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L'Enseignement Mathématique (2) 52 (2006), 3-36

SI R LES SURFACES NON COMPACTES DE RANG LIN

par Gabriele Link, Marc PEIGNÉ et Jean-Claude PlCÂUD

ABSTRACT. We consider in this paper a complete noncompact riemannian surface S

of finite type, with nonpositive curvature. Ends of such surfaces were studied in 1979
by P. Eberlein, from topological and metrical viewpoints. We first prove that the two
classifications of ends arising in his work are equivalent, as he conjectured. Then, we
explain how it is possible to define the Gromov product of two points in the limit set
of the fundamental group of S ; the continuity property of this Gromov product and
the conformai action of isometrics on the limit set with respect to the Gromov product
allow us to investigate topological-dynamic properties of the geodesic flow and of the
horocycle foliation on S.

Soit S une surface non-compacte de type fini, i.e. L - tti(S) est libre

non abélien et engendré par un nombre fini d'éléments. On munit S d'une

métrique riemannienne g complète, de courbure K négative ou nulle et non
identiquement nulle. La surface (S, g) est alors de rang un, c'est-à-dire qu'il
existe une géodésique sur S n'admettant pas de champ de Jacobi parallèle
perpendiculaire. L'objet de ce travail est d'amorcer une étude géométrique
et dynamique des flots géodésique et horocyclique de telles surfaces. Nous

nous concentrons ici sur la dynamique topologique du flot géodésique et du

feuilletage horocyclique, en soulignant les propriétés nouvelles qui résultent
de l'absence de compacité. Le cas compact de rang un, sans restriction sur la

dimension, est étudié (de différents points de vue) dans [3], [12], [13].
On note X le revêtement universel riemannien de S sur lequel E agit par

isométries pour la distance cl induite par le relèvement de la métrique g. Cette

action se prolonge en une action par homéomorphismes respectant l'orientation
sur le bord à l'infini X(oo) de X. Soit 7 G T ; le déplacement de 7 est la

quantité positive ou nulle :

afy : inf d(x, 7 aç).

Lorsque la courbure est négative pincée: —b2 < K < —a2 < 0, il est bien

connu que le déplacement d'un élément hyperbolique est la longueur de
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la géodésique périodique sur S associée à sa classe de conjugaison et que
le déplacement d'un élément parabolique est nul. Lorsque la courbure est

seulement négative ou nulle, certains éléments paraboliques peuvent avoir un
déplacement strictement positif et jouer un rôle intermédiaire entre les éléments

hyperboliques et les éléments paraboliques classiques. Le déplacement d'un
tel élément parabolique (exceptionnel dans la terminologie qui suit) peut alors

être considéré comme une longueur de géodésique à l'infini associée à la

classe de conjugaison de cet élément parabolique (voir section 3.1).

On dira que L est à spectre arithmétique si le groupe engendré par
les déplacements des éléments de F est discret dans R et à spectre non-

arithmétique dans le cas contraire. On note 1Z la partie récurrente du flot

géodésique (fj,)rrK sur le fibré unitaire 7).S' et on rappelle que ce flot
est topologiquement mélangeant si pour tous ouverts U, V C 7Z, il existe

to — t0(U, V) > 0 tel que pour tout 70 R vérifiant f\ > to, on a q, U H V / 0.
D'autre part, à chaque point du ûbré unitaire u G T\X, on peut associer une

horosphère passant par le point base de u et centrée au point m(oo) G À"(oc)

déterminé par u. Ceci permet de définir une relation d'équivalence sur le

sous-ensemble F -invariant {u G T{X ; u{oo) G Ar} où Ar est l'ensemble

limite de L. La projection des classes d'équivalence correspondantes sur le

fibré unitaire TjS est appelée restriction à 7Z du feuilletage fortement stable

et on note bF+ cet ensemble. On dit que bF+ est topologiquement transitif
s'il admet une feuille dense.

Le principal résultat de cette note est une généralisation du Théorème A
de [7] et de la Proposition 2.1 de [8] que l'auteur établit dans le cadre

des espaces Cat(— 1). La formulation de ce résultat, dans notre cadre, est la

suivante :

THÉORÈME A. Soit S une surface non-compacte, de type fini, qui n 'est

pas homéomorphe à un cylindre, et qui est munie d'une métrique riemannienne
de courbure négative ou nulle. Alors :

i) T 7Ti(S) est à spectre non-arithmétique,

ii) le feuilletage SF+ est topologiquement transitif,

iii) le flot géodésique en restriction à Q est topologiquement mélangeant.

La non arithméticité ressort d'un argument de naUire purement topologique
et se démontre comme dans [8], sans modification. La démonstration consiste

par conséquent à établir l'équivalence des trois propriétés comme dans [7],
résultat qui présente un intérêt en soi. La difficulté est de montrer que les
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arguments cruciaux pour prouver l'équivalence sont encore valables dans notre

contexte :

Le premier de ces arguments est la minimalité de l'action de F sur son
ensemble limite, et son corollaire, la densité des orbites périodiques dans la

partie récurrente du flot géodésique. A notre connaissance, ces points n'avaient
été démontrés que sous l'hypothèse Axiome 1 (i.e. lorsque les couples distincts
de points de A(oo) peuvent être joints par au moins une géodésique).

Le second argument est l'existence d'un birapport continu, qui pennet de

lire le spectre des longueurs au travers l'action de T sur Ar. La construction
est tautologique lorsque l'on a prouvé le :

THÉORÈME B. Le produit de Gromov sur X x X se prolonge en une

application continue sur Ap X Ap à valeurs dans R ~
..." { • x \.

Notons que, dans notre cas, le produit de Gromov ne pennet pas de

construire, coimne dans [5], une structure confonne sur Ap, c'est-à-dire une

famille de distances (indexée par X) avec une action confonne des isométries.

La propriété de cocycle satisfaite par les fonctions de Busemami permet
toutefois de «mimer» cette action conforme.

La démonstration du Théorème B s'appuie sur une analyse précise des

bouts de S. Cette analyse a été menée par P. Eberlein dans [9], tant du

point de vue métrique que du point de vue de la dynamique topologique.
L'auteur étudie en détail l'incidence du relâchement de l'hypothèse K < —a2

(a > 0) en K < 0 sur la géométrie des bouts de S (voir les figures la
et lb ci-dessous qui illustrent le contraste entre la situation en courbure

négative pincée et la situation en courbure négative ou nulle). 11 montre

également que certaines propriétés nouvelles observées sont liées à la présence
dans le groupe des isométries de X, d'éléments paraboliques exceptionnels
(mixtes dans la terminologie de [4]), fixant point par point un intervalle
fermé d'intérieur non vide du bord à l'infini. Il apparaît aussi dans ce

travail deux classifications naturelles des bouts, l'une métrique, l'autre en
considérant les propriétés de dynamique topologique du flot géodésique dans

les bouts. P. Eberlein conjecture que ces classifications sont équivalentes. Nous

démontrons effectivement la

PROPOSITION C. Les classifications du point de vue topologique ou

métrique de P. Eberlein sont équivalentes.
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Rsure la

Deux types de bouts en courbure négative pincée

La rédaction de l'article est organisée de la manière suivante. La première
section introduit les notations et rappelle les principaux résultats obtenus

dans [9]. Leur présentation est en partie indépendante et nous avons inclus
certaines preuves qui nous semblaient plus élémentaires ainsi que des résultats

complémentaires utiles pour les sections suivantes. Nous rappelons ensuite les

deux classifications des bouts proposées par P. Eberlein afin de démontrer

la Proposition C. Pour clore cette section, nous établissons la minimalité de

l'action de F sur Ap.

L'objet principal de la deuxième section est de donner la preuve du

Théorème B. Ce résultat établi, nous illustrons par des exemples le cas où le

produit de Gromov entre deux points de l'ensemble limite est infini.

La troisième section, enfin, est consacrée à la preuve du Théorème Ä. Pour

éviter la paraphrase de [7] et |8|, nous rappelons brièvement de quelle manière

les arguments s'articulent autour des résultats des sections précédentes.

REMERCIEMENTS. Nous avons tiré bénéfice des remarques de Gérard

Besson et Jean-Pierre Otal sur une première version de ce texte. Jérôme

Depauw a programmé le calcul (exact) donné dans la section 2.2 et Jean-

René Licois a exécuté les illustrations qui accompagnent le texte. Nous les

remercions tous les quatre.
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Figure lb

Quatre types de bouts en courbure négative ou nulle

1. Surfaces de Cartan-Hadamard et quotients

l.l Notations et rappels

On rappelle les définitions et les résultats classiques concernant la géométrie
de X ; de bonnes références sont, dans l'ordre alphabétique, [2], [3], [4],
[9], [11]. Dans tout ce qui suit, X désigne une surface simplement connexe,
munie d'une métrique complète de courbure négative ou nulle. On fixe

une origine o dans X. Sauf mention explicite, les géodésiques de X sont

paramétrées à vitesse unité. Le bord à l'infini de X est par définition l'ensemble
des classes d'équivalence de rayons géodésiques asymptotes de X (i.e. qui
restent à distance bornée dans les temps futurs).

Fixons quelques notations :

- {., désigne la métrique sur X, il la distance associée et K la courbure

sectionnelie, négative ou nulle ;

- on pose X — XUX(öo) et on note Is(X) le groupe des isométries de X ;
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- IX (resp. T\X) —r X est le fibré tangent (resp. tangent unitaire) de X et

7T la projection canonique de IX sur X ;

~ pour p X et q (z X \ {/?}, apq est l'unique géodésique paramétrée

par longueur d'arc joignant p | q ; pour v T{X, <% l'unique géodésique

(complète) paramétrée par longueur d'arc vérifiant av(0) — ir(v) et o\,(P) — v ;

- si p £ X et itig G T\XP, Z(r. ir) G [0,7r] est la mesure de

l'angle non orienté entre e et m ; pour q, r £ X \ {p}, on pose alors

Zp(q,r) Z{àpq{0),àpr(0)).

