 sur la géométrie des bouts de § (voir les figures la
et 1b ci-dessous qui illustrent le contraste entre la situation en courbure
négative pincée et la situation en courbure négative ou nulle). 11 montre
également que certaines propri¢tés nouvelles observées sont li¢es a la présence
dans le groupe des isométries de X, d’éléments paraboliques exceptionnels
(mixtes dans la terminologie de [4]), fixant point par point un intervalle
fermé d’intérieur non vide du bord a l'infini. Il apparait aussi dans ce
travail deux classifications naturelles des bouts, 'une métrique, ['autre en
considérant les propriétés de dynamique topologique du flot géodésique dans
les bouts. P. Eberlein conjecture que ces classifications sont équivalentes. Nous
démontrons effectivement la

ProroSITION C. Les classifications du point de vue topologique ou
métrique de P. Eberlein sont équivalentes.




6 G. LINK, M. PEIGNE ET 1.-C. PICAUD

vasque :
lim f(t) =400
L—oc

cusp : f(t) =0,
ffl

—Zza>0
[

FIGURE 1la

Deux types de bouts en courbure négative pincée

La rédaction de I'article est organisée de la maniére suivante. La premiére
section introduit les notations et rappelle les principaux résultats obtenus
dans [9]. Leur présentation est en partie indépendante et nous avons inclus
certaines preuves qui nous semblaient plus élémentaires ainsi que des résultats
complémentaires utiles pour les sections suivantes. Nous rappelons ensuite les
deux classifications des bouts proposées par P. Eberlein afin de démontrer
la Proposition C. Pour clore cette section, nous établissons la minimalité de
I'action de T" sur Ar.

I’objet principal de la deuxieme section est de donner la preuve du
Théoreme B. Ce résultat établi, nous illustrons par des exemples le cas ou le
produit de Gromov entre deux points de I’ensemble limite est infini.

La troisieme section, enfin, est consacrée a la preuve du Théoréeme A. Pour
éviter la paraphrase de [7] et [8], nous rappelons bricvement de quelle maniere
les arguments s articulent autour des résultats des sections précédentes.

REMERCIEMENTS. Nous avons tré bénéfice des remarques de Gérard
Besson et Jean-Pierre Otal sur une premiere version de ce texte. Jérdme
Depauw a programmé le calcul (exact) donné dans la section 2.2 et Jean-
René Licois a exécuté les illustrations qui accompagnent le texte. Nous les
remercions tous les quatre.
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bout cylindrique : parabolique
Jt)=e (t21) exceptionnel
f) e>0

bout parabolique gimple : vasque :

F) N0 fl) =+

FIGURE 1b

Quatre types de bouts en courbure négative ou nulle

1. SURFACES DE CARTAN-HADAMARD ET QUOTIENTS

1.1 NOTATIONS ET RAPPELS

On rappelle les définitions et les résultats classiques concernant la géométrie
de X; de bonnes références sont, dans 1’ordre alphabétique, [2], [3], [4],
[9], [11]. Dans tout ce qui suit, X désigne une surface simplement connexe,
munie d’une métrique complete de courbure négative ou nulle. On fixe
une origine o dans X. Sauf mention explicite, les géodésiques de X sont
paramétrées a vitesse unité. Le bord a I'infini de X est par définition 1’ensemble
des classes d’équivalence de rayons géodésiques asymptotes de X (i.e. qui
restent a distance bornée dans les temps futurs).

Fixons quelques notations :

— (., .) désigne la métrique sur X, d la distance associée et K la courbure
sectionnelle, négative ou nulle;

—on pose X — XUX(00) et on note Is(X) le groupe des isométries de X ;




3 G. LINK, M. PEIGNE ET 1.-C. PICAUD

— TX (resp. T1X) — X est le fibré tangent (resp. tangent unitaire) de X et
7 la projection canonique de 7X sur X ;

—pour pe X et g X\ {p}, o, est'unique géodésique paramétrée
par longueur d’arc joignant p a ¢g; pour v € 71X, o, 'unique géodésique
(complete) paramétrée par longueur d’arc vérifiant #,(0) = w(v) et 5,(0) = v ;

— st p e X et v,w € Th1X,, Z(v,w) € [0,7] est la mesure de
I’angle non orienté entre v et w; pour g, € X\ {p}, on pose alors
£p(q, 1) = Z(6pg(0), 6p(0)).

La topologic sur X est celle des cones, dont une base de voisinages
convexes est (C(v, €))esomer,x OU

Clv,e) ={qe X\ {p}: £,(v,6,,(0) <€},

Pour chaque p € X, l'application: v € 71X, — o,(00) € X(co) est un
homéomorphisme. En particulier, (x,) € X — £ € X(oo) si et seulement si
pour un point p € X (ou pour tout point p € X), on a &, (0) — 7,£(0) et
d(p,x,) — +oo (avec la convention d(p,x,) = 400 st x, € X(o0)).

On rappelle le fait géométrique swmvant, établi dans [11], fondamental dans
le cadre Cat(0) et donc tres utile ici:

Sotent ¢ et 1 deux points distincts de X(o0). S’il existe deux géodésiques
o1 et g, joignant £ a n, ces dernieres bordent une bande plate de largeur
d(o1(R), 02(R)).

REMARQUE 1.1. Nous ferons usage au paragraphe 1.4 des propriéiés
élémentaires suivantes :

Soit 17 € X(00), V(n) C X un voisinage de 1, ¢, une suite de géodésiques
completes avee 0,(0) = p, ou p, est la projection d’un point p € X fixé sur
7,(R). On pose g,(c0) =&, et g,(—00) =1,.

1) Si1 & — n, 1l existe ng et 7y ne dépendant que de V(n) tels que pour

tout n > ng, au([to, +ool) C V(n).

2) Si&, —netn, — 7,1l existe np tel que pour tout 1 > ng, a,(R) C V().

Pour £ € X(x), p,g € X, on rappelle que la fonction de Busemann
centrée en £ est définie par

Be(g,p) = Zli_>m€ d(zn, q) — d(zs, P)

et que les horospheres (centrées en &) sont les ensembles de niveau des
fonctions g — Be(g,p) pour p fixé. On notera dH:(p) I'unique horosphere
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centrée en § € X(oc) passant par p € X et He(p) = U (87{5(0},5(1:)))
>0
I’horoboule centrée en £ bordée par dH(p).
La proposition qui suit regroupe des résultats de P. Eberlein [9] qui nous

seront utiles par la suite:

PROPOSITION 1.2. 1) Les fonctions de Busemann sont convexes; en
particulier les horoboules sont des sous-ensembles convexes de X.

2) Les fonctions de Busemann sont de classe C?*; en particulier, les
horosphéres admettent une paramétrisation C'.

3) Une suite de points (£,), de X converge vers £ € X(co) si et seulement
si la suite de fonctions de Busemann Bg, converge uniformément sur les
compacts de X x X vers Bg. [

La proposition qui suit permet de classifier les isométries de X, en
fonction de leur «déplacement»; elle est valable en toute dimension (voir
par exemple [2] [[.3. et [4] lemma 6.6)

PROPOSITION 1.3.  Soif ¢ un élément de Is(X) distinct de identité. La
fonction dy, : p — d(p, p(p)) est convexe sur X et on appelle déplacement
de ¢ son infimum mg, ; pour tout point p de X ona m, = liﬂ_n d(p, "p)/n.

n— 100

Trois cas peuvent alors se produire, qui s’excluent mutuellement :

1) dy atteint son minimum sur X et my, = 0; Uisométrie ¢ fixe un point
de X et est dite elliptique,

1) d, atteint son minimum en un point p, € X (qui n’est pas forcément
unique) et my, > 0. Il est équivalent de dire que ¢ agit par translation
de longueur my le long de la géodésique (compléte) passant par p.,
et p(p,). Une telle géodésique s’appelle un axe de ¢ et deux axes
quelconques 1,7, de @ bordent une bande plate de sorte que @ fixe
deux points de X(c0). On dit dans ce cas que ¢ est axiale.

ui) dy, natteint pas son minimum sur X ; on dit que ¢ est parabolique. 1/
existe alors un point £ € X(o0) tel que

{90(5) =¢ e

()
Be(p(),p) = Be(,p) - (p € X).

Les propriétés énoncées en ii) et 1ii) préludent a une autre classification des
isométries, en fonction de leurs points fixes sur le bord. Si ¢ € Is(X) et p € X,
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il est bien connu (voir par exemple [11]) que tout point d’accumulation de
la suite (¢".p),ecz est un point fixe de ¢. On verra en particulier que,
en dimension deux, la suite (p".p),cz MWadmet que un ou deux points
d’accumulation sur le bord et que le point fixe ¢ satisfaisant (x) pour une
1sométrie parabolique est unique. Cela permettra d’affiner la classification
précédente en distinguant les isométries paraboliques qui fixent un unique
point & Uinfini de celles qui fixent point par point un intervalle d’intérieur
non vide.

