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TWO-DIMENSIONAL LATTICES WITH FEW DISTANCES

by Pieter MOREE and Robert OSBURN

ABSTRACT. We prove that of all two-dimensional lattices of covolume 1 the
hexagonal lattice has asymptotically the fewest distances. An analogous result for
dimensions 3 to 8 was proved in 1991 by Conway and Sloane. Moreover, we give a
survey of some related literature, in particular progress on a conjecture from 1995 due
to Schmutz Schaller.

1. INTRODUCTION

Itis an old problem in combinatorial geometry how to place a given number
of distinct points in n-dimensional Euclidean space so as to minimize the total
number of distances they determine. Conway and Sloane [9] conjecture that,
for all N sufficiently large, the optimal set of N points in #-dimensional space
will be a subset of an n-dimensional lattice having minimal Erdés number.
In real Euclidean space R" equipped with inner product (v,w) = v . w,
a lattice L consists of all integral linear combinations

v=Muvr+ o+ A, A €L
of n linearly independent vectors vy,...,v,. The vectors vy,...,v, form an
integral basis for L, and
FO) = (w,v) = MAA", A= (Qqy.. 0,0, A=(ay), az = (v,v)
is the corresponding quadratic form. The various integral bases for L yield

integrally equivalent quadratic forms. Suppose n > 2. The Erdés number of
an n-dimensional lattice L is given by

(1.1) E; = Fpd'/",
where d 1s the determinant of the lattice and F,, its population fraction, is
given by

N,
. Fp=lim 29

x—=oo X

n=72 if n>3

3

V1
F; — lim Nylogx .
x—roc X
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where N;p(x) is the population function associated to the corresponding
quadratic form, i.e., the number of values not exceeding x taken by the form.
The Erdés number 1s the population fraction when the lattice is normalized to
have covolume 1. Conway and Sloane [9] proved that for n > 3 the lattices
with minimal Erdés number are (up to a scale factor) the even lattices of
minimal determinant. For 2 < n < 10 the even lattices of minimal determinant
are unique:

(12) AZJ A3gD37 D4J D57 E67 E77 E87 ES @Alj ES @AZ

Actually Conway and Sloane also claimed the result for n = 2, relying
on a preprint (in 1990) of Warren D. Smith [36]. However, the preprint was
never published and this induced Schmutz Schaller [32, p.200] to write the
case n = 2 seems to be open’. It is the purpose of this paper to dispose
of this case (in Theorem 1) and thus to ‘complete’ the Conway and Sloane
result. In doing so, we have made use of results that have become available
only very recently. In particular, we use an explicit formula for the number of
genera ol discriminant [ representing a positive integer n (see Theorem 5)
and an improved lower bound on the Euler phi function ¢(n) for n odd (see

(5.5)).

Let 2 denote the hexagonal lattice of covolume 1, that is,

b C ORC WA
=B o) 9 e )
The associated quadratic form is (X2 + XY + Y2)2/v/3.

THEOREM 1. [If L is any two-dimensional lattice not isometric to X, then
Ep, the Erdds number of L, satisfies

(13) E. >Es =273 ] — 0.553311775832479 - - -

1
p=2 (mod 3) V 1—1/p
In other words, of all the two dimensional lattices of covolume 1, X has
asymptotically the fewest distances. Moreover, given any real number r the
set of non-homothetic lattices L such that E; < r is finite and can be explicitly
determined.

In fact it turns out furthermore that if £; is finite, then there 1s a homothetic
lattice L' such that E; = E;, and the quadratic form associated to L' has
integer coefficients and is primitive (for X this is X? 4+ XY + Y'?). Moreover,
E; will only depend on the discriminant D of the associated quadratic form.
To stress this, we write E(D) rather than E; .
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1.1 ON A CONJECTURE OF SCHMUTZ SCHALLER

In [32, p.20] Schmutz Schaller, motivated by considerations from hyper-
bolic geomeltry, proposed for dimensions 2 to 8 a daring strengthening of
Theorem 1 and (part of) the Conway and Sloane result:

CONJECTURE 1. In dimensions 2 to 8 the even lattices with minimal
determinant have ‘maximal lengths’, meaning that their length spectrum
dominates the length spectrum of every other lattice of the same dimension
and covolume at every position.