La topologie sur X est celle des cônes, dont une base de voisinages

convexes est (C(<\ e \ où

C(v, e) {q £ X \ {p} ; Zp(y &„(0)) < e}

Pour chaque p £ X, l'application: v £ T{Xp <x„(oö) £ X(oo) est un
homéomoiplfisme. En particulier, (x„) £ X —> | £ A"(oc) si et seulement si

pour un point p P X (ou pour tout point p £ X), on a &pXn(0) -p- dv(0) et

d(p,x„) -p +oo (avec la convention d(p,x„) — -foo si x„ £ X(oo)).
On rappelle le fait géométrique suivant, établi dans [11], fondamental dans

le cadre Cat(0) et donc très utile ici :

Soient | et // deux points distincts de X(oc). S'il existe deux géodésiques

<7i et (72 joignant Ç à r/, ces dernières bordent une bande plate de largeur
d(aZR),(t2(R)).

REMARQUÉ 1.1. Nous ferons usage au paragraphe 1.4 des propriétés
élémentaires suivantes :

Soit // £ A(oc), V(ij) C X un voisinage de r/, an une suite de géodésiques

complètes avec cr„(0) p„ où pn est la projection d'un point p P X fixé sur

cr„(R). On pose (t„(og) - Çt, et ct„(-oo) r)„.

1) Si Ç„ —> i], il existe «o et to ne dépendant que de V(p) tels que pour
tout h > «o, a„([t0, i-oo[) C V(r]).

2) Si —> p et r)„ —> rj, il existe «o tel que pour tout n > «o, a„(R)C V(rç).

Pour Ç £ Z(oo), /», q £ X, on rappelle que la fonction de Busemami
centrée en £ est définie par

%C9,P) lim - d(z„,p)
Zrt-I î

et que les horosphères (centrées en £) sont les ensembles de niveau des

fonctions q -P ll.Xq. p) pour p fixé. On notera (/HZ p) l'unique horosphère
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centrée en £ G À"(oc) passant par p g f et 'He(p) — u
Lhoroboule centrée en § bordée par d'Hç(p).

La proposition qui suit regroupe des résultats de P. Eberlein [9] qui nous

seront utiles par la suite :

PROPOSITION 1.2. 1) Les fonctions de Busemann sont convexes; en

particulier les horoboules sont des sous-ensembles convexes de X.
2) Les fonctions de Busemann sont de classe C2 ; en particulier; les

horosphères admettent une paramétrisation Cl.
3) Une suite de points (f„)„ de X converge vers s§ G Z(oo) si et seulement

si la suite de fonctions de Busemann lf} converge uniformément sur les

compacts de X x X vers Bc. [_]

La proposition qui suit pennet de classifier les isométries de X, en

fonction de leur «déplacement»; elle est valable en toute dimension (voir
par exemple [2] II.3. et [4] lemma 6.6)

PROPOSITION 1.3. Soit p un élément de ls(X) distinct de l'identité. La

fonction d,- : p »G d(p,p(p)) est convexe sur X et on appelle déplacement
de (fi son infimum mv ; pour tout point p de X on a m,„ — lim d{p, ip"p)/n.

Trois cas peuvent alors se produire, qui s'excluent mutuellement :

i) dv atteint son minimum sur X et mv 0; l'isométrie iß fixe un point
de X et est dite elliptique,

ii) d,p atteint son minimum en un point pv G X (qui n 'est pas forcément
unique) et mv > 0.11 est équivalent de dire que ip agit par translation
de longueur mv le long de la géodésique (complète) passant par pv
et Une telle géodésique s'appelle un axe de cp et deux axes

quelconques 7n 72 de (fi bordent une bande plate de sorte que ip fixe
deux points de X(oo). On dit dans ce cas que ip est axiale.

iii) dv n'atteint pas son minimum sur X; on dit que p est parabolique. Il
existe alors un point f G X(oo) tel que

Les propriétés énoncées en ii) et iii) préludent à une autre classification des

isométries, en fonction de leurs points fixes sur le bord. Si p G Is(X) et p EX,

«—>+00

m
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il est bien connu (voir par exemple [11]) que tout point d'accumulation de

la suite (p" est un point fixe de p. On verra en particulier que,
en dimension deux, la suite (ip".p)„e/ n'admet que un ou deux points
d'accumulation sur le bord et que le point fixe £ satisfaisant (*) pour une
isométrie parabolique est unique. Cela pennettra d'affiner la classification

précédente en distinguant les isométries paraboliques qui fixent un unique

point à l'infini de celles qui fixent point par point un intervalle d'intérieur
non vide.

Remarque 1.4. Soit ip g Is(X), Fix(p) : X(oo) ; çtO f} et

p g X. Il résulte de la relation de cocycle : /RRv, z) — /R (x. y) + /R (y, z) valable

pour (.v. v.-R À'! que l'application:

Fix(pp) x Z —? R

ÎÈM >-> Bc (ipap,p)

est continue en la variable £, invariante par xp (i.e. Ht (pp. pq) —

B .: ,c(pp. pq) — Bc(p. q)), et ne dépend pas de p puisque

q) Bc(xpq, tpp) + Bc{xpp,p) + B/:(p, q)

^(9,R) + B4(<p.p,p) + Bç(p,9)

Bc(<p.p,p).

En outre, coimne il est remarqué dans [11], la relation de cocycle entraîne

également que l'application ci-dessus est un morphisme en la variable « g Z,
puisque

n n

b${v*p,p) - 2 B^fkP> =• il «%# .p,p).
k— 1 k— 1

Cette remarque, élémentaire, est à la base des démonstrations des résultats

de ce paragraphe, et en particulier de l'équivalence des classifications des

bouts de S.

1.2 LES COUPLES DE POINTS JOIGNABLES DE Z(OO)

1.2. a CRITÈRES GÉNÉRAUX Étant donnés p g X et q g X, il existe une

unique géodésique joignant ces deux points. La situation est différente lorsque
l'on considère deux points R r/ g XRoc) distincts. Il peut ne pas exister de

géodésique les joignant, en exister une infinité, ou bien en exister une et une
seule. Les deux premiers cas sont liés à la présence de courbure sectionnelle
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nulle, le dernier à celle de courbure sectionnelle suffisamment strictement

négative dans X.
Le résultat élémentaire suivant, bien connu, précise une condition nécessaire

et suffisante pour joindre deux points à l'infini.

LEMME 1,5. Soient £, q deux points distincts de X(oo) et p X. Les

conditions suivantes sont équivalentes :

i) Il existe (au moins) une géodésique joignant jf à p.

ii) Il existe deux suites (,r„) et (y„) de points de X convergeant respectivement
vers £ et p, une suite de géodésiques (a„) où a„ joint x„ à y„, et une

constante C — C(£, tj) telles que

d(p, cr„) < C.

En outre, lorsque les points | et p sont joignables, pour tout point p G X
et pour toute suite de points (p„) de X convergeant vers Ç on a

lim ZPti (&PaP(0), âp„n(0)) 0.
n->-+oo

Démonstration, i) ii) est évidente ; réciproquement, notons z„ G cr„(R)

l'unique point qui réalise le minimum de la distance de p à a„. L'origine
de <j„ est prise en z„ ; par hypothèse, à„(0) reste dans un compact de 7) X
donc, quitte à prendre une sous-suite, on peut supposer <r„(0) —» v,x g l \X. En

notant z&a - et <x-x l'unique géodésique déterminée par les conditions

Coo(O) — iao et &oo(0) Voc, il reste à voir que <7oc(-|-öo) (l'argument
est le même pour montrer que ax.(—oc) — //

Soit t R+ ; par continuité de l'exponentielle au point ux, et au point p
et parce que x„ —rj, il existe «o tel que n > «o entraîne

max{d(z„,x„);d(p,xn)} > t et

max{ sup d(p.x,(s). an(s)) ; sup d(crpXn(s),apc(s))} < 1.
s[0,q se[0,(]

La fonction (convexe) s d(a„(s),apXli(s)) est décroissante sur [0, d(z„,x„)]
donc on a d(an(t),opXii(tj) < C et par l'inégalité triangulaire, d(o x (t). rTpc(t)) <
C + 2.

Si Zn G (Jp,,v(K+) est le point qui réalise la distance de <t;m/(R.:.) à p,
Zn reste dans un compact et il suffit d'appliquer la première inégalité du
cosinus.

On rappelle maintenant les propriétés géométriques qui seront utiles par
la suite pour étudier l'existence du produit de Gromov entre deux points
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du bord. La plupart des propriétés établies dans ce paragraphe sont connues
des spécialistes. Elles peuvent être comparées en particulier au lemme de la

page 54 et à l'exercice 3.9 de [4] ou encore aux résultats obtenus dans [9].
Nous en donnons cependant une présentation indépendante - et différente

- dans un souci d'unification du texte, en s'appuyant sur l'hypothèse de la

dimension deux. Cette dernière permet de dégager des arguments de nature

topologique, et de décrire avec précision le comportement des horosphères les

unes par rapport aux autres.

Notons que si j. q G A"(oc) avec f / r/, il existe p G X tel que

Zp(j, //) < 7T. Dans le cas contraire, pour tout p, les rayons ap^ et apv se

concatènent en une géodésique d'extrémités g et // et deux telles géodésiques
bordent une bande plate; la métrique sur X serait plate. On dit alors que

G X(oc) est entre i] et | s'il existe un point p tel que

4Af)+4ÄC il r])<Tr.