REMARQUE 1.4. Soit ¢ € Is(X), Fix(g) = {£ € X(o0) 5 (&) = &} et
p € X. Il résulte de la relation de cocycle: Be(x,z) = Be(x,y)+Be(y, 2) valable
pour (x,y,z) € X> que I'application:

Fix(g) x Z — R
(€, n) = Be(o"p, p)

est continue en la variable £, invariante par ¢ (Le. Be(pp,pq) =
By c(op, ©q) = Be(p,q)), et ne dépend pas de p puisque

Be(pq, q) = Be(wq, op) + Be(pp, p) + Be(p, @)
=Bq,p) +Be(p.p,p) +Be(p,q)
=Be(p.p,p).

En outre, comme 1l est remarqué dans [11], la relation de cocycle entraine
¢galement que 1’application ci-dessus est un morphisme en la variable n € Z,
puisque

n H
Be(¢"p.p) = > Be(d'p, " 'p) = Y " Bo—s-nelop,p) = nBe(p . p,p).
k=1 k=1

Cette remarque, élémentaire, est a la base des démonstrations des résultats

de ce paragraphe, et en particulier de l'équivalence des classifications des
bouts de S.

1.2 LLES COUPLES DE POINTS JOIGNABLES DE X(00)

1.2.a CRITERES GENERAUX Ftant donnés p € X et g € X, il existe une
unique géodésique joignant ces deux points. La situation est différente lorsque
I'on considere deux points £,n € X(oo) distincts. Il peut ne pas exister de
géodésique les joignant, en exister une infinité, ou bien en exister une et une
seule. Les deux premiers cas sont liés a la présence de courbure sectionnelle
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nulle, le dernier a celle de courbure sectionnelle suffisamment strictement
négative dans X.

Le résultat élémentaire suivant, bien connu, précise une condition nécessaire
et suffisante pour joindre deux points a 'infini.

LEMME 1.5. Soient £,1 deux points distincts de X(0o) et p € X. Les
conditions suivantes sont équivalentes :

1) Il existe (au moins) une géodésique joignant £ a 7.

it) 1l existe deux suites (x,) et (y,) de points de X convergeant respectivement
vers € et n, une suite de géodésiques (o,) ou o, joint X, a y,, et une
constante C = C(E,n) telles que

d(p,o,) <C.

En outre, lorsque les points & et n sont joignables, pour tout point p € X
et pour toute suite de points (p,) de X convergeant vers £, on a

n—l}I-‘yI}OG Apn (UPnP(O)7 apnn(o)) - O .

Démonstration. 1) = 11) est évidente ; réciproquement, notons z, € g,(R)
I"unique point qui réalise le minimum de la distance de p a o,. I origine
de o, est prise en z,; par hypothése, 6,(0) reste dans un compact de 71X
donc, quitte a prendre une sous-suite, on peut supposer 7,(0) — v € T1X. En
notant zZ., = (V) €t 0 unique géodésique déterminée par les conditions
Ooc(0) = 2 €t G50(0) = v, 1l reste & voir que o (+00) = £ (Uargument
est le méme pour montrer que ..(—0o0) = 1n).

Soit t € Ry ; par continuité de ’exponentielle au point z,, et au point p
et parce que x, — &, 1l existe ng tel que n > np entraine

max{d(z,, xn);d(p,x)} > 1 et
max{ sup d(oo(s),,(5)); sup d(opx (5),0p:(s))} < 1.
sE[0,1] SE[0,1]
La fonction (convexe) s+ d(0,(5), 0y (5)) est décroissante sur [0, d(z,,x,)]
donc on a d(o,(1), o, (1)) < C et par I'inégalité triangulaire, d(c. (1), 0,¢(f)) <
C+2.

St z, € 0p,(R4) est le point qui réalise la distance de o,,,(R;) a p,
7, reste dans un compact et il suffit d’appliquer la premiere inégalité du
cosinus. [

On rappelle maintenant les propriéiés géométriques qui seront utiles par
la suite pour étudier I'existence du produit de Gromov entre deux points
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du bord. La plupart des propriétés établies dans ce paragraphe sont connues
des spécialistes. Elles peuvent €tre comparées en particulier au lemme de la
page 54 et a 'exercice 3.9 de [4] ou encore aux résultats obtenus dans [9].
Nous en donnons cependant une présentation indépendante — et différente
— dans un souct d’unification du texte, en s’appuyant sur ’hypothe¢se de la
dimension deux. Cette derniere permet de dégager des arguments de nature
topologique, et de décrire avec précision le comportement des horospheres les
unes par rapport aux autres.

Notons que si &, € X(oo) avec £ # n, il existe p € X tel que
Zy(€,m) < m. Dans le cas contraire, pour tout p, les rayons o,c et o,, se
concaténent en une géodésique d’extrémités £ et i et deux telles géodésiques
bordent une bande plate; la métrique sur X serait plate. On dit alors que
& € X(oo) est entre n et £ s’il existe un point p tel que

ép(f, fl) =} 4}9(5,: n) — 4;(57 77) < 7.

Pour &,n € X(o0) et p € X vénfiant Z,(§,n) < 7, on note

D(p;&,m) ={ope @) ; t >0, £ est entre £ et 5}

le secteur issu de p d’extrémités £ et 7.

LEMME 1.6 ([9]). Soient £, deux points distincts de X(oc). On suppose
qu’il n’existe pas de géodésique joignant ces deux points. Alors :

1) pour tout point p € X vérifiant Z,(§,n) < 7, la courbure totale du
secteur D(p; &, 1) est bornée,

11) deux points distincts entre £ et 1 ne peuvent pas étre joints par une
géodésique.

Démonstration. 1) C’est une application directe du lemme 1.5 et de la

formule de Gauss-Bonnet.

i) Si £',n' sont entre £ et 5 et s’il existe une géodésique o joignant &’
et 77/, cette géodésique rencontre o, e} O ope(n),opm(ny €N deUX points pour n
assez grand puisque les images de o et o, restent dans D(p;&,n) par ii) du
lemme 1.5. Contradiction. [

Nous donnons également un critere d’existence d’une (ou plusieurs)
géodésique(s) joignant &£,77 € X(oo) en fonction des positions relatives des
horospheres centrées en £ et n respectivement. Pour n € X(o0) et p,g € X,
notons
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H(00) = {€ € X(0) 5 t — B, (0,¢(1), p) est majorée sur Ry }.

Chaque €lément de H,(occ) est donc représenté par un rayon géodésique
restant dans une horosphére fixe centrée en 7. Dans le cas euclidien, pour tout
n € X(co), 'ensemble H,(c0) est un demi-cercle ; a contrario, H, (o) = {n}
pour tout 77 € X(oc) lorsque K < —a? < 0 ou lorsque X satisfait I’axiome
de visibilité, d’apres le résultat qui suit.

LEMME 1.7. 1) H,(o0) ne dépend ni de p, ni de q,

1) H,(o0) est un intervalle fermé I = [y, 1] C X(00) contenant 1,

i) si m # ., les seuls points de I qui peuvent éventuellement étre
joints par une géodésique o sont 1y et 1, et dans ce cas ¢ borde un
demi-plan plat,

iv) si & E;, alors B, (c,(1),p) — —oco lorsque t — +oc.

Si H,(t) désigne I’horoboule centrée en 7 dont le bord contient o,,(7),
on a encore H,(00) = (V5o Hy(®) €t (Vo Hy(?) ne dépend pas de p € X.

Démonstration. 1) L'indépendance en p et g résulte directement de
I’'inégalité

’BW(OQ1f(t)7p1) - BT}(O-QZE(ILPZ)‘ < d(Pl;PZ) + d(qla 42)

qui est une conséquence directe de la convexit€é de ¢ +— d(o,c(1),0,(2)
appliquée successivement a ( =1 et £.

1) Il résulte de 'indépendance en p et g que ﬁn M X(oco) ne dépend
pas du choix de I’horoboule H,, centrée en 7. De plus, cet ensemble est un
intervalle fermé [ny,7,]; en effet, si 7 — B(¢) est une paramétrisation C! non
singuliere de I"horosphere centrée en 7 passant par p telle que 3(0) = p, les
applications qui a t € Ry associent 4(5(0),('7pﬂ(,)(0)) et Z(—B(0), Tpp—n(0))
sont croissantes par convexité de "horoboule; comme d(p,3(=f) — +oo
lorsque t — 400, on a {8(1),B(—0H} — {m,m} et, par convexit¢ des
horoboules, si I = [n,1,] est Uintervalle contenant n et si £ € I, alors
ope(Ry) C Hyy. Amnsi, Hy(oo) =1.

i) Si o est une géodésique qui joint deux points distincts & et &
de [m,n2], la fonction t — B,(o(f),p) est convexe majorée sur R
donc constante; ¢ est alors une horosphere (et une géodésique) donc
{o(+x),0(—00)} = {m,m} et ¢ borde un demi-plan plat. En effet, si
th # t, le triangle (a bords géodésiques) (n,o(t1),ot2)) ayant deux angles
droits est nécessairement plat.
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Par conséquent, deux points de |7, 72[ ne peuvent pas €tre joints par une
géodésique.