Schmutz Schaller [31] proved an analogue of this conjecture in the
hyperbolic case. Given any lattice L one can define the sequence 0 < d; <
dy < ... of distances between lattice points that occur in this lattice (the
length spectrumy). (It 1s very important that in this definition we do not care
about the multiplicities of these lengths.) The number d; is called the k-th
length of L. Given any other length spectrum 0 < [} </, < ... we say that
the former length spectrum fotally dominates the latter if d; > I; for every
i > 1. This can be reformulated in terms of Ny (x): the length spectrum I,
totally dominates that of L, if and only if N, (x) < N, (x) for every x > 0.

Let § = Z[i] denote the square lattice and H = Z[(3] the hexagonal lattice.
Schmutz Schaller [32] conjectured that the hexagonal length spectrum should
dominate that of the square lattice, that 1s he conjectured that Ny (x) < Ng(x) for
every x > 0, to make the point that even a partial version of his conjecture
should be difficult to establish. Indeed, the first author and te Riele [22],
refining techniques from [19], managed to prove this only after considerable
effort, also numerical effort. Their approach, however, does not seem to offer
any hope of establishing the general conjecture.

From the work of Korkine and Zolotareff (in the 19th century) and
Blichfeldt (cf. [30, Chapter 9] and [4]) 1t follows that Conjecture 1 1s true in the
1-length case, i.e., the lattices in (1.2) have maximal minimal positive length
amongst those of the same dimension, after scaling to the same covolume.
For a list of these lengths see, e.g. [30, p.204].

A two-dimensional lattice 1s said to be arithmetic if and only if there exists
a real number A such that AL is 1sometric to a Z-submodule of rank two in
an imaginary quadratic number field, otherwise it is said to be non-arithmetic.
Kithnlein [16] proved that a two-dimensional lattice is arithmetic if and only
if there are at least 3 pairwise linearly independent vectors in it having the
same length. As a consequence it is easy to show that Ny(x) ~ c¢(L)x for some
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positive constant c¢(L) in case L is non-arithmetic. It follows from this that
a non-arithmetic lattice does not have a finite Erdés number. Kiihnlein [16]
proved furthermore that the length spectrum of X totally dominates the length
spectrum of every non-arithmetic lattice of covolume 1. Thus in order to prove
Conjecture 1 for dimension 2 it suffices to prove that the length spectrum
of £ totally dominates the length spectrum of every arithmetic lattice of
covolume 1.

2. POPULATION FRACTION OF BINARY QUADRATIC FORMS

Let f(X,Y) = aX? 4 bXY + cY? be a positive definite binary quadratic
form with discrimmnant Dy — b® —4ac and a,b and ¢ real numbers. Let By (x)
count the number of positive real numbers r < x that can be represented
by f.

In the course of history the problem of estimating By(x) has attracted
considerable interest. A classical result of Landau [17] states that, as x tends

to infinity,
x

Viogx’

where C(f;) is an explicit constant and (X, Y) = X2 4+ Y2, Precisely, C(f))
1s of the form

By (x) ~ C(f1)

) = % [[ a-»>""
p=3 (mod 4)
Note that By (x) = Ns(x).

A similar result was claimed by Srimivasa Ramanujan in his celebrated
first letter to Hardy (written in 1912), cf. [21]. The constant C(f;) 1s now
called the Landau-Ramanujan constant, cf. [11, Section 2.3]. Ramanujan even
claimed that it ought to be true that

dt
Viogt

Note the analogy with the prime number theorem under assumption of the
Riemann Hypothesis. This states that 7w(x), the number of primes p < x,
satisfies w(x) = [, dt/logt + O(x'/**€), on assumption of the Riemann
Hypothesis. It was folklore that ILandau’s method could be easily adapted
to show that Ng(x) satisfies an asymptotic series expansion in the sense of
Poincaré :

+ O(x'/7)

@1 Ns() = C(fi) fz
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1 )

+ + +
Vio ( log x logzx

Fin 1
T log" x T 0(10gm+1x)>’

where m > 1 1s an arbitrary integer. A proof of this was finally written down
by J.-P. Serre [33] for the larger class of so-called Frobenian multiplicative
functions. Note that Ramanujan’s conjecture implies, by partial integration of
the main term, that