Pour £,?? G X(oo) et p G X vérifiant Zp(^,i]) < ir, on note

D(p;Ç,iD ; t > 0, £' est entre f et p}

le secteur issu de p d'extrémités £ et 77.

I .EMME 1.6 ([9]). Soient £,77 deux points distincts de X(oo). On suppose

qu'il n'existe pas de géodésique joignant ces deux points. Alors:

i) pour tout point p G X vérifiant ZpiÇ,!]) < 7r, la courbure totale du

secteur D(p;^,p) est bornée,

ii) deux points distincts entre £ et î] ne peuvent pas être joints par une

géodésique.

Démonstration, i) C'est une application directe du lemme 1.5 et de la

formule de Gauss-Bomiet.

ii) Si j'. 1/ sont entre j et 1/ et s'il existe une géodésique a joignant j'
et 7/', cette géodésique rencontre a„ aai!..(n) arii(n) en deux points pour n

assez grand puisque les images de <7 et rr„ restent dans l)( p\ j, r/) par ii) du
lemme 1.5. Contradiction.

Nous donnons également un critère d'existence d'une (ou plusieurs)
géodésique(s) joignant j, 77 G X(oc) en fonction des positions relatives des

horosphères centrées en | et i] respectivement. Pour i] G X(oc) et p. q X,
notons
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H,foo) {£ G X(og) ; t Bv(<jqc(t),p) est majorée sur R+}

Chaque élément de Hv(oo) est donc représenté par un rayon géodésique
restant dans une horosphère fixe centrée en r). Dans le cas euclidien, pour tout
77 G X(oo), l'ensemble Hn{oo) est un demi-cercle; a contrario, j-Lv{oo) {r]}
pour tout r] G A"(oc) lorsque K < —a2 < 0 ou lorsque X satisfait l'axiome
de visibilité, d'après le résultat qui suit.

LeMME 1.7. i) Hri(oo) ne dépend ni de p, ni de q,

ii) Hr/ioo) est un intervalle fermé I — [771,7/2] C X(cs) contenant 77,

iii) si 771 f 772, les seuls points de I qui peuvent éventuellement être

joints par une géodésique a sont 7/1 et 772, et dans ce cas a borde un

demi-plan plat,
O

iv) si t; GI, alors Bri(agc(t),p) —> —00 lorsque t —> +00.

Si 'H,ft) désigne l'horoboule centrée en 77 dont le bord contient upn{t),
on a encore jffoo) - et f]i>o^v^ ne dépend pas de p G X.

Démonstration, i) L'indépendance en p et q résulte directement de

l'inégalité

- Brl(<rq1£,(t),p2)\ < d(pi,p2) + d(quq2)

qui est une conséquence directe de la convexité de t > d{ap(-{t),ag^{tj)
appliquée successivement à c, - r) et Ç.

ii) Il résulte de l'indépendance en p et q que H„ Î7 A"(oc) ne dépend

pas du choix de l'horoboule H,, centrée en 77. De plus, cet ensemble est un
intervalle fermé [7/1, 772] ; en effet, si 1>—> ß(t) est une paramétrisation C1 non
singulière de l'horosphère centrée en 7/ passant par p telle que ß(0) — p, les

applicahons qui à r G R+ associent Aß(0), &pß(t)(0)) et Z(-ß(0), o>Ä_,)(0))
sont croissantes par convexité de l'horoboule; comme d(p,ß(±t)) —> +00
lorsque t —> +00, 011 a {ß(t),ß(—t)} —> {771,772} et, par convexité des

horoboules, si 1 -- [771,772] est l'intervalle contenant 77 et si jj G I, alors

o-pc(R+) C j-Ln. Ainsi, Tin{00) — 1

iii) Si a est une géodésique qui joint deux points distincts et j2
de [7/1,7/2], la fonction t ha Iffolt). p) est convexe majorée sur R
donc constante ; o est alors une horosphère (et une géodésique) donc

{cr(+oo), <j(—00)} — {7/1,7/2} et <7 borde un demi-plan plat. En effet, si

H / G, le triangle (à bords géodésiques) (q. a(t\ ap2)) ayant deux angles
droits est nécessairement plat.
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Par conséquent, deux points de |r/i. [ ne peuvent pas être joints par une

géodésique.

iv) Cela résulte immédiatement du fait que, pour toute horoboule
centrée en //. F ensemble 'H.n fl X(oo) — [r/i. 1/21 ne dépend de 'Hn que par
son centre.

Corollaire 1.8. Soient £1,^2 deux points distincts de X( x : les

conditions suivantes sont équivalentes :

i) il existe au moins une géodésique joignant fj à £2.

ii) il existe une horosphère djj] centrée en £1 et une horosphère ffftt
centrée en fi vérifiant flcWi fl ÖM2 > 2.

En outre,

iii) si £1 et £2 ne peuvent pas être joints par une géodésique, alors

fl ÂÇjfJ00) fi 0,
iv) si £1 et £2 peuvent être joints par une géodésique et 'M<, (00jOH^ (00) fi 0,

alors toute géodésique joignant fi et fi borde un demi-plan plat.

Démonstration. L'implication ii) => i) est prouvée par P. Eberlein dans [9]
et est obtenue en cherchant un point critique sur |r. t'\ de l'application
v ha BkjSgjiï):;où v ha ài(s) (/ 1,2) est la paramétrisation par
longueur d'arc de Fhorosphère ô'K, et Oj (t). G] (fi) G ()'H\ fi djji-

i) ii) : supposons que toute horosphère centrée en C rencontre toute

horosphère centrée en fi en au plus un point et qu'il existe une géodésique <7

reliant Q à fi, orientée de j 1 à fi. Soit p ~ a(tt)) : les horosphères

ÔHi et (ÏHi passant par p centrées en fi et fi respectivement admettent
le même vecteur tangent unitaire r en p ; par convexité des horoboules,
la géodésique ov vérifiant ov(0) p et <x„(0) — v sépare X en deux

composantes connexes ouvertes, l'une contenant <)'H
1 \ {/->}, l'autre (ÏH2\ {[>}

On a par conséquent

(1) Hçfioo) n HçfioÔ) =» cr,,(+00)

ou

(2) (00) fl Hçfioo) — 0

Le cas (1) entraîne par convexité des horoboules que <j,,(R+) — <)'H \ ;

il est donc à exclure. Remarquons toutefois que, dans ce cas, tout triangle de

sommets (cr,,(t),p,fi) est plat et <7 borde un demi-plan plat.
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Si (2) est réalisée, et si q > r(), toute horosphère centrée en Çi passant

par cr(fi) rencontre nécessairement d'Hi en au moins deux points. En effet,
si ß est une paramétrisation d'une telle horosphère et si TA, (oc) — | //|. //, |,
alors ß(t) —> rji qL "Hç2(oo) et ß(—t) —* rj[ qL Hc2(oq) lorsque t —s- +00 ; on a

donc montré i) -> ii)
iii) résulte directement de la discussion du cas (2) précédent et iv) de la

discussion du cas (1). Ll

Remarqué, Deux points distincts du bord non joignables peuvent admettre

des horosphères qui ne se rencontrent pas dans X, mais dont l'adhérence des

horoboules est constituée d'un point sur le bord exactement (voir la section 2).

1.2. b LE cas DES SURFACES QUOTIENT On suppose maintenant qu'il
existe T C /.s(X) un sous-groupe d'isométries de X agissant proprement
discontinûment et sans point fixe sur X et on suppose que la surface quotient
S — AVE est complète, orientable, non-compacte, de type fini et n'est pas un
cylindre topologique (autrement dit F est liniment engendré et T çt- Z On

note :

- 7r: 7) S —f S le fibré unitaire de S ;

- Ar — F. p \ F. p G X(oo) l'ensemble limite de F (qui ne dépend pas
de peX);

- O(r) le complémentaire de l'ensemble limite dans X(oo), constitué

d'une réunion dénombrable d'intervalles ouverts (éventuellement vides), plus

précisément l'orbite sous F d'un nombre fini d'intervalles, puisque S admet

un nombre fini de bouts.

Le lemine suivant interdit les phénomènes de périodicité de la métrique
dans le secteur D( /?; Ç. //) :

LeMME 1.9 ([9] Prop. 2.2). S'il existe un point G Ar entre Ç et r],
les points Ç et rj peuvent être joints par une géodésique.

Démonstration. Raisonnons par l'absurde: si lim„7„.p, on peut
choisir p G X et e > 0 tels que la courbure soit strictement négative sur

IXp. e) et % .p,f)n%, T1e) =; 0 pour 7„ ^ 7,,,. Pour n assez grand,

on a IXp„ .p.e) C D( p-j -1]) et cela contredit le point i) du Lemme 1.6.

Par conséquent, seuls les couples de points dans l'adhérence d'une même

composante connexe de O(r) peuvent 11e pas être joints par une géodésique.
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REMARQUE 1.10. Il résulte directement du lemme précédent que tout point

f] G Ar possède une base de voisinages bordés par des géodésiques.

Soient p.G F \ {Ici} et p G X ; P. Eberlein et B. O'Neill ont montré que

chaque point d'accumulation dans X de la suite bilatère (p" p),,az est un
élément de X(oc) fixe par p. L'hypothèse de la dimension deux pennet une

analyse plus précise de ces points fixes.

LEMME 1.11. La suite bilatère (<p".p)„çz possède au plus deux points
d'accumulation. Elle en possède deux distincts qui peuvent être joints par une

géodésique si et seulement si p est axiale. En particulier, si elle tie possède

qu'un point d'accumulation, p est parabolique.