1v) Cela résulte immédiatement du fait que, pour toute horoboule H,,
centrée en 7, 1’ensemble ﬁn N X(co) = [n1,72] ne dépend de H, que par
son centre. [

COROLLAIRE 1.8. Soient &1,& deux points distincts de X(oo); les
conditions suivantes sont équivalentes :

1) il existe au moins une géodésique joignant & a &,
i) il existe une horosphére OHy centrée en & et une horosphére OH,
centrée en & vérifiant §0H, NOH, > 2.

En outre,

u) si & et & ne peuvent pas étre joints par une géodésique, alors
He, (00) N He, (00) # O,

iv) i &y et & peuvent étre joints par une géodésique et He (c0)NHe, (00) # &,
alors toute géodésique joignant & et & borde un demi-plan plat.

Démonstration. 1 implication i1) = 1) est prouvée par P. Eberlein dans [9]
et est obtenue en cherchant un point critique sur ¢, #[ de 1’application
s = Be (aa(s); aq(9), ol s — ay(s) (¢ = 1,2) est la paramétrisation par
longueur d’arc de I’horosphére OH; et o (f), o (') € OH1 N OH,.

1) = 11): supposons que toute horosphere centrée en £ rencontre toute
horosphere centrée en &, en au plus un point et qu’il existe une géodésique o
reliant & a &, orientée de & a &. Soit p = (%) les horospheres
OH, et OH, passant par p centrées en £ et & respectivement admettent
le méme vecteur tangent unitaire v en p; par convexit€é des horoboules,
la géodésique o, vérfiant ¢,(0) = p et 5,(0) = v sépare X en deux
composantes connexes ouvertes, I’une contenant 04, \ {p}, I'autre dH,\ {p}.
On a par conséquent

(L He (00) N He,(00) = 0y (+00)
ou
(2) ,H& (OO) M /ng(OO) =d.

Le cas (1) entraine par convexité des horoboules que o,(R4) = OH1NOH,;
il est donc a exclure. Remarquons toutefois que, dans ce cas, tout triangle de
sommets (o,(1),p,&;) est plat et ¢ borde un demi-plan plat.
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Si (2) est réalisée, et si t; > 1y, toute horosphere centrée en £, passant
par o(f;) rencontre nécessairement 07, en au moins deux points. En effet,
si 3 est une paramétrisation d’une telle horosphere et si He (c0) = [, 71,
alors 3(t) — m & He,(00) et B(—1) — 1y & He,(o0) lorsque t — +oo; on a
donc montré 1) = 11).

i) résulte directement de la discussion du cas (2) précédent et 1v) de la
discussion du cas (1). [

REMARQUE. Deux points distincts du bord non joignables peuvent admettre
des horospheres qui ne se rencontrent pas dans X, mais dont I’adhérence des
horoboules est constituée d’un point sur le bord exactement (voir la section 2).

1.2.b LE CAS DES SURFACES QUOTIENT On suppose maintenant qu’il
existe I' C Is(X) un sous-groupe d’isométries de X agissant proprement
discontintiment et sans point fixe sur X et on suppose que la surface quotient
S = X/T est complete, orientable, non-compacte, de type fini et n’est pas un
cylindre topologique (autrement dit I" est finiment engendré et T" % Z). On
note :

— m: 71§ — § le fibré unitaire de S ;

— Ar =T.p\T.p C X(co) 'ensemble limite de T’ (qui ne dépend pas
de p € X);

— O(') le complémentaire de 1’ensemble limite dans X(oc), constitué
d’une réunion dénombrable d’intervalles ouverts (éventuellement vides), plus
précisément 1’orbite sous I' d’un nombre fim d’intervalles, puisque S admet
un nombre fini de bouts.

Le lemme suivant interdit les phénomeénes de périodicité de la métrique
dans le secteur D(p;&,1n):

LEMME 1.9 ([9] Prop. 2.2). §’il existe un point £ € Ar entre £ et 7,
les points £ et n peuvent étre joints par une géodésiqiie.

Démonstration. Raisonnons par I'absurde: si &' := lim,~,.p, on peut
choisir p € X et € > 0 tels que la courbure soit strictement négative sur
B(p,€) et B(vy,.p,€) N B(Yy .p,€) = & pour ~, # 7,. Pour n assez grand,
on a B(v,.p,e) C D(p,&,n) et cela contredit le point i) du Lemme 1.6. [

Par conséquent, seuls les couples de points dans 1’adhérence d'une méme
composante connexe de O(I') peuvent ne pas €tre joints par une géodésique.
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REMARQUE 1.10. I résulte directement du lemme précédent que tout point
1 € Ar posséde une base de voisinages bordés par des géodésiques.

Sotent ¢ € I'\ {Id} et p € X; P. Eberlein et B. O’Neill ont montré que
chaque point d’accumulation dans X de la suite bilare (¢".p),cz est un
élément de X(oo) fixe par . L'hypothese de la dimension deux permet une
analyse plus précise de ces points fixes.

LEMME 1.11. La suite bilatere (" .p.cz posséde au plus deux points
d’accumulation. Elle en possede deux distincts qui peuvent étre joints par une
géodésique si et seulement si ¢ est axiale. En particulier, si elle ne posséde
qu’un point d’accumulation, ¢ est parabolique.

Démonstration. Supposons que la suite (¢".p),cz admette deux points
d’accumulation 1; et 7, joignables par une géodésique . Soit ¢ un point
de o et § une géodésique transverse & ¢ en g. Pour tout n € Z, la géodésique
@" oo a pour extrémités 7; et 7, et rencontre donc § en un point g, (avec
go = ¢). On distingue trois cas:

1) La suite (g,) admet un point d’accumulation ¢.. qui appartienta X. e
segment géodésique [go, @ - o] s€ complete en une géodésique d’extrémités
M, 72 qui est stable par ¢ ; I'isométrie est donc axiale.

2) La suite (g,) s accumule sur les deux points distincts §(—o0) et d(+o0).
Puisque deux géodésiques distinctes joignant 7, et 7, bordent nécessairement
une bande plate, la métrique sur X est plate, ce qui n’est pas.

3) La suite (g,) converge vers d(+00) ; par I’argument précédent, o borde
un demi-plan plat. Supposons alors ¢ .q ¢ o(R) et notons r la projection de
¢.q sur o(R); le triangle de sommets g,r et @.q est envoyé par ¢ sur
un triangle semblable ce qui entraine que ¢,¢.q,?.q sont sur une méme
géodésique et que ".g converge vers un point distinct de 7; et 72, ce qui
n’est pas. [Visométrie ¢ translate par conséquent la géodésique o et toutes
celles qu lw sont paralleles.

De ce raisonnement, on déduit aussi que la suite (¢".p)q.cz ne peut pas
posséder plus de deux points d’accumulation; en effet, s’'il en existait trois,
deux d’entre eux seraient joignables mais la discussion ci-dessus prouve que
ces deux points sont les seuls points d’accumulation possibles! [

Dans la suite de ce paragraphe, nous nous concentrons sur le cas ol ¢
est un élément parabolique de T'. Le relichement de I'hypotheése K < —a?
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(a > 0) en K <0 peut entrainer I’existence de deux points d’accumulation
distincts 7, 12 € X(o0) de la suite (¢".p),cz. Le point 1) du résultat qui
suit a été établi par P. Eberlein dans [9]. ['existence dans le point 111) est un
résultat classique, valable en toutes dimensions. Nous en donnons une preuve
mdépendante qui s’appuie sur le lemme précédent et la remarque 1.4.

PrOPOSITION 1.12.  Soit @ € I' un élément parabolique vérifiant

lim @™ .p=m et lm o".p=1p#n.

n——+00

Alors,

1) tout élément entre 11 et 1 est fixé par @ on notera I = [n1,n]
Uensemble de ces éléments,

1) By (gp,p) =my, = —By,(op,p),

111) il existe un unique point 1 € I tel que @ fixe n et toutes les horospheres
centrées en 1. De plus, H,(c0) = 1.

Remarquons que:

1) Les points 771,12 € Ar sont joignables a tout point de /¢ puisque Ar
n’admet pas de point 1solé. 11 en résulte que I est stable par ¢ puisque,
dans le cas contraire, une géodésique joignant 7; et & € I° serait envoyée
par ¢ sur une géodésique joignant deux points de 7. Par conséquent, on a
aussi () =1.

2) L’élément ¢ ne fixe aucun point de [¢. En effet, supposons le contraire;
pour i = 1,2, considérons une géodésique ¢; joignant 7; et £ et choisissons
un point p; sur ¢;. La convergence de ¢~".p, vers 1 et de ¢".p; vers 1
entraine 1’existence de deux entiers positifs m et n tels que les géodésiques
@ "oy et ".o; se rencontrent dans X en un point ¢. Il existe alors deux
rayons géodésiques joignant g a &, et ceci est absurde. Ainsi, le point
(resp. 1) est un point fixe attractif pour 1’action de ¢ (resp. ¢~ ') non
seulement sur X mais aussi sur /.