Démonstration. Supposons que la suite (<p'!.p)„ez admette deux points
d'accumulation iq et ip, joignables par une géodésique o. Soit q un point
de a et 5 une géodésique transverse à a en. q. Pour tout n G Z, la géodésique

p" o a a pour extrémités r/ \ et rp et rencontre donc 5 en un point q„ (avec

q0 - q). On distingue trois cas:

1) La suite (q„) admet un point d'accumulation </ x. qui appartient à X. Le

segment géodésique lux, p qx \ se complète en une géodésique d'extrémités

i)t, y/2 qui est stable par p\ l'isométrie est donc axiale.

2) La suite (<:/„) s'accumule sur les deux points distincts 6(—oc) et fi(+œ).
Puisque deux géodésiques distinctes joignant rq et tp bordent nécessairement

une bande plate, la métrique sur X est plate, ce qui n'est pas.

3) La suite (qn) converge vers fi(+ôo) ; par l'argument précédent, o borde

un demi-plan plat. Supposons alors tp. q fjf a(R) et notons r la projection de

p. q sur (j(R) ; le triangle de sommets q. r et p .q est envoyé par p sur

un triangle semblable ce qui entraîne que q. p q. p1 .q sont sur une même

géodésique et que (p" .q converge vers un point distinct de tq et 772. ce qui
n'est pas. L'isométrie p translate par conséquent la géodésique o et toutes
celles qui lui sont parallèles.

De ce raisonnement, 011 déduit aussi que la suite ippn .p)„gz ne peut pas

posséder plus de deux points d'accumulation; en effet, s'il en existait trois,
deux d'entre eux seraient joignables mais la discussion ci-dessus prouve que

ces deux points sont les seuls points d'accumulation possibles !_]

Dans la suite de ce paragraphe, nous nous concentrons sur le cas où p
est un élément parabolique de T. Le relâchement de l'hypothèse K < —a2
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(a > 0) en K < 0 peut entraîner l'existence de deux points d'accumulation
distincts %, //2 G X(oo) de la suite (fi' p)„cz. Le point i) du résultat qui
suit a été établi par P. Eberlein dans [9]. L'existence dans le point iii) est un
résultat classique, valable en toutes dimensions. Nous en donnons une preuve
indépendante qui s'appuie sur le lcmme précédent et la remarque 1.4.

PROPOSITION 1.12. Soit p G r un élément parabolique vérifiant

lim p~" .p — rji et lim p" .p - p2 fi rji.n—»-+OC n—»-+00

Alors,

i) tout élément entre pi et i]2 est fixé par p ; on notera I - [?ji, r]2\

l'ensemble de ces éléments,

ii) Bm(pp,p) - m9 -Bm(pp,p),
iii) il existe un unique point î] G / tel que p fixe t] et toutes les horosphères

centrées en p. De plus, H,t( x I

Remarquons que :

1) Les points r/\, ij2 G Ap sont joignables à tout point de Ie puisque Ap
n'admet pas de point isolé. Il en résulte que Ie est stable par p puisque,
dans le cas contraire, une géodésique joignant tj\ et £ G Ie serait envoyée

par p sur une géodésique joignant deux points de /. Par conséquent, on a

aussi p(I) — I.
2) L'élément p ne fixe aucun point de V. En effet, supposons le contraire ;

pour i — 1,2, considérons une géodésique a-, joignant //, et Ç et choisissons

un point p, sur 07*, La convergence de p~n ,p2 vers //, et de p" ,pl vers ;/2

entraîne l'existence de deux entiers positifs m et n tels que les géodésiques

p~".o2 et fi".<7\ se rencontrent dans X en un point q. Il existe alors deux

rayons géodésiques joignant q à Ç, et ceci est absurde. Ainsi, le point rq

(resp. 772) est un point fixe attractif pour l'action de p (resp. p-1) non
seulement sur X mais aussi sur Ie.

Démonstration de 1.12. i) Soit p X et supposons qu'il existe Ç G |r/i. //2[

tel que pÇfit;. Puisque i]i et p2 sont fixés par p, le point pt; est entre £

et 7/2 et le rayon apc se prolonge en une géodésique <7 d'extrémités Ç et fi ;

d'après le lemme 1.7 iii), on a fi fi I puisque g et fi sont joints par a, et

fi(çr) ne rencontre pas a dans X d'après le lemme précédent. La bande fermée

délimitée par 0 et a' est un domaine fondamental D pour l'action de p.
Comme la fonction t -G d(a{t). cr'(t)) est convexe et tend vers +00 lorsque

t —7 ±00, l'infimum de la fonction distance de translation en restriction à
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cr(R) est réalisé de même que riufimum de la fonction distance de translation
de ip sur D, donc sur X puisque D est un domaine fondamental. Ceci est

absurde puisque <p est parabolique.

ii) Pour p G X et h G Z, posons «„ d{ p, <p"p) ; on a

Bm(pp,p) km{d((p-"p, w) ~ d(<p~np,p)}
n

.<= lim{d(pn+ip,p) - d(p"+1p, p p)}
n

- lim{M„+i - «„}
n

— lun(M„/«)
n

Bm(p, <pp) —BVl(ipp,p).

La suite (i/„+, — u„)„ converge donc vers /i,(l (pp. p) qui est aussi la limite de

ses moyennes de Cesàro: lim„ '-j, c'est-à-dire m - d'après la Proposition 1.3.

ni) Par continuité de I M- B( p [> p), il existe // C: / tel que

(*) Bn{ipp,p) 0.

Montrons que p vérifiant (*) est unique et ne dépend pas du point p
fixé. Fixons p dans un premier temps; s'il existait deux points ij et r/'
vérifiant (*), l'ensemble p) P\ p) contiendrait toute l'orbite de p
sous Y action du groupe cyclique < ip >, et puisque pp / p, les points r) et rf
seraient joignables, ce qui n'est pas. L'indépendance de p par rapport à p
résulte de l'unicité précédente et du fait que Bc(pp. p) ne dépend pas de p,
constaté dans la remarque 1.4. L'égalité 7ff/(oo) - I résulte de ce que

{ViYfh} - (<P"p)nez \ (pp"p)nç.z et du fait que tp préserve les horosphères
centrées en i).

Lemme 1.13. r] G Hm(po) n H,n(oo).

Démonstration. Pour p G X fixé, et i 1,2, soit /, C X(öo) la

composante connexe de X(oo)\{p,opri(—oo)} qui contient r/, Pour t > 0,
notons a, l'unique géodésique perpendiculaire à crpv en <rpv(t), vérifiant
<j,(0) — crpr)(t) et 07(00) g y2 • Montrons alors, par l'absurde, que a,(—oc) —> rp
et <Jt(oo) -P i]2 lorsque t —> +00.

La géodésique a,(R) étant tangente à Fliorosphcrc i/W.,;(0f,,;(f)) en apr]{t),
on a o>(±oo) G Ie par convexité des horoboules. D'autre part, si /' > /, 011 a

o>'(—00) G [a,(—oc), i/1 [ (et de manière analogue, a,»(oc) G [07(00), iji\ ; dans

le cas contraire, ootRy et 0,»(R7) se rencontreraient en x et la soimne des

angles du triangle de sommets (.v, 0,(0). 07» (0)) excéderait 7r. Par conséquent,
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cj/(—oo) converge lorsque t -A +00. Notons 7/x sa limite et supposons

'?oo 7^ '?i • Les points gg et g x sont alors joignables et on a

tJ» z<rpn(n(Pi Voc) - 0 •

Il existe donc to tel que ,,(/„)( [> 'H.) < jceci contredit le fait que

— f «f »/oo [cr,0(-00), 771]. On montre de la même

façon que cr,(+oo) converge vers 7/2 •

Remarque 1.14. Une question naturelle est de savoir si

sup/,(y/,. f/2.) - 7T.

pex

Cette égalité est réalisée dans le cas des bouts exceptiomiels de révolution et

elle entraîne 'Hr!l (oc) H (oc) — {77} (voir la discussion à la suite de 1.17).

1.3 Bouts de S et isométries

Si f est une isométrie parabolique vérifiant les hypothèses de la Proposi-
O

tion 1.12, l'ensemble I correspondant forme une composante connexe de 0(r).
D'après [9], chacune de ces composantes connexes correspond à un relevé

d'un bout de S ; par ailleurs, la surface S peut posséder aussi des bouts ne

correspondant à aucune composante connexe de 0(f). Pour plus de clarté,

nous rappelons brièvement la défini tion et la classification des bouts de S

donnée par P. Eberlein (voir [9]) :

DÉFINITIONS 1.15. Lin bout de S est la donnée d'une fonction £2 qui à

chaque compact K (_ S associe une composante connexe de S \ K vérifiant
Q,(Ki) C Q(K2) si Ki D K2.

Lin voisinage ouvert U d'un bout £2 est un ouvert de S qui contient Q(K)
pour un certain compact K.

Une suite de points (/?„)„ de S (resp. de courbes fermées (Cn)„ converge
vers un bout £2 si pour tout voisinage U de Q, tout point p„ (resp. toute

courbe C„) appartient à U (resp. est contenue dans U) pour n assez grand.

Lin bout est dit tubulaire s'il admet un voisinage homéomorphe à R+ x .S'1.

Dans ce cas, on appelle paramétrisation tubulaire riemamiiemie de U un
système de coordonnées x : R^_ x S1 — {(r, —s- U dans lequel la métrique
sur U s'écrit dg2 - dr2 G2(r. 0)d()2 où G est une fonction continue des

deux variables et telle que pour tout 0, la fonction r ha G(r. 0) est deux fois
g"dérivable et convexe (K — — < 0).
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Lorsque la fonction G ne dépend que de r, on dira que Q est un bout
de révolution.

La surface S étant supposée de type fini, les bouts de S sont en nombre

fini et sont tous tabulaires. P. Eberlein montre qu'un bout Q possède toujours

une paramétrisation rieinamtiemie, et que chaque bout est en correspondance

biunivoque avec une suite de courbes fermées (C„j„ convergeant vers ce bout
et appartenant à une même classe d'homotopie libre. Associons à un bout Q :

1) les classes de conjugaison Vo d'éléments de T, qui sont en correspondance

avec les classes d'homotopie libre de courbes fermées dont une suite

converge vers Q. On peut démontrer que To i- {7. | 7 G T, n G Z}
pour un élément 7 G Y unique à conjugaison et à passage à l'inverse

près ([9], prop. 4.4),

2) l'ensemble V(Q) des points v de 7j .S" tels que, pour tout voisinage U
de Q, il existe to > 0 avec <7t,([fo, +oo[) C U.

P. Eberlein propose dans un premier temps la classification suivante des bouts

de S (voir [9]).

Classification topologique pes bouts. Soit Q un bout de S et (C„)
une suite de courbes C°° par morceau, homotopiquement non triviales,

qui convergent vers Q. On a les 4 possibilités suivantes qui s'excluent
mutuellement :

(a) l'ensemble E(Ê2) est ouvert et il existe une suite de courbes (C„)n de

longueur uniformément bornée,

(b) la suite des longueurs n'est majorée pour aucune suite de courbes (C„)„,

(c) l'ensemble V(Q) est d'intérieur vide et il existe une suite de courbes

(C„)„ dont la longueur est uniformément bornée,

(d) l'ensemble VTQ) n'est pas d'intérieur vide mais n'est pas ouvert et il
existe une suite de courbes (C„)„ de longueur uniformément bornée.

REMARQUE, Dans le cas (b), l'ensemble V(Q) est nécessairement ouvert

(voir [9]).

Si la métrique dans le bout est de la forme dg2 - dr2 + G2(r. 6)d92, la fonction
longueur L définie par

G(r, 0)d0 (r > 0)



SURFACES NON-COMPACTES DE RANG UN 21

est convexe et admet par conséquent une limite dans RU {+00}. On peut
alors classer les bouts de S selon la nature de la fonction longueur:

Classification paramétrique des boots. Soit Q un bout de S et L
la fonction longueur associée naturellement à la paramétrisation tabidaire de

Q. On a les 4 possibilités suivantes qui s'excluent mutuellement :

(a' la fonction L est constante pour r assez grand,

(V la fonction L tend vers +oo,

(c') la fonction L est strictement décroissante et tend vers I =- 0,

(d') la fonction L est strictement décroissante et tend vers I > 0.

P. Eberlein a montré que (a) c# (a') et (b) -p (b'). Il résulte aussi de

sa discussion que dans les cas (c) et (d), la fonction longueur est strictement
décroissante. Dans le cas des bouts de révolution, la relation de Clairaut

permet aussi de préciser que ces deux cas se distinguent par / - 0 et

/ > 0 respectivement; autrement dit (c) (c') et (d) sf- (d'). Ainsi, les

deux classifications précédentes sont équivalentes dans le cas des bouts de

révolution et P. Eberlein conjecture que cette propriété reste vraie dans le cas

général. La proposition C apporte une réponse positive à cette question.

Démonstration de la proposition C. Compte tenu de la proposition 4.5
de [9], il suffit d'établir le

I J'AIME 1.16, Soit Q un bout de S appartenant aux cas (c) ou (d). Alors
V(Q) est d'intérieur vide (cas (c)) si et seulement si

Démonstration. Soit / |/p, rpf une composante connexe de O(r) associée

à Q et f e ra une isométrie parabolique laissant fixe point par point chaque

élément de / — \ip, 772] et vérifiant 77 1 lim <p"p et 772 lim <p"p
n—y — oc n—>-+oo

(si ip est primitive, elle est unique à une puissance positive près). Notons

// l'unique point de I tel que p fixe toutes les horosphères centrées en //

(lorsque / est réduit à un point, on a i) — i/j — ij2). Avec ces notations, dire

que L(Q) est d'intérieur non vide, c'est dire que I est d'intérieur non vide.

La démonstration du lemme repose essentiellement sur le fait que

O
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Montrons cette égalité. Notons C, (pour r > 0) la courbe fennée 9 (r. 0)

(dans la paramétrisation tubulaire de Q). Cette courbe se relève en une

horosphère centrée en r/ que nous noterons <ÏHr. Fixons alors un réel t > 0

et un point p de dT-L, ; pour tout n > 1, le segment géodésique cr„ joignant

p à (p"p a pour longueur d(p,ip"p) et on note r„(p) la plus grande valeur
du paramètre r telle que a„ P dHr ^ 0. La fonction r G{r,6) est

décroissante puisqu'elle est positive, convexe et que r »-* L(r) est bornée ; on
d{ p, ipnp)

a alors L(r„(p)) < < L(t). Puisque r„(p) —> +oo lorsque n tend
il

vers +oo.., il vient / < mfi < L(t) ; la valeur de t étant arbitraire on a bien

l'égalité annoncée.

Xjtilisons maintenant la Proposition 1.12 ii) et la remarque 1.4. Pour tout

n G Z, on a ni — Bm(ip"p,p) — —Bm(ip"p,p)\ lorsque / > 0, la fonction

q t-)- B,lt (q.p) — B,j2 (q. p) n'est pas bornée donc ij\ / rj2 ; en revanche, lorsque
l — 0, l'isométrie ip préserve les horosphères centrées en r/i et //2 et l'on a

'/i — V2 — V d'après la Proposition 1.12 iii).

Nous pouvons adopter la

DÉFINITION 1.17. Un bout Q de S est dit: cylindrique dans les cas (a)

ou (a'), expansif dans les cas (b) ou (b'), parabolique simple dans les cas (c)

ou (c') et parabolique exceptionnel dans les cas (d) ou (d')

Pour terminer ce paragraphe, rappelons qu'à chaque composante connexe C
de O(P), on associe naturellement un bout de 5. Eli effet, si a est un rayon
géodésique de X vérifiant <t(+oo) G C, il existe un bout Q de S tel que la

projection de a sur S converge vers £2. Dans le cas contraire, il existerait un

compact K C X, une suite t„ —r +oo et une suite (7„) d'éléments distincts
de T tels que G K ou encore a(t„) G y~l.K. D'autre part, quitte à

extraire une sous-suite, on a y~l-K —> £ G Ar, ce qui contredit le fait que

cr(+oo) appartient à C.

Dans [9], P. Eberlein a donné une description précise de cette correspondance

entre composantes connexes de O(r) et bouts de S, reliée à la nature
des éléments de F. En particulier, si p est une isométrie parabolique
exceptionnelle, les horosphères centrées au point privilégié 7] se projettent sur les

courbes C, : 0 G(r. 6) introduites dans la démonstration précédente, et ces

courbes bordent un voisinage du bout, tandis que les courbes r G(r. 0), à

9 fixé, admettent un relevé qui est un rayon géodésique représentant ce même

point privilégié. De plus, lorsque le bout est de révolution, les horosphères
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centrées en r/ (le point fixe privilégié) se projettent sur les parallèles et la

relation de Clairaut s'écrit f(v) cos §s — l pour un rayon géodésique qui
se relève en un rayon représentant la direction limite. Lorsque v —s- +00,
f(v) —) l donc 9„ —> 0 et (7/1, 7/2) tt —20V —> n lorsque v —> +00
ce qui entraîne (pc) f: 7-(,;,(oc) — {//} dans ce cas. 11 semble que cette

dernière égalité reste vraie dans le cas général mais ceci n'est pas démontré

(voir remarque 1.14).

En revanche, on peut associer une isométrie axiale à un bout si et seulement

si cette isométrie fixe globalement l'adhérence d'une composante connexe de

PfP et elle la fixe point par point si et seulement si le bout est cylindrique.
Enfin, une isométrie parabolique simple n'est reliée à aucune composante
connexe.

Ainsi, les couples de points qui ne peuvent pas être joints par une

géodésique sont dans l'adhérence d'une même composante connexe de 0(E)
correspondant à un parabolique exceptionnel, ou, éventuellement, dans une
même composante connexe de O(E) correspondant à un bout expansif ou
cylindrique.

1.4 Action De r sur Ar
A

Notons Ap x Ap le produit cartésien de l'ensemble limite, privé de la

diagonale. Nous précisons dans un premier temps la dynamique topologique
de l'action de E sur son ensemble limite :

LEMME 1.18. Soit 77 G Ap ; il existe une suite (ry„)„eN et au plus deux

points 770, i] 1 G Ap tels que pour tout point # G Ap \ {770, fil}> on a

lim %.«, //.
«—>•+00

En particulier; l'action de E sur son ensemble limite est minimale.