Démonstration de 1.12. 1) Soit p € X et supposons qu’il existe £ €]ny, na[
tel que @& # £. Puisque 7; et 7 sont fixés par ¢, le point ¢& est entre &
et 77, et le rayon oy, se prolonge en une géodésique o d’extrémités & et & ;
d’apres le lemme 1.7 iii), on a & ¢ I puisque & et & sont joints par o, et
©(c) ne rencontre pas o dans X d’aprés le lemme précédent. La bande fermée
délimitée par o et ¢’ est un domaine fondamental D pour ’action de .
Comme la fonction ¢ — d(o(r),d'(t)) est convexe et tend vers +oc lorsque
t = +oo, 'infimum de la fonction distance de translation en restricion a
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o(R) est réalisé de méme que I'infimum de la fonction distance de translation
de ¢ sur D, donc sur X puisque D est un domaine fondamental. Ceci est
absurde puisque  est parabolique.

1) Pour pe X et n e Z, posons u, = d(p,¢"p); on a

By, (¢p, p) = lim{d(p™"p, p) — d(¢™"p, p)}
= lim{d(¢""'p,p) — d(@""'p, ¢ . p)}
= lirrln{un+1 — Upn )
= Tim(uy /)
= By, (p,¢p) = —By,(¢p.p) .-

La suite (uny1 —uy), converge donc vers By, (¢p,p) qui est aussi la limite de

ses moyennes de Cesaro: lim, =*, c’est-a-dire m,, d’apres la Proposition 1.3.

1) Par continuit¢ de & — Be(p.p,p), 1l existe i € I tel que

(*) BT](QOpap) =0.

Montrons que 7 vérifiant (+) est unique et ne dépend pas du point p
fixé. Fixons p dans un premier temps; s’il existait deux points 5 et 7’
vérifiant (), 'ensemble OH,(p) N OH, (p) contiendrait toute 1’ orbite de p
sous I"action du groupe cyclique < ¢ >, et puisque pp # p, les points 7 et 7/
seraient joignables, ce qui n’est pas. [Vindépendance de 7 par rapport & p
résulte de 'umicité précédente et du fait que B¢(pp,p) ne dépend pas de p,
constat¢ dans la remarque 1.4. L'égalit€ H,(occ) = [ résulte de ce que

{01, m} = @"Phez \ (¢"Phez et du fait que ¢ préserve les horospheres
centrées en 1. [

LEMME 1.13. 7 € Hy (o) N Hyy,(00).

Démonstration. Pour p € X fixé, et { = 1,2, soit J; C X(o0) la
composante connexe de X(oc0) \ {7, 0p,(—0cc)} qui contient ;. Pour ¢ > 0,
notons ¢, l'umque géodésique perpendiculaire a o,, en o,,(¢), vérifiant
0(0) = 7,,(1) et o,(c0) € J,. Montrons alors, par I’ absurde, que o,(—00) —
et a,(0) — 1 lorsque t — +o0.

La géodésique o,(R) étant tangente a I"horosphere OH, (0,,(1)) en o,,(1),
on a g(+o0) € I° par convexité des horoboules. I’ autre part, si ' > ¢, on a
op(—0) € |o/(—ox), m | (et de maniere analogue, o, (o) € [o,(00), 172]); dans
le cas contraire, o(R) et o,(R_) se rencontreraient en x et la somme des
angles du triangle de sommets (x, 5,(0), 5,(0)) excéderait . Par conséquent,
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o{—o0) converge lorsque ¢ — +oo. Notons 7., sa limite et supposons
T 7 N1- Les points 77 et 7., sont alors joignables et on a

lim chﬂ(t)(p; ?700) =0.

=400

Il existe donc #y tel que 2, )(p,7) < 3 ceci contredit le fait que
2 ) (P> O (—00)) = 5 €l N € [0(—00),7m1]. On montre de la méme

facon que o;(+0o0) converge vers 7;. O]

REMARQUE 1.14. Une question naturelle est de savoir si

sup Z(m, 1) = 7.

peX
Cette égalité est réalisée dans le cas des bouts exceptionnels de révolution et
elle entraine #,, (c0) NH,,(00) = {n} (voir la discussion a la suite de 1.17).

1.3 BOUTS DE S ET ISOMETRIES

Si ¢ est une isométrie parabolique vérifiant les hypothéses de la Proposi-

tion 1.12, I’ensemble ; correspondant forme une composante connexe de O(I).
D’apres [9], chacune de ces composantes connexes correspond a un relevé
d’un bour de S; par ailleurs, la surface S peut posséder aussi des bouts ne
correspondant & aucune composante connexe de O(I'). Pour plus de clarié,
nous rappelons brievement la définition et la classification des bouts de S
donnée par P. Eberlein (voir [9]):

DEFINITIONS 1.15. Un bout de S est la donnée d’une fonction Q qui a
chaque compact K C S associe une composante connexe de §\ K vérifiant
QK1) C QKy) st Ky O K.

Un voisinage ouvert U d’un bout €2 est un ouvert de § qui contient Q(K)
pour un certain compact K.

Une suite de points (p,), de S (resp. de courbes fermées (C,,),) converge
vers un bout £ si pour tout voisinage U de €2, tout point p, (resp. toute
courbe C,) appartient & U (resp. est contenue dans U) pour n assez grand.

Un bout est dit tubulaire s’il admet un voisinage homéomorphe a R x § .
Dans ce cas, on appelle paraméirisation tubulaire riemannienne de U un
systeme de coordonnées x : R% x §' = {(r,0)} — U dans lequel la métrique
sur U s'éerit dg? = dr* + G*(r,9)d6? ot G est une fonction continue des
deux variables et telle que pour tout 8, la fonction r — G(r,8) est deux fois

dérivable et convexe (K = —Gé < 0).
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Lorsque la fonction G ne dépend que de r, on dira que €2 est un bout
de révolution.

La surface § étant supposée de type fini, les bouts de S sont en nombre
fim1 et sont tous tubulaires. P. Eberlen montre qu'un bout & possede toujours
une paramétrisation riemannienne, et que chaque bout est en correspondance
biunivoque avec une suite de courbes fermées (C,), convergeant vers ce bout
et appartenant a une méme classe d’homotopie libre. Associons & un bout €2 :

1) les classes de conjugaison ' d’éléments de I, qui sont en correspondance
avec les classes d’homotopie libre de courbes fermées dont une suite con-
verge vers Q. On peut démontrer que Tg = {v.¢" v ' |y €T, neZ}
pour un élément ¢ € I' umique a conjugaison et a passage a l'inverse
pres ([9], prop. 4.4),

2) l'ensemble V(S2) des pomts v de 715 tels que, pour tout voisinage U
de Q, 1l existe typ > 0 avec o,([tg, +oco[) C U.

P. Eberlein propose dans un premier temps la classification suivante des bouts

de S (voir [9]).

CLASSIFICATION TOPOLOGIQUE DES BOUTS. Soit €2 un bout de S et (Cy)
une suite de courbes C™ par morceau, homotopiquement non triviales,
qui convergent vers Q. On a les 4 possibilités suivantes qui s’excluent
mutuellement :

(a) D'ensemble V(€2) est ouvert et il existe une suite de courbes (C,), de
longueur uniformément bornée,

(b) la suite des longueurs n’est majorée pour aucune suite de courbes (Cy),,

(¢) D'ensemble V() est d’intérieur vide et il existe une suite de courbes
(Cp)n dont la longueur est uniformément bornée,

(d) Densemble V(€2) n’est pas d’intérieur vide mals n’est pas ouvert et il
existe une suite de courbes (C,), de longueur uniformément bornée.

REMARQUE. Dans le cas (b), 'ensemble V(€2) est nécessairement ouvert
(voir [9]).

Si la métrique dans le bout est de la forme dg? = dr* 4 G*(r, 0)d6?, la fonction
longueur L définie par

2T
L(r) = / Gr,0d0 (> 0)
0
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est convexe et admet par conséquent une limite dans R U {+oc}. On peut
alors classer les bouts de § selon la nature de la fonction longueur:

CLASSIFICATION PARAMETRIQUE DES BOUTS. Soit Q2 un bout de S et L
la fonction longueur associée naturellement a la paramétrisation tubulaire de
Q. On a les 4 possibilités suivantes qui s’excluent mutuellement :

(') la fonction L est constante pour r assez grand,
(b)) la fonction L tend vers +oc,
(¢’) la fonction L est strictement décroissante et tend vers 1 =0,

(&) la fonction L est strictement décroissante et tend vers [ > 0.

P. Eberlein a montré que (a) = (a’) et (b) = (b’). 1l résulte aussi de
sa discussion que dans les cas (c) et (d), la fonction longueur est strictement
décroissante. Dans le cas des bouts de révolution, la relation de Clairaut
permet aussi de préciser que ces deux cas se distinguent par /| = 0 et
! > 0 respectivement; autrement dit (¢) = (¢’) et (d) = (d’). Ainsi, les
deux classifications précédentes sont équivalentes dans le cas des bouts de
révolution et P. Eberlein conjecture que cette propriété reste vraie dans le cas
général. La proposition C apporte une réponse positive a cette question.

Démonstration de la proposition C. Compte tenu de la proposition 4.5
de [9], 1] suffit d’ établir le

LEMME 1.16. Soit €2 un bout de S appartenant aux cas (c) ou (d). Alors
V() est d’intérieur vide (cas (c)) si et seulement si

27

[:= lim G(r,0hdd = 0.

r——4o00 0

Démonstration. Soit ;:]nl, 72| une composante connexe de O(I) associée
a Q et ¢ € I'g une isométrie parabolique laissant fixe point par point chaque
élément de I = [my,12] et vérifiant 5, = lim ¢"p et 5 = lim "p

n——0oc n——+oo

(si  est primitive, elle est unique a une puissance positive pres). Notons
1 I'unique point de [ tel que ¢ fixe toutes les horospheres centrées en 7
(lorsque I est réduit & un point, on a n = n; = 12). Avec ces notations, dire
que V(€2) est d’'intérieur non vide, ¢’ est dire que I est d’intérieur non vide.
La démonstration du lemme repose essentiellement sur le fait que

l:mw.
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Montrons cette €galité. Notons C, (pour r > 0) la courbe fermée 6 — (r,0)
(dans la paramétrisation tubulaire de €2). Cette courbe se releve en une
horosphere centrée en 1 que nous noterons dH, . Fixons alors un réel ¢ > 0
et un point p de OH, ; pour tout n > 1, le segment géodésique &, joignant
p a ¢"p a pour longueur d(p,"p) et on note r,(p) la plus grande valeur
du parametre r telle que ¢, N dH, # @. lLa fonction r — G(r,0) est
décroissante puisqu’elle est positive, convexe et que r — L(r) est bornée ; on

d n
a alors L(r,(p)) < (P,—QOP) < L(#). Puisque r,(p) — 400 lorsque #n tend
n

vers +oo, 1l vient I < m, < L(t); la valeur de ¢ étant arbitraire on a bien
I’égalité annoncée.

Utlisons maintenant la Proposition 1.12 1) et la remarque 1.4. Pour tout
ncZ,onanl =B, (pp = —B,"p,p); lorsque [ > 0, la fonction
q — By, (q,p)— By,(¢q,p) n’est pas bornée donc 1, # 1, ; en revanche, lorsque
/| =0, I'isométrie ¢ préserve les horosphéres centrées en 7, et 1; et l'on a
m = 1 = n d’apres la Proposition 1.12 iii). [

Nous pouvons adopter la

DEFINITION 1.17. Un bout Q de S est dit: cylindrigue dans les cas (a)
ou (a’), expansif dans les cas (b) ou (b’), parabolique simple dans les cas (c)
ou (¢’) et parabolique exceptionnel dans les cas (d) ou (d")

Pour terminer ce paragraphe, rappelons qu’a chaque composante connexe C
de O(T'), on associe naturellement un bout de §. En effet, s1i ¢ est un rayon
géodésique de X vérifiant o(400) € C, 1l existe un bout &2 de S tel que la
projection de ¢ sur § converge vers £2. Dans le cas contraire, il existerait un
compact K C X, une suite t, — 400 et une suite (7y,) d’éléments distincts
de T tels que ~,.0(¢,) € K ou encore o(t,) € ~, '.K. D’autre part, quitte a
extraire une sous-suite, on a v, 1.K — £ € A, ce qui contredit le fait que
o(+o00) appartient a C.

Dans [9], P. Eberlein a donné une description précise de cette correspon-
dance entre composantes connexes de O(I') et bouts de S, reliée a la nature
des éléments de I". En particulier, s1 ¢ est une isométrie parabolique excep-
tionnelle, les horosphéres centrées au point privilégié n se projettent sur les
courbes C, : 0 — G(r,#) introduites dans la démonstration précédente, et ces
courbes bordent un voisinage du bout, tandis que les courbes r — G(r,8), a
0 fixé, admettent un relevé qui est un rayon géodésique représentant ce méme
point privilégié. De plus, lorsque le bout est de révolution, les horospheres
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centrées en 1 (le point fixe privilégié) se projettent sur les paralleles et la
relation de Clairaut s’écrit f(v)cosf, = ! pour un rayon géodésique qu
se releve en un rayon représentant la direction limite. Lorsque v — +oo,
f(w)— 1l donc 0, — 0 et £ —ix,(,m) = 7 —20, — m lorsque v — +00
ce qui entraine H,, (c0) N Hy,(00) = {n} dans ce cas. Il semble que cette
derniere égalité reste vraie dans le cas général mais ceci n’est pas démontré
(voir remarque 1.14).

En revanche, on peut associer une isométrie axiale & un bout si et seulement
s1 cette 1sométrie fixe globalement 1’adhérence d’'une composante connexe de
O() et elle la fixe point par point si et seulement si le bout est cylindrique.
Enfin, une isométrie parabolique simple n’est reliée a4 aucune composante
connexe.

Ainsi, les couples de points qui ne peuvent pas €tre joints par une
géodésique sont dans 1’adhérence d’une méme composante connexe de O(I')
correspondant & un parabolique exceptionnel, ou, éventuellement, dans une
méme composante connexe de O(I') correspondant a un bout expansil ou
cylindrique.

1.4 AcTiON DE I SUR Ar

A

Notons Ar x Ar le produit cartésien de 1’ensemble limite, privé de la
diagonale. Nous précisons dans un premier temps la dynamique topologique
de I'action de I sur son ensemble limite :

LEMME 1.18. Soit n € Ap; il existe une suite (y,)nen et au plus deux
points 1o, 1 € Ar tels que pour tout point € € Ar \ {no,m}, on a
i 9,0 = B,

n——+0o0

En particulier, Uaction de T sur son ensemble limite est minimale.

Démonstration. Soit (%), une suite d’éléments de T telle que ~,.p — 7
lorsque k& — +o00. Supposons qu’il existe 79 € Ar tel que .m0 A~ n. 1l
existe alors une sous-suite -, := 7, telle que ~,.m0 — 1’ # n. Le point
7o est joignable a tout point de Ar sauf peut-étre un point 7, et dans
ce cas 7,7, bordent tous deux une méme composante connexe associée
a un bout parabolique exceptionnel. Soit ¢ une géodésique joignant 70 a
£ e Ar\ {no,m} et V() un voisinage fermé de 5 dans X bordé par une
géodésique. Supposons que ~v,£ A 1 ; quitte a extraire une sous-suite, on peut
supposer que v,& — 0" # n. La suite de géodésiques o,(R) := 7,(c(R))
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rencontre nécessairement I'intérieur de V() pour n assez grand puisque
Yn-0(0) = 1 et ses extrémités sont en dehors de V(n) puisque 7’ et n” sont
distincts de n. Donc, pour n assez grand, les points d’entrée et de sortie
de o, dans V sont conjugués; ceci est absurde. Conservons les notations
précédentes; pour montrer la minimalité, 1l suffit de montrer que la trajectoire
de tout point £ € Ar sous I'action de T" rencontre V(1) NX(oc) pour tout point
1 € Ar. Fixons ce dernier point ainsi que V(1) et soient 79,7 les deux points
éventuellement définis par la discussion précédente. Si £ € Ar\ {m, 71}, 0n a
{7.€; n e N}NV(n) # @. Si les deux points 7 et 77; existent effectivement
et si ¢ est une isométrie axiale quelconque, ({no, m })N{no,m} = &, donc,
pour i = 0,1, on a {(yy)mi ; n € N} NV(n) £ @. Sl nexiste quun
seul point 79 tel que ~,.mo 4 7, le raisonnement précédent vaut encore en
choisissant une isométric ¢ qui ne fixe pas no. [l

REMARQUE 1.19. On déduit sans difficulté de la minimalité de 1 action
que toute paire de points (£,7) € A est I'-duale, ¢’est-a-dire qu’il existe une
suite (,) d’éléments de I' telle que pour tout point p€ X, ona ~,.p =&
et v 1.p — 5. Cest en général cette propriété de T'-dualité qui permet
d’obtenir la mimimalité de I'action de I' sur son ensemble limite (voir [10]
Prop. 1.9.13 et [12]).

Soit v une isométrie axiale et ¢ un axe orient¢ de ~. Les points de
X(o0): o(£o0) = lim, 2o 7" . p ne dépendent pas de 1’axe choisi et on les
note v+ . On déduit du résultat précédent le

COROLLAIRE 1.20. A ={(y*,v7); v isométrie axiale} est dense dans
Ar X Ar.