Démonstration. Soit (7^)4 une suite d'éléments de E telle que jk.p —> 77

lorsque k —> +00. Supposons qu'il existe 770 G Ap tel que 71.770 + 77. Il
existe alors une sous-suite % %n, telle que %.rjo —> 7^ '?• Le point
770 est joignable à tout point de Ap sauf peut-être un point 771 et dans

ce cas 770, 771 bordent tous deux une même composante connexe associée

à un bout parabolique exceptionnel. Soit a une géodésique joignant 770 à

G Ap\ {//(). 771} et V(ij) un voisinage fermé de 77 dans X bordé par une

géodésique. Supposons que p„t, + 77 ; quitte à extraire une sous-suite, on peut

supposer que 7,,^ —> 77" / 77. La Suite de géodésiques <r„(R) : —
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rencontre nécessairement l'intérieur de V(j]) pour n assez grand puisque

y„.a(0) —> t] et ses extrémités sont en dehors de V(//) puisque rf et //" sont
distincts de r/. Donc, pour n assez grand, les points d'entrée et de sortie

de <7„ dans V sont conjugués ; ceci est absurde. Conservons les notations

précédentes ; pour montrer la minimal ité, il suffit de montrer que la trajectoire
de tout point § G Ar sous faction de F rencontre V(r/)f\X(op) pour tout point

// G /\r. Fixons ce dernier point ainsi que V(if) et soient ijo. r/i les deux points
éventuellement définis par la discussion précédente. Si | G Ap \ {//o- ij \ } on a

{%.£ ; n G N} H Vijj) / 0. Si les deux points r/0 et r/i existent effectivement

et si ip est une isométiie axiale quelconque, p({'/<>• 7i }) O {i/o-t)i} 0 donc,

pour i — 0,1, on a {(7,,(p).r]i ; n G N} FI V{ij) ^ 0. S'il n'existe qu'un
seul point 7/0 tel que .7/0 /> r), le raisonnement précédent vaut encore en

choisissant une isométrie y qui ne ûxe pas rjo Li

Remarque 1.19. On déduit sans difficulté de la minimalité de l'action

que toute paire de points (Ç, if) G Af est F -duale, c'est-à-dire qu'il existe une
suite (7„) d'éléments de F telle que pour tout point p G X, on a % .p —f £

et 771 p —> //. C'est en général cette propriété de F-dualité qui pennet
d'obtenir la minimalité de l'action de F sur son ensemble limite (voir [10]

Prop. 1.9.13 et [12]).

Soit 7 une isométrie axiale et a un axe orienté de 7, Les points de

X(oo) : <t(±oo) — lim„^=,x 7" .p ne dépendent pas de l'axe choisi et on les

note 'L On déduit du résultat précédent le

COROLLAIRE 1.20. A — {(7+,q:_) ; 7 isométrie axiale} est dense dans

Ap x A[

â
Démonstration [1], Il suffit de montrer la densité dans Ap x Ap. Soit

U et V deux ouverts non vides de Ap, d'intersection vide. Soit Jq le point
fixe attractif d'une isométrie axiale. D'après le lemme précédent, l'orbite sous

F de 77" rencontre U. Elle est constituée de points fixes attractifs donc il
existe 7 isométrie axiale telle que 7+ G U. Soit g G T une isométrie dont
les points fixes ne sont pas ceux de 7. Pour « G N assez grand, les deux

points fixes attractif et répulsif de fisométrie axiale a p"<rA" sont dans

U. On construit de la même manière une isométiie axiale b dont les deux

points fixes sont dans V. Pour m assez grand, on a a"'(V) C a"'(U') C U et

b'"{U) C h"'(V) C V. Par conséquent, a"'b"'(U) Ç U et a'"b'"(V) C V donc,
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par le théorème du point fixe, 1'isouié trie axiale a'"b'" admet un point fixe
dans U et un point fixe dans V.

Remarque 1.21. Une isométrie est dite axiale hyperbolique si elle admet

un axe qui ne borde pas de demi-plan plat. Les seules isométries axiales qui
ne sont pas hyperboliques sont lés relevés des rotations d'angle 2ktt (k £ Z)
dans les bouts cylindriques (pour la paramétrisation tubulaire riemannienne).
Ainsi, dans l'énoncé du corollaire 1.20, on peut se restreindre aux isométries

axiales hyperboliques. De ce corollaire, on déduit alors, comme dans [10],
Prop. 4.5.15, le lemme de fermeture : si e > 0 est assez petit, s'il existe

U, C '/ | S voisinage de v de diamètre inférieur ou égal à e et t £ R tel que

r/.(r) £ Uf, on peut trouver §* £ Uf et t' £ [t — e,t + e] tels que v'.
Ce lemme de fermeture est utile pour démontrer le Théorème A.

2.1 Use pseudo-distance sur l'ensemble limite
Le produit de Gromov de deux points q et r de X vus d'un point p est

la quantité positive

L'interprétation géométrique est la suivante: si Sp(q) et Sp(r) sont respectivement

les sphères de centre q et r passant par p, le segment géodésique aqr
rencontre Sp(q) U Sp(r) en deux points .r.y et l'on a (q\r)p ~ d(x.y)/2. Il
résulte de l'inégalité triangulaire que 0 < (q\r)p < d(p. n<jr) ; d'autre part,

pour tout 7 £ Is(X), on a (jq\"fr)lP — (q\r)p.
Lorsque la courbure de X est majorée par —a1 avec a > 0, on peut

prolonger de façon continue le produit de Gromov sur X(oo) x X(oc) \
Diagonale, prolongement dont l'interprétation géométrique est la suivante: si

i et Ç' sont deux points quelconques de A(oo), la demi-longueur du segment

géodésique (££') iT H^{p) fl Hç>(p) vaut (f D'autre part, l'application

est une distance (voir [5]). L'intérêt majeur de cette famille de distances

(indexée par p £ X) est qu'elle pennet de définir une stmcture confonne

2. Produit de Gromov et birapport

Dp : X(oo) x A(oo) —ï R+
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sur Z(oo). En effet, les isométries de X agissent comme des transformations
conformes sur (X(oo), Dp), coimne il résulte de la formule des accroissements

finis :

(Ai /y-.;, t-Ç') Wmf1 a,
le facteur conforme en -f g Z(oo) pour l'action de 7 È Is(X) sur le bord étant

Wm\P
Ç UpKÇ 5 s

coimne il résulte de la formule de cocycle vérifiée par les fonctions de

Busemann (voir encore [5] pour l'intérêt de considérer une structure conforme

sur le bord).
Dans notre contexte, la présence de bouts cylindriques ou paraboliques

exceptionnels produit des phénomènes singuliers que nous allons préciser.
Toutefois, il est possible de construire par un procédé analogue une famille

d'applications (Dp)pçx continues sur Ap x Ar, en définissant un produit de

Gromov à valeurs dans R+ Il {+00}. Pour p fixé, l'application Dp n'est

pas une distance sur l'ensemble limite mais satisfait encore une inégalité
des accroissements finis, puisque cette dernière se déduit mécaniquement des

propriétés de cocycle et d'invariance des fonctions de Busemann, valables sans

restriction sur la courbure.

Démonstration du Théorème B. Dans le courant de la démonstration, t
désignent deux points distincts de Ap, et (r„)„ deux suites de points
de X convergeant respectivement vers | et j' ; on notera alors a„ l'unique
géodésique joignant qn à r„. Lorsque | et bordent une composante connexe
de O(T) associée à un bout cylindrique ou parabolique exceptionnel, cr„(R)

peut s'accumuler sur le bord à l'infini. Ge phénomène nous contraint de

considérer deux cas, dans chacun des leimnes qui suivent. Dans le cas ii)
de chaque lemme, nous sommes tenus de supposer que les points q„ et rn

restent à l'extérieur des horoboules centrées respectivement en £ et tin
raisonnement élémentaire dans le cas euclidien permet de se convaincre que
cette hypothèse est indispensable. Toutefois, elle n'altère pas la propriété de

continuité du produit de Gromov sur l'ensemble limite.

LEMME 2.1. Supposons que Ç et |f sont joignables par une géodésique o.
Si q est un point de <r(R), alors la longueur du segment géodésique
crf\ Tlc{p) PI Hç'(p) vaut

I Bc(p,q)+Bc,(p,q).



SURFACES NON-COMPACTES DE RANG UN 27

Cette longueur ne dépend ni de la géodésique choisie reliant à ni du

point q sur cette géodésique. De plus :

i) Si la géodésique o (toute géodésique a joignant | à |' ne borde pas
de demi-plan plat, alors ((qn\fn)p) converge vers 1/2.

ii) Si la géodésique a borde un demi-plan plat et si les points q„ et r„
restent à l'extérieur de ce demi-plan plat, {(qn\r„)p)n converge encore

vers 1/2.

Démonstration. L'indépendance de l par rapport à la géodésique a vient
directement de ce que deux géodésiques joignant les deux mêmes points à

l'infini bordent une bande plate et l'indépendance par rapport au point choisi

sur la géodésique résulte directement de la propriété de cocycle satisfaite par
les fonctions de Busemami.

Fixons deux horoboules disjointes H et 'H' basées respectivement en |
et |f, telles que p est extérieur à ces horoboules. Notons H (resp. h et h')
la longueur de U fi'f (resp. |pÇ) (7 {H U H'f et I/O n {H U H'j
Posons (|||')/> — h. -\- h' — Il et remarquons que ce nombre est indépendant
du choix des horoboules 'H et %' et de la géodésique a (lorsque plusieurs
choix sont possibles).

Posons x — |p|)nOfL et x1 => [p|, Comme q„ —> | et r„ -4 |', pour
n assez grand, les segments géodésiques \pq„\ et \pr„ | coupent respectivement
ÔH et ü'H' en x„. et x'„ et l'on a x„ -y x et x'n -y x' ; par conséquent

d(p,x„) —> d(p,x) h et d(p,x'n) -y d(p,x') h'. De plus, pour n assez

grand, le segment [qnrn] coupe les horosphères ÔfL et ÔH' et l'on pose

bpy'J-lq.rnincHuuy.
i) La géodésique a ne borde pas un demi-plan plat. Il existe R > 0 tel

que a ne borde pas de bande plate de largeur > R ; on note Rr la borne

inférieure de ces réels R. Le lemme III.3.1 de [2] montre alors que pour tout

f >0 il existe dans X des voisinages U de | et U' de |' tels que tout point
de U peut être joint à tout point de U' par une géodésique passant à une
distance inférieure à R„ -\- r de <r(0). On fixe e > 0 ; pour n asssez grand, on
a donc d£\q„r„ |. c(C))) < Rn + e. Ainsi, le segment géodésique [ç„,r„] reste

dans un g-voisinage de la bande plate de largeur maximale bordée par a (si
celle-ci existe); le choix de e étant arbitraire, on conclut que d(yn.y'n) -y H
lorsque n -y +oc.

ii) La géodésique a borde un demi-plan plat. Elle se projette alors sur la
surface en une géodésique périodique bordant un bout cylindrique. Il existe

alors r/ entre | et |' tel que jj. fl X(oo) [|, ?/] et fi' n X(oq) [r/, |' |.