Démonstration [1]. 11 suffit de montrer la densité dans Ar §A< Ar. Soit
U et V deux ouverts non vides de Ar, d’intersection vide. Soit v, le point
fixe attractuf d’une isométrie axiale. D’apres le lemme précédent, I’ orbite sous
I' de fyg' rencontre U. Elle est constituée de points fixes atiractifs donc 1l
existe ~y isométrie axiale telle que v~ € U. Soit g € T une isométrie dont
les points fixes ne sont pas ceux de . Pour n € N assez grand, les deux
points fixes attractif et répulsil de 'isométrie axiale a := +"gy™" sont dans
U. On construit de la méme maniére une isométrie axiale £ dont les deux
points fixes sont dans V. Pour m assez grand, on a a™(V) C a™(U°) C U et
b"(U) C b™(V°) C V. Par conséquent, a"b™(U) C U et a™b™(V) C V donc,
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par le théoreme du point fixe, I'isométrie axiale a”b™ admet un point fixe
dans U et un point fixe dans V. [0

REMARQUE 1.21. Une isométrie est dite axiale hyperbolique si elle admet
un axe qui ne borde pas de demi-plan plat. Les seules isométries axiales qui
ne sont pas hyperboliques sont les relevés des rotations d’angle 2knw (k€ Z)
dans les bouts cylindriques (pour la paraméirisation tubulaire riemannienne).
Ainsi, dans I’énoncé du corollaire 1.20, on peut se restreindre aux isométries
axiales hyperboliques. De ce corollaire, on déduit alors, comme dans [10],
Prop. 4.5.15, le lemme de fermeture: si € > O est assez pelit, §’il existe
U, C 115 voisinage de v de diametre inférieur ou égal a € et t € R tel que
g:(v) € U, on peut trouver v’ € Ue et ¥ € [t —e,t+ €] tels que g (V') =’
Ce lemme de fermeture est utile pour démontrer le Théoreme A.

2. PRODUIT DE GROMOV ET BIRAPPORT

2.1 UNE PSEUDO-DISTANCE SUR LENSEMBLE LIMITE

Le produit de Gromov de deux points g et r de X vus d’un point p est
la quantité positive

1
@ = 5 (dp, @) +d(p,r) — diag, )

L’interprétation géométrique est la suivante : s1 S,(g) et S,(r) sont respective-
ment les spheres de centre g et r passant par p, le segment géodésique o,
rencontre S,(g) U S,(r) en deux points x,y et 'on a (g]r), = d(x,y)/2. 1l
résulte de I'inégalité triangulaire que 0 < (g|r), < d(p,0,); d’autre part,
pour tout v € Is(X), on a (yg|yr)p = (q|r)p.

Lorsque la courbure de X est majorée par —a”

avec a > 0, on peut
prolonger de fagon continue le produit de Gromov sur X(oo) x X(oo) \
Diagonale , prolongement dont I'interprétation géométrique est la suivante: si
£ et £ sont deux points quelconques de X(oc¢), la demi-longueur du segment
géodésique (££') N He(p) N He(p) vaut (£]€7),. D’autre part, 1’application

D, X(oo) x X(co) — R
e—fl(ﬂ’?)f' S1 E 7& N
0 sié=n

est une distance (voir [5]). L'intérét majeur de cette famille de distances
(indexée par p € X) est quelle permet de définir une structure conforme

(&n)H{
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sur X(o0). En effet, les isométries de X agissent comme des transformations
conformes sur (X(oc),D,), comme il résulte de la formule des accroissements
finis :

(AF) Dy(v.£,7.8) = W ©* 1/ (E€)]N* D€, €,

le facteur conforme en £ € X(oc) pour I'action de ~ € Is(X) sur le bord étant

@) i= lim 22OETE) o)
&= Dp(€, &)

comme 1 résulte de la formule de cocycle vérifiée par les fonctions de
Busemann (voir encore [5] pour I'intérét de considérer une structure conforme
sur le bord).

Dans notre contexte, la présence de bouts cylindriques ou paraboliques
exceptionnels produit des phénomenes singuliers que nous allons préciser.
Toutefois, 1l est possible de construire par un procédé analogue une famille
d’applications (D,),cx continues sur Ar x Ar, en définissant un produit de
Gromov a valeurs dans RT U {+o0o}. Pour p fixé, 'application D, n’est
pas une distance sur 1’ensemble limite mais satisfait encore une inégalité
des accroissements finis, puisque cette derniere se déduit mécaniquement des
propriétés de cocycle et d’invariance des fonctions de Busemann, valables sans
restriction sur la courbure.

Démonstration du Théoréme B. Dans le courant de la démonstration, £, &’
désignent deux points distincts de Ar, et (g,)., (rn), deux suites de points
de X convergeant respectivement vers £ et £ ; on notera alors ¢, 1'unique
géodésique joignant ¢, a r,. Lorsque £ et £ bordent une composante connexe
de O(T") associée a un bout cylindrique ou parabolique exceptionnel, ¢,(R)
peut s’accumuler sur le bord a U'infini. Ce phénomene nous contraint de
considérer deux cas, dans chacun des lemmes qui suivent. Dans le cas ii)
de chaque lemme, nous sommes tenus de supposer que les points g, et ry,
restent a [’extérieur des horoboules centrées respectivement en £ et £'. Un
raisonnement élémentaire dans le cas euclidien permet de se convaincre que
cette hypotheése est indispensable. Toutefois, elle n’altere pas la propriété de
continuité¢ du produit de Gromov sur 1’ensemble limite.

LEMME 2.1. Supposons que & et &' sont joignables par une géodésique o .
Si g est un point de o(R), alors la longueur du segment géodésique
o N He(p) N He(p) vaut

[ = Be(p,q) + Be(p,q).
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Cette longueur ne dépend ni de la géodésique choisie reliant & a &', ni du

point g sur cette géodésique. De plus :

1) Si la géodésique o (toute géodésique o) joignant & a &' ne borde pas
de demi-plan plat, alors ((qn|rn)p)n converge vers 1/2.

1) Si la géodésique o borde un demi-plan plat et si les points g, et ry

restent a ’extérieur de ce demi-plan plat, ((qn|rn)p)n converge encore
vers 1/2.

Démonstration. 1. indépendance de [ par rapport a la géodésique o vient
directement de ce que deux géodésiques joignant les deux mémes points a
I'infini bordent une bande plate et I’'indépendance par rapport au point choisi
sur la géodésique résulte directement de la propriété de cocycle satisfaite par
les fonctions de Busemann.

Fixons deux horoboules disjointes H et H’ basées respectivement en ¢
et &, telles que p est extérieur a ces horoboules. Notons H (resp. & et i)
la longueur de o N (H UH) (resp. [p&)N(HUH) et [pH N (HUH).
Posons (¢|¢"), = h+ A — H et remarquons que ce nombre est indépendant
du choix des horoboules H et H' et de la géodésique o (lorsque plusieurs
choix sont possibles).

Posons x = [p)NIH et X' = [p¢HNIH’. Comme g, — £ et r, — £, pour
n assez grand, les segments géodésiques [pg,] et [pr,] coupent respectivement
OH et OH' en x, et x, et 'on a x, — x et x, — x'; par conséquent
d(p,x,) — d(p,x) = h et d(p,x,) — d(p,x") = I'. De plus, pour n assez
grand, le segment [g,r,] coupe les horospheres dH et 0H' et I'on pose
[¥n y;;] = [gnral N (H U H,)C'

1) La géodésique ¢ ne borde pas un demi-plan plat. 1l existe R > 0 tel
que ¢ ne borde pas de bande plate de largeur > R; on note R, la borne
inférieure de ces réels R. Le lemme II1.3.1 de [2] montre alors que pour tout
e > 0 il existe dans X des voisinages U de € et U’ de & tels que tout point
de U peut étre joint a tout point de U’ par une géodésique passant i une
distance inférieure & R, +¢ de ¢(0). On fixe € > 0; pour n asssez grand, on
a donc d(lg.r.],c(0)) < R, + €. Ainsi, le segment géodésique |[g,,r,| reste
dans un e-voisinage de la bande plate de largeur maximale bordée par o (si
celle-ci existe); le choix de e étant arbitraire, on conclut que d(y,,v,) — H
lorsque n — +o00.

i1) La géodésique ¢ borde un demi-plan plat. Elle se projette alors sur la
surface en une géodésique périodique bordant un bout cylindrique. Il existe
alors 1 entre £ et & tel que H N X(c0) = [£,7] et H N X(oo) = [n, &£'1.
I’hypothese faite sur g, et r, entraine que ¢,(R)Na(R) = & et par conséquent
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la suite (d(p,c,(R))), est bornée. Par le théoreme d’Ascoli, la suite o, est
relativement compacte et ses valeurs d’adhérence sont des géodésiques joignant
£ et £’ restant a distance bornée de p. Ce dernier point, ajouté a un argument
élémentaire de géométric euclidienne, montre que d(y,,y,) — H lorsque
n— +00.

En conclusion, on a d(p,x,) + d(p,x.) — d(y,,y,) = h+ h' — H lorsque
n — +o0. Il nous reste & montrer que d(x,, q,)+d(x), ) —d(Vu, gu) —d(,, 1)
tend vers 0 lorsque n — +o0o. Puisque (g,), converge vers £, la suite de
fonctions (x,y) — d(x, g,) — d(y,g,) converge uniformément sur les compacts
vers Be(.,.); en reprenant les deux cas ci-dessus et en remarquant que x, et
yn appartiennent & OH' on vérifie que d(x,,q,) — d(v,,g,) tend vers 0. Il en
est de méme pour d(x,,q,) — d(,, y).

Notons que par définition (£|£'), ne dépend pas du choix de H et H’. On
peut par conséquent s affranchir de la condition H NH' = & ; en particulier,
lorsque OH et OH' passent toutes les deux par p, on retrouve la définition
«classique », & savoir que (£|€), est égal a I’opposé de la demi-longueur du
segment géodésique (EENNHNH' .

Lorsque £ = n; et £ = 7, sont les points fixes respectivement répulsif
et attractif d’une isométrie parabolique exceptionnelle ¢, ils ne sont plus
joignables de sorte que (v ]72), ne peut pas étre défini comme précédemment.
Pour tout ¢+ > 0 et i = 1,2, on note H;(¢) I’horoboule centrée en n; et située
a distance 7 > 0 du point p et 0H;(r) I’horosphere qui la borde. Avec ces
notations, on a le

LEMME 2.2. Soient (g,), et (r,), deux suites de X convergeant respec-
tivement vers 11 et .
1)  Supposons Hi(s) N Ha(t) # O pour tous réels positifs s et t. Alors,
nlil_il_loo((hlrn)p = +00.
) Supposons a contrario que ty = sup{t/H(0)NH,(t) # @} < +o0. Alors,
si, pour tout n, les points q, et r, sont extérieurs aux horoboules H1(0)
et Ha(ty), on a
lim (g,|r,), =t/2.

n—4oo

Notons que, de la propriété de cocycle, il résulte 1’égalité:
to = sup{s + t/Hi(s) N Ha(t) £ @}
et en particulier ty = sup{z/H(t) " H,(0) # &}.
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Démonstration. Si H1(s)NHz(t) # &, les horospheres dH (s) et 0H(r)
se coupent en un point unique noté x; on a alors

2gn|rn)p > d(p, qn) — dx, gn) + d(p, rn) — d(x, 1) ,
si bien que

.. B, (p,x)+ B, (p,x) s+t
> il ? mn % _ .

Lorsque Hi(s) N Ha(r) # & pour tous réels positifs s et r, on peut choisir s
et ¢ arbitrairement grands dans (x) d’ol ligl (gn|rn)p = +00. Le point 1)
n—r—4oc

est montré.

Supposons a contrario que ty = mf{t/H,(0) N Ha(t) = @} < +o0. En
appliquant () avec s = 0 et ¢ arbitrairement proche de #, par valeurs
inférieures, on obtient hlin Jg}of (gn|ra)p > 10/2.

Pour obtenir I'inégalité dans 1’autre sens, on utilise le fait que les points
qn. et r, sont extérieurs aux horoboules H;(0) et Ha(0) si bien que le
segment géodésique [g,r,] rencontre successivement JH(0) et IH,(t) en
G qGn,ry et rh. On a d(qu, Fn) = d(gn,q)) + d(ry, 1)) car les horoboules
H1(0) et Ha(ty) sont disjointes. Par ailleurs, chaque point ¢, étant extérieur
a 'horosphere #H,(0), la sphere de centre g, et de rayon d(g,,q)) rencontre
transversalement JH;(0) en deux points, l'un situé pres de g, lautre
étant égal a ¢//. Par convexité des spheres et des horosphéres, on a
d(p,q,) < d(q,,q,). De méme, si r := g,e(ty), on a d(r,r,) < d(r,,r)).
Ainsi

(gulra)p < (d(p,qn) — d(gns @) + d(p, 1) — d(ra, 1)) /2
< (d(p,ra) — d(r, 1)) /2
et donc limsup(g,|rn), < Bn,(p,r)/2 =1/2. [

n——4oo

On applique maintenant ces deux lemmes pour démontrer le Théoreme B.
Soient (£,), et (£)), deux suites de Ar convergeant respectivement vers ¢
et &,

Dans un premier temps supposons que £ et & sont joignables par une
géodésique o ; on peut alors supposer que toutes les paires de points (&, E))
sont aussi joignables par des géodésiques (qui ne sont pas nécessairement
uniques) puisque les seuls couples de points qui ne sont pas joignables bordent
une méme composante connexe de O(I'). On note ¢, une géodésique joignant
£, a & . Rappelons que £, — £ si et seulement si il existe des suites R, — +00
et ¢, = 0 telles que &, € U, R,,¢,) oul’on a posé
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U, R, e) = {x € X/x & B(0,R) et d(0,x(R),0,£(R)) < e€}.

Remarquons que pour tout 7, on peut choisir ¢, de telle sorte qu’elle traverse
I’ensemble U(&, R, €,)NX et ’on peut alors fixer un point g, € U(E, Ry, €,)Na,.
Quitte a modifier les valeurs de R, et ¢, on peut de méme supposer que
£ € U, Ry, €,) et choisir un point r, € U, Ry, €,) N o, ; sans perdre en
généralité on peut prendre ¢, et r, assez proches respectivement de &, et
&, de fagon a avoir (£,|€,), — (gn|7n), — 0. Comme R, — 400 et ¢, — 0
ona g, =& et r, — £ sibien que la suite ((gq|rs)y)n converge d’apres le
lemme 2.1. 11 en est de méme pour la suite ((£,]€))p)n-

Supposons a présent que £ et £’ ne sont pas joignables par une géodésique.
Puisque ces deux points appartiennent a Ar, ce sont nécessairement les points
fixes attractif et répulsif d’une transformation parabolique exceptionnelle.
Les points §,, , sont eux nécessairement extérieurs a [££'] et sont donc
joignables par une géodésique o,. Comme précédemment, on choisit des
points g, et r, sur o,, proches respectivement de &, et &, de facon 2 avoir
(x|&)p — (qn|r), — 0, et on peut supposer que ces points vérifient encore
les hypotheses du lemme 2.2. On conclut de la méme facon.

Enfin, si &, € Ay — £ € Ap, pour n assez grand, les points &, et £ sont
joignables par une géodésique o, et 1’on a, pour p, € 0,(R) quelconque,

1
(§n/€)o = > (Be,(©,pn) + Be(o,pr)) > d(0,0n(R)) = 400

lorsque n — +o00, ce qui acheve la preuve du théoreme.  []

Cette démonstration permet ainsi de proposer une définition explicite du
produit de Gromov entre points distincts de Ar :

DEFINITION 2.3, Soient £ et £ deux points de Ar et H(s) (resp. H'(?))
I’horoboule centrée en £ (resp. en £') et située a distance s > 0 (resp. t > 0)
de p.

D) (€l§)y =400 si £=¢,
2) Si £ et £ sont les points fixes attractif et répulsif d’une transformation
parabolique exceptionnelle, on pose

1
(€l€hy = 5 sup{s +1/HEONH' @) # o}

3) Si & et & sont joignables par une géodésique o, la longueur / du
segment o N H(0) N H'(0) ne dépend pas de ¢ lorsque plusieurs choix
sont possibles; on pose alors

(E‘gl)p - 1/2'
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On pose enfin

emClEY  sieL g

Dp(faf)_{o . (5’5,)[):+OO

pour (€,€) € Ar x Ar.

2.2  PRODUIT DE GROMOV ET BOUTS DE REVOLUTION

Donnons des exemples explicites o le produit de Gromov entre points
fixes attractifs et répulsifs d’une isoméirie parabolique exceptionnelle ¢ est
fim1 ou mfimi. D’apres ce qui précede, ce produit est la limite de la suite:

Pan = (0, 9".0) + (o0, 9™".0) — d(™".0,¢"0)
= d(0, p".0) + d(o, " .0) — d(o, p"".0)

L’interprétation géométrique de la quantité P,,, (dans le cas général) est
la suivante: si 'on note JH une horosphére basée au point privilégié 7, et
l, la longueur de I'unique lacet géodésique basé en un point o0 € w(OH) =
Im(u — x(u,0)) et qu fait n tours exactement avant de revenir en o, on a

an:ln+lm_[n+m-

Notons o, le lacet géodésique pointé en o qui fait # tours dans le bout
parabolique exceptionnel avant de revenir en o, v, la hauteur a laquelle o,
monte dans le bout et 8, = 40(x*(3%(0, 0), 6,(0)) I'angle entre la géodésique
~. €t I’horosphere centrée en 7 passant par o. Lorsque le bout parabolique
exceptionnel est muni d’une métrique de révolution écrite en coordonnées
locales dans un voisinage : dg®> = dv* + f(v)*du®, les relations entre v, et
n puis entre /[, et v, se déduisent directement de la version intégrée de la
relation de Clairaut (voir par ex. [0]):

’ Vn d”U def
—ftw [ Y ). (51)
T jovPEe e -
(S)
O Fw)dv def
b, =8 = .
" P -Pay o
EXEMPLE 1. f(v) = 1—|—% (v > 1); on trouve apres un calcul
élémentaire :

@) = V262 = D+ $/68 = D — D) (7 - 2Aresin (/)
0209 = 2v/& ((e+ D{5 — Arctan (2)} + V26— D) .
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EXEMPLE 2. f(v) = v14+e ¥ (v > 0); on trouve apres un calcul
analogue :

g1(x) = 205/2/1F e * Arctan(ex/zw 1_2—6_1) ,

G2(x) = e/2 (27T — 4Arctan (\/g)) +In (ﬁi‘\/—g) _

Il est immédiat de constater, pour les deux exemples, que ¢; et g, sont stricte-
ment croissantes et continues donc mversibles ; le développement asymptotique
de g2o0g; ! (fastidieux mais élémentaire) donne :

1, = 2nm + 253?31 + e(n)) (exemple 1),
I, = 2n7 +InG + 2v2) + e(n)  (exemple 2),

ot €(n) — O lorsque n tend vers +oo. Par conséquent, pour le premier
exemple, P, — +oo tandis que pour le second, P, — P, < +oo lorsque
n el m convergent vers +o<.