L'hypothèse faite sur q„ et r„ entraîne que CT„(R)ri(j(R) — 0 et par conséquent
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la suite (d(p,a„(R)))„ est bornée. Par le théorème d'Ascoli, la suite a„ est

relativement compacte et ses valeurs d'adhérence sont des géodésiques joignant

f et £' restant à distance bornée de p. Ce dernier point, ajouté à un argument
élémentaire de géométrie euclidienne, montre que d(y„,y'n) -A H lorsque
11. —i +00.

Ein conclusion, on a d(p,x„) + f^j+jEy — d(yn,y'n) t h • //' ff lorsque

n -A +oo... Il nous reste à montrer que d(x„, q„) + d(xJn, r„) — d{yn, q„) — d(y'n. r„)
tend vers 0 lorsque « +f +oo. Puisque (q„)„ converge vers f, la suite de

fonctions (x. y) ha d(x. q„) — d(y. q„) converge uniformément sur les compacts
vers /+(...) ; en reprenant les deux cas ci-dessus et en remarquant que x„ et

y„ appartiennent à dW on vérifie que d{x„,q„) — d(yn.,q„) tend vers 0. Il en

est de même pour d(xJn,q„) — d(y'n,r„).

Notons que par définition (£|Ç% ne dépend pas du choix de H et H' On

peut par conséquent s'affrancliir de la condition W H' 'S ; en particulier,
lorsque (ÏH. et <>'H' passent toutes les deux par p, on retrouve la définition

«classique», à savoir que est égal à l'opposé de la demi-longueur du

segment géodésique (ÇÇ') P V. n M'.

Lorsque Ç — ip et f — j/2 sont les points fixes respectivement répulsif
et attractif d'une isométrie parabolique exceptioimelle ip, ils ne sont plus

joignables de sorte que (ip |//2);, ne peut pas être défini connue précédemment.
Pour tout t > 0 et / 1,2, on note 'Hj(t) l'horoboule centrée en rp et située

à distance t > 0 du point p et d'Hj(t) l'horosphère qui la borde. Avec ces

notations, on a le

LeMME 2.2. Soient (q„)n et (r„)„ deux suites de X convergeant
respectivement vers i]x et ?y2-

i) Supposons H 7f2(f) ^ 0 pour tous réels positifs s et t. Alors,
lim (q„\r„)p — +oo.

«—>+oo

ii) Supposons a contrario que t0 sup{t/?fi(0)n7É2(f) f 0} < +OQ. Alors,
si, pour tout n, les points qn et r„ sont extérieurs aux horoboules 'Wi(O)

et Miftqf on a

lim (q„\r„)p — t0/2.
oo

Notons que, de la propriété de cocycle, il résulte l'égalité:

r0 stip{.v + t/Hfs) n H2(t) ± 0}
et en particulier t0 — $>up\t/'Hi(t) P 'H2(0) f 0}.
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Démonstration. Si i§i($ïn "WaW 7^ 0, les horosphères dHi(s) et dT-Lx(t)

se coupent en un point unique noté x ; on a alors

2(g» \r„)p > d{ p, q„) - d(x, q„) + d{ p, r„) - d(x, r„),
si bien que

v r • rt 1 \ ^ B,n{p,x) + Bm(p,x) s + t
(*) liminf(§„|r„^ > —< — —-

n—>+00 Z Z

Lorsque 'H\ (s) P 'Hi(t) -f- 0 pour tous réels positifs .v et t, on peut choisir .v

et t arbitrairement grands dajis (*) d'où lim (q„\r„)p — +00. Le point i)
n—»-+00

est montré.

Supposons a contrario que to — inf{t/?i!i(0) fi T-Lxit) — 0} < +00. En

appliquant (+) avec s — 0 et t arbitrairement proche de to par valeurs

inférieures, on obtient liminf%B Ir„)P > t0/2.
n—>-+oo

Pour obtenir l'inégalité dans l'autre sens, on utilise le fait que les points

qn et r„ sont extérieurs aux horoboules 'H\(0) et si bien que le

segment géodésique [q„r„] rencontre successivement ()'H\(0) et (ïHxito) en

L" et rh- °n a d(q„, r„) > d(qri,q'/) + d(r„,r") car les horoboules

Hi(0) et 'Hx(to) sont disjointes. Par ailleurs, chaque point qn étant extérieur
à l'horosphère 'H\ (0), la sphère de centre qn et de rayon d(q„,q") rencontre
transversalement ()'H\(0) en deux points, l'un situé près de q'n, l'autre
étant égal à q'/. Par convexité des sphères et des horosphères, on a

d(p,qn) < d(q„,q'/). De même, si r := rrpç(t0), on a d(r,r„) < d(r„,r'/).
Ainsi

(q„\rn)P < (d(p,q„) - d(q„,q'/) + d(p,r„) - d(r„,r"))/2
< (d(p,r„) - d(r,r„))/2

et donc limsupiçnlr«)^ <
«—>+00

On applique maintenant ces deux lemmes pour démontrer le Théorème B.
Soient (£„)„. et (\',)„ deux suites de Ap convergeant respectivement vers §
et f,

Dans un premier temps Supposons que £ et £' sont joignables par une

géodésique a ; on peut alors supposer que toutes les paires de points (Ç„. /'„)
sont aussi joignables par des géodésiques (qui ne sont pas nécessairement

uniques) puisque les seuls couples de points qui ne sont pas joignables bordent

une même composante connexe de O(L). On note a„ une géodésique joignant
4„ à M. Rappelons que £„ —> £ si et seulement si il existe des suites R„ —> +00
et e„ -A 0 telles que |ß e C/(^, e„) où l'on a posé
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£/(4,R, e) {A G X/x £ B(o, R) et d(aox(R), cr0ç(R)) < e} •

Remarquons que pour tout «, on peut choisir a„ de telle sorte qu'elle traverse

l'ensemble U(Ç,Rn, e„)C\X et l'on peut alors fixer un point q„ G t/(4, Rm e„)C\er„.

Quitte à modifier les valeurs de Rn et e„ on peut de même supposer que
4« G U(Ç',R„re„) et choisir un point r„ G [/(£',fi a„ ; sairs perdre en

généralité on peut preirdre q„ et r„ assez proches respectivemeut de 4„ et

4* de façon à avoir (Q,|£,')/> ~ it«\r")p Comme R» "+ +°° et 0

on a q„ —>• | et r„ —11' si bien que la suite ((qtl\rn)p)„ converge d'après le

leimne 2.1. Il en est de même pour la suite ((£„|

Supposons à présent que 4" et 4' ne sont pas joignables par une géodésique.

Puisque ces deux points appartiennent à Ap, ce sont nécessairement les points
fixes attractif et répulsif d'une trairsfonnation parabolique exceptionnelle.
Les points 4«) 4« sont eux nécessairement extérieurs à [44'] et sont donc

joignables par une géodésique a„. Coimne précédemment, on choisit des

points qn et rn sur an, proches respectivement de 4b et 4,',, de façon à avoir
— (<ln\rn)p —> 0, et on peut supposer que ces points vérifient encore

les hypothèses du lemme 2.2. On conclut de la même façon
Enfin, si 4b G Ar Ar, pour « assez grand, les points 4b et 4 sont

joignables par une géodésique a„ et l'on a, pour p„ G cr„(R) quelconque,

(4b |4)o \ {Bçn(o,p„) + Bç(o.pn)) > d(o, cr„(R)) -¥ +OQ

lorsque « —> +oö, ce qui achève la preuve du théorème.

Cette démonstration pennet ainsi de proposer une définition explicite du

produit de Gromov entre points distincts de Ap :

Définition 2.3. Soient 4 et 4' deux points de Ap et 'hi(s) (resp. 'H'(t)
l'horoboule centrée en 4 (resp. en 4') et située à distance s > 0 (resp. t > 0)
de p.
1) (£|£% +oe si 4 4',
2) Si 4 et 4' sont les points fixes attractif et répulsif d'une transfonnation

parabolique exceptionnelle, on pose

(£]£% \ sup{v +1 His) n hi'u) f 0}.