2.3 BIRAPPORT

Sotent &, &, &3, &4 quatre points deux a deux distincts de Ar. On souhaite
définir le birapport de ces quatre points, a la maniere de [14] par la quantité

Dp(€1,63)Dp(E2,E1)
Dy, E)Dy(82,83)

Lorsque aucun couple parmi les quatre points considérés ne borde une com-
posante connexe C de O(I') associée a un bout parabolique exceptionnel,
chaque quantit€ D,(&;, &) (i # j) est strictement positive donc 1’expression
précédente est bien définie. Lorsque deux des quatre points bordent la com-
posante C, chacun des deux est joignable aux deux autres (qui peuvent aussi
border une autre composante connexe du méme type). Par conséquent, dans le
birapport, un ou les deux facteurs du dénominateur (ou du numérateur) peu-
vent s annuler simultanément. Mais, s1 un des facteurs du numérateur s’annule,
les deux facteurs du dénominateur ne s’annulent pas, et réciproquement. Par
conséquent, on ne rencontre pas dans I'expression (B) de forme indéterminée
du type 2 et le birapport, a valeurs dans R™ U {400}, est bien défini.
Notons que ce birapport est indépendant du point base p et invariant par

I’action des isométries. Ceci résulte directement de la formule
1
€€y = €1y + 3 {Be(p',p) + Ber(p'.p))

valable pour tout (£,£') € (Ar)?.

(B) [£1,62,83,84] =
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Plus généralement, Iexpression (B) est valable pour quatre points distincts
de X deux a deux joignables puisque le produit de Gromov entre tous les
couples de points choisis parmi ces quatre points est fimi. Celte remarque

permet d’établir le lemme de J.P. Otal:

LEMME 2.4 ([14]). 1) Soit ~ une isométrie axiale. Alors, pour ftout
£ € X(oo)\ {vT,y~} et pour tout k € Z, le birapport [€,v(€), v,y ]
est bien défini et vaut € .

1) Soit ¢ une isométrie parabolique exceptionnelle qui fixe point par
point Uadhérence de la composante connexe I =|n,m| de OI) avec
1 = lmy— 1o @ . p. Alors, pour tout £ € X(co) \ I° et pour tout k € Z, le
birapport [£, *(€),m2,m1] est bien défini et vaut e .

Démonstration. FElle est la méme que celle de [14], en considérant pour
le point i) un axe quelconque joignant v+ & ~~ et pour le second point,
une horosphere joignant ¢~ := 1, & @1 := 1, sur laquelle o agit par
translation. [

3. NON ARITHMETICITE DU SPECTRE ET CONSEQUENCES

Nous nous contentons, pour éviter la paraphrase, de détailler les points
de démonstration qui different du cas de la courbure négative majorée, cas
traité dans [7] et [8]. Cela met en lumiere le phénomene de I’hyperbolicité
combinatoire (au sens de Gromov). En d’autres termes, il existe un rapport
étroit entre la topologie de S et les propriétés dynamiques du flot géodésique
sur la surface, indépendamment de la métrique choisie sur §: ¢’est la topologie
de la surface (I" est un groupe libre - les sous-groupes paraboliques maximaux
ne contiennent pas de facteur Z* avec k > 2) qui impose I’ existence de points
ou la courbure est négative et par conséquent le caractere hyperbolique des
systemes dynamiques considérés.

3.1 QUELQUES RAPPELS

On rappelle que le groupe ' est a spectre arithmétique si 1ensemble
{m, ; ¢ € T'} engendre un sous-groupe discret de R. Le spectre des
longueurs de T inclut par conséquent les longueurs asymptotiques dans les
bouts paraboliques exceptionnels (voir la preuve du lemme 1.16). Ce point
de vue justifie la terminologie d’isoméirie mixte adoptée dans [4], puisqu’une
isométrie parabolique exceptionnelle agit comme une translation sur une famille
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d’horospheres dont la courbure géodésique converge vers zéro et la longueur de
translation vers /, lorsque la suite des projections de ces horospheéres converge
dans le bout. Cet ajout, cependant, n’intervient pas de maniere essentielle dans
ce qui suit.

Fixons une origine o € X ; ’ensemble des horospheres de X centrées en un
point de Ar s’identifie & Hp := Ap x R} par I’application qui a 1’horosphere
OHe() = {x € X ; Be(x,0) =t} (1 € R) associe (¢,¢). Cette paramétrisation
est naturelle au sens ol I’action de I' sur cette famille d’horospheres se traduit
par ’action de T" sur son ensemble limite et par la multiplication par I'inverse
du facteur conforme, i.e.

Y&, 8) = (v.& Y ©) Y.

La densité d'une feuille F(n(v)) pour v € T1X tel que £ = g,(+x) € Ar
se traduit exactement par I.(£,1) = H.

Le résultat qui suit correspond au lemme 1.3 de [7] et se démontre sans
modification, compte tenu de la continuité de la fonction D = D, démontrée
dans la section 2.

LEMME 3.1 ([7]). Soit v une isométrie axiale ou parabolique exception-
nelle et v, une isométrie axiale n’ayant pas de point fixe en commun avec -y, .
On suppose qu’il existe une suite (rp).ex € N~ convergeant vers +oo et une
suite (S)pen € ZN telles que FpMs, + S,m., converge vers zéro. Alors,

( 5 Dz(vf’m/{))_

lim (7, D= (% DR )
2:7 12

n——4 oo

3.2 LA PREUVE DU THEOREME A

On suit pas a pas la preuve de [7] pour établir i) = 11) = iii) = 1).

1) = 11): on fixe une isométrie axiale ou parabolique exceptionnelle ~.
Le lemme 3.1 et la densité des orbites périodiques dans la partie récurrente
du flot géodésique (corollaire 1.20) donnent immédiatement

D*(vt,m)
D2(&,m)

La projection de I".(yT,1) sur le premier facteur étant égale a Ar, il suffit
d’examiner la section T.(y+t, )N (vT,RT) et d’établir

IGE(3 ) €meAr X A} CTGF D

p
{(fy+,exp{2Znim%}) . viaxiale, m; € Z, p € N*} C T.hy(v+).
i=1
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Ceci découle d’'une nouvelle application du lemme 3.1 a des éléments bien
choisis (pour faire apparaitre un birapport) et de I'utilisation du lemme d’Otal
qu relie birapport et spectre des longueurs. Cette preuve établit en particulier
la densité des feuilles qui se relevent en des horospheres centrées aux points
fixes des ¢léments axiaux, lorsqu’il existe une feuille dense.

1) = 1ii): on raisonne par I’ absurde en supposant simultanément I’ existence
d’une feuille dense pour F, et I'existence de deux ouverts U et V de €2
et d'une suite 7, - —oo tels que U N g, (V) = &. La densité des orbites
périodiques permet de trouver un élément périodique v € V de période T .
On wrouve dans I'orbite de v un autre élément (périodique!) w qui défimt
une feuille dense, cette derniere rencontrant U en #. En remarquant que u et
w sont dans la méme feulle fortement stable, on montre que pour ¢ voisin
de zéro bien choisi, g{u) € U Ng, (V).

1) = 1): la preuve est classique et repose encore sur la densité des
orbites périodiques dans la partie récurrente du flot, démontrée au corollaire
1.20. I'idée est de prendre un voisinage de petit diametre dans lequel on
revient apres tout temps ¢ > fp et dutliser le lemme de fermeture qui
entraine 1’existence d’une orbite périodique de longueur proche de .

Pour achever la preuve du Théoréme A, 1l reste a établir le

LEMME 3.2 ([8]). Tout sous-groupe discret non cyclique du groupe
Jondamental de § est a spectre non arithmétique.

Schéma de démonstration. Par |"absurde. On prend deux 1sométries axiales
v1 et v daxe o1 et oy respectivement qui se croisent (la propriété
d’intersection ne dépend pas du choix éventuel des axes). En posant g, = v},
on montre que m, —m, , — m.,. S le groupe T" est a spectre arithmétique,
la suite précédente est constante a partir d'un certain rang mais I'identité
Mg, — Mg, | = M, Ne peut jamais &tre satisfaite car les axes de g, et 7y, se
coupent. [
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