3) Si 4 et 4' sont joignables par une géodésique a, la longueur l du

segment a n 'H(O) (1 H'{0) ne dépend pas de a lorsque plusieurs choix

sont possibles ; on pose alors

=iß-
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On pose enfin

^-©v à si £ ^ £'
DP(n,a')^

pour (£,£') G Ar x A,

0 si +00

2.2 Produit de Gromov et bouts de révolution
Donnons des exemples explicites où le produit de Gromov entre points

fixes attractifs et répulsifs d'une isométrie parabolique exceptionnelle ip est

fini ou infini. D'après ce qui précède, ce produit est la limite de la suite:

Pnm d(o, ip".o) + d(o, <p-"'.o) - d(ip-'".o, <pn.o)

— d(o, <p".o) + d(o, ip'".o) — d(o,

L'interprétation géométrique de la quantité P„m (dans le cas général) est

la suivante: si l'on note O'H une horosphère basée au point privilégié g, et

% la longueur de l'unique lacet géodésique basé en un point o G ~(<ÏH)
lm(u hF x(m,0)) et qui fait n tours exactement avant de revenir en o, on a

Pftm — hi A /Dt L—m

Notons (Tfi le lacet géodésique pointé en o qui fait « tours dans le bout

parabolique exceptioimel avant de revenir en o, v„ la hauteur à laquelle a„
monte dans le bout et 0n — Z0(x*(^(0,0), <r„(0)) l'angle entre la géodésique

7„ et l'horosphère centrée en 7 passant par o. Lorsque le bout parabolique

exceptionnel est muni d'une métrique de révolution écrite en coordonnées

locales dans un voisinage: dg2 — dv2 + f(v)2du2, les relations entre r„ et

n puis entre l„ et v„ se déduisent directement de la version intégrée de la

relation de Clairaut (voir par ex. [6]) :

<s,)

(S)

o ["" f(v)dv
h <Si)

Exemple 1. f(v) — y' i 7- 7 (v > 1); on trouve après un calcul
élémentaire :

gi(x) - 1) + \\/(x2 - 1 )(.v - 1) (t- 2Arcsin

g2(x) 2y/x (fit + !){§- Arctan )} + ^2{x - 1))
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EXEMPLE 2. /(v) — \/1 + e-" (y > 0); on trouve après un calcul

analogue :

Îgi(x)
2g*/2\J 1 + e~1 Arctau ^e*/2\Jl~\ ^

g2(x) e*/2 (2tt - 4Arc tau (^ÇÇ)) + &
Il est immédiat de constater, pour les deux exemples, que gi et g2 sont strictement

croissantes et continues donc inversibles ; le développement asymptotique
de <]2 o g~1 (fastidieux mais élémentaire) donne :

l„ — 2«7t + 25,/3«2/3(l -f- e(n)) (exemple 1),

/„ 2«7t + ln(3 + 2V2) + e(«) (exemple 2) if

où e(«) —I 0 lorsque « tend vers +oo. Par conséquent, pour le premier
exemple, P„„, —\ +oo tandis que pour le second, P„m —k P„ < +oo. lorsque

n et m convergent vers -foo.

2.3 BIRAPPORT

Soient f j fa- f:x fa quatre points deux à deux distincts de i\y. On souhaite

définir le birapport de ces quatre points, à la manière de [14] par la quantité

(B) lfi-f;-fa-f il
öp(6,C4)öp(f2,6)

Lorsque aucun couple parmi les quatre points considérés ne borde une

composante connexe C de 0(0 associée à un bout parabolique exceptionnel,
chaque quantité !),,(f/.ff) (' / j) est strictement positive donc l'expression
précédente est bien définie. Lorsque deux des quatre points bordent la
composante C, chacun des deux est joignable aux deux autres (qui peuvent aussi

border une autre composante connexe du même type). Par conséquent, dans le

birapport, un ou les deux facteurs du dénominateur (ou du numérateur) peuvent

s'annuler simultanément. Mais, si un des facteurs du numérateur s'annule,
les deux facteurs du dénominateur ne s'annulent pas, et réciproquement. Par

conséquent, on ne rencontre pas dans l'expression (B) de forme indétenninée
du type S et le birapport, à valeurs dans R+ U {+00}, est bien défini.

Notons que ce birapport est indépendant du point base p et invariant par
Paction des isométries. Ceci résulte directement de la fonnule

mry •= m%+
valable pour tout (f. f') e (Ar)2.
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Plus généralement, l'expression (B) est valable pour quatre points distincts
de X deux à deux joignables puisque le produit de Gromov entre tous les

couples de points choisis parmi ces quatre points est fini. Cette remarque

pennet d'établir le lemme de J.P. Otal:

I .EMME 2.4 ([14]). i) Soit 7 une isométrie axiale. Alors, pour tout
G À'( x {7+,2-} et pour tout k G Z, le birapport [£,7

est bien défini et vaut eh"~l.

ii) Soit \p une isométrie parabolique exceptionnelle qui fixe point par
point Vadhérence de la composante connexe I =]r/i,r/2[ de O(r) avec

t]2 — lim i. v ip" .p. Alors, pour tout £ G X(oo) \ Ie et pour tout A" G Z, le

birapport [£, ^(0-12- '/1_1 est bien défini et vaut ekm<r

Démonstration. Elle est la même que celle de [14], en considérant pour
le point i) un axe quelconque joignant 7+ à 7" et pour le second point,
une horosphère joignant p" rji à p+ : - 772- sur laquelle <p agit par
translation. Q

3. Non arithméticité du spectre et conséquences

Nous nous contentons, pour éviter la paraphrase, de détailler les points
de démonstration qui diffèrent du cas de la courbure négative majorée, cas

traité dans [7] et [8]. Cela met en lumière le phénomène de l'hyperbolicité
combinatoire (au sens de Gromov). Ell d'autres tenues, il existe un rapport
étroit entre la topologie de S et les propriétés dynamiques du flot géodésique

sur la surface, indépendamment de la métrique choisie sur S : c'est la topologie
de la surface F est un groupe libre - les sous-groupes paraboliques maximaux

ne contiennent pas de facteur Zk avec k > 2) qui impose l'existence de points
où la courbure est négative et par conséquent le caractère hyperbolique des

systèmes dynamiques considérés.

3.1 Quelque! rappels

On rappelle que le groupe F est à spectre arithmétique si l'ensemble

{mf ; tp G r} engendre un sous-groupe discret de R. Le spectre des

longueurs de F inclut par conséquent les longueurs asymptotiques dans les

bouts paraboliques exceptionnels (voir la preuve du lemme 1.16). Ce point
de vue justifie la terminologie d'isométrie mixte adoptée dans [4], puisqu'une
isométrie parabolique exceptionnelle agit comme une translation sur une famille
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d'horosphères dont la courbure géodésique converge vers zéro et la longueur de

translation vers l, lorsque la suite des projections de ces horosphères converge
dans le bout. Cet ajout, cependant, n'intervient pas de manière essentielle dans

ce qui suit.

Fixons une origine o£l; l'ensemble des horosphères de X centrées en un
point de Ar s'identifie à //r Ar x R+ par l'application qui à l'horosphère
ÔT-Le{t) -- {„r g X ; Bp(x. o) t} t g R) associe (i;,eCette paramétrisation
est naturelle au sens où l'action de F sur cette famille d'horosphères se traduit

par l'action de T sur son ensemble limite et par la multiplication par l'inverse
du facteur conforme, i.e.

La densité d'une feuille ,4"(7r(p)) pour v g Ï\X tel que £ — agf+Qo) G Aise

traduit exactement par F.(C 1) — Hy.
Le résultat qui suit correspond au lemme 1.3 de [7] et se démontre sans

modification, compte tenu de la continuité de la fonction D Da démontrée

dans la section 2.

I .EMMI. 3.1 ([7]). Soit une isométrie axiale ou parabolique exceptionnelle

et 72 une isométrie axiale n'ayant pas de point fixe en commun avec
On suppose qu'il existe une suite {r„)n&i é NN convergeant vers +oo et une

suite (v„)„eN g ZN telles que rnml2 + v'Li conver8e vers zéro. Alors,

3.2 La preuve du Théorème A

On suit pas à pas la preuve de [7] pour établir i) rif» ii) =7 iii) i).

i) ii) : on fixe une isométrie axiale ou parabolique exceptionnelle 7,
Le lemme 3.1 et la densité des orbites périodiques dans la partie récurrente

du flot géodésique (corollaire 1.20) donnent immédiatement

La projection de T.(7+, 1) sur le premier facteur étant égale à Aj-, il suffit
d'examiner la section T.(7+, 1) n (7+,R+) et d'établir

T-(C^) Ï7-»S|7'<£)L x)-

{',<0 := ((• e ' Ar| t r.(7+, 1)

{(7+.exp{2X: i 7,- axiale, g Z, p g N*| C I•
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Ceci découle d'une nouvelle application du leinme 3.1 à des éléments bien
choisis (pour faire apparaître un birapport) et de 1* utilisation du lemme d'Otal
qui relie birapport et spectre des longueurs. Cette preuve établit en particulier
la densité des feuilles qui se relèvent en des horosphères centrées aux points
fixes des éléments axiaux, lorsqu'il existe une feuille dense.

ii) -> iii) : on raisonne par F absurde en supposant simultanément Y existence

d'une feuille dense pour JF+ et l'existence de deux ouverts U et V de Q

et d'une suite t„ —> — oo tels que U f i </,r:(V) - 0. La densité des orbites

périodiques permet de trouver un élément périodique r 7 V de période T.
On trouve dans l'orbite de y un autre élément (périodique w qui définit
une feuille dense, cette dernière rencontrant U en u. En remarquant que u et

w sont dans la même feuille fortement stable, on montre que pour t voisin
de zéro bien choisi, gt(u) 6 tf H (V).

iii) i) : la preuve est classique et repose encore sur la densité des

orbites périodiques dans la partie récurrente du flot, démontrée au corollaire
1.20. L'idée est de prendre un voisinage de petit diamètre dans lequel on
revient après tout temps t > to et d'utiliser le lemme de fermeture qui
entraîne l'existence d'une orbite périodique de longueur proche de t.

Pour achever la preuve du Théorème A, il resté à établir le

LEMME 3.2 ([8]). Tout sous-groupe discret non cyclique du groupe
fondamental de S est à spectre non arithmétique.

Schéma de démonstration. Par l'absurde. On prend deux isométries axiales

7i et 72 d'axe cri et rj2 respectivement qui se croisent (la propriété
d'intersection ne dépend pas du choix éventuel des axes). En posant gn 7172,
on montre que m„n — m,. —> ml2. Si le groupe T est à spectre arithmétique,
la suite précédente est constante à partir d'un certain rang mais l'identité

mgn — mgn l - îSfjj ne peut jamais être satisfaite car les axes de gn et 72 se

coupent.
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