(2.2) Ns(x) = C(f)

Ns(x) = C(f1)

51 52 S 0 1

\/l_( T Tog x + logzx 4o+ Tog” x + (logm+1 x)) ;
with s; = (2j— D!/((j—1)!2%¥~") and m > 1 an arbitrary integer. Ramanujan’s
conjecture was shown to be false by Shanks [34] who proved that s; # ry.
In a celebrated unpublished (during his lifetime) paper on the partition and
tau function [3], Ramanujan made conjectures similar to (2.1) concerning the
divisiblity of the Ramamyan tau function by certain special primes. These
conjectures were all shown to be false by the first author [20]. However,
Rankin had shown earlier that asympiotically these conjectures are correct.

Paul Bernays (of later fame in logic and for many years assistant to
Hilbert [28]) was a PhD student of T.andau’s at Gottingen. In his 1912 thesis
Bernays [1] studied the question of finding an asymptotic formula similar to
that of Landau’s, but now in case f 1s a primitive positive definite binary
quadratic form having negative discriminant D;. Bernays proved that, as x
tends to infinity,

X
(2.3) By(x) = C(f)\/@ +0 (W)7
where the constant C(f) is positive and depends only on the discriminant Dy
of f and ¢ < min(1/k, 1/4), where & denotes the number of reduced quadratic
forms having the same discriminant as f. It turns out that the dependence of
C(f) on Dy is not very strong; C(f) = O(l)

Bernays’ result allows various generallsatlons: one could ask for simul-
taneous representation of n by various quadratic forms or by norm forms.
A lot of work in this direction was carried out by Odonti, cf. [24, 25]. Blomer
recently pointed out that Bernays’ method can be used to disprove a conjecture
of Erd6s. The falsity of this conjecture was claimed earlier by Odom [26],
but his paper seems to contain some obscurities. Erdés conjectured that the
number V(x) of integers not exceeding x that are sums of two squareful
integers satisfies V(x) =< x/y/logx, where an integer n is called squareful
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if p | n implies that p* | n for all primes p. Since every squareful integer n
can uniquely be written as n = a>b* with j(a) £ 0, one can write

Vixy=#{l <n<x:Jda=(a,a) € NZ: a?X2 + a%Y2 represents n} .

Thus one can estimate V(x) if one can deal with By(x) with some uniformity
m f (or rather the discriminant of f). In Bernays’ method the dependence
on D can be made explicit. This yields Bs(x) >, |D|™“x/y/logx uniformly
at least in D = O((loglogx)'/?). This result can be used to show that Erdés’
conjecture is false. By a more refined method Blomer [5, 6] even showed that
V(x) = x(logx)~*T¢, where a = 1 — 273 = 0.206. ... Moreover, Blomer
and Granville [7] conjecture that V(x) = x(log log)c)zz/s_l(logx)z_l/s_1 and
prove the upper bound, failing to obtain the conjectured lower bound only by
a power of loglogx.

Bernays’ result can be used to infer the following alternative characterisa-
tion of arithmetic lattices.

PROPOSITION 1. A two-dimensional lattice has a finite Erdds number if
and only if it is arithmetic.

Proof. We have already seen that a non-arithmetic lattice does not have
a finite Erd6s number. If the lattice is arithmetic then, possibly after scaling,
the associated quadratic form has integer coefficients. The result then follows
from Bernays® theorem and the definition (1.1) for n=2. [

We say that the quadratic form f = [a, b, c] is projectively equivalent
with ¢ = [d',b,c'] if the vectors (a,b,c) and (a',b',c’) are projectively
equivalent. If ¢ is projectively equivalent to a binary quadratic form with
integer coefficients and negative discriminant, say g = [Ad’, AP, Ac'], and
f=1d,b,c'] with X\ >0, then Bernays’ result (2.3) implies that, as x tends
to infinity,

x

Viogx'
It is easy to see that if L is any arithmetic lattice, then

2.4) £ =Y i

e

By(x) ~ C(g)

C(,

where f 1s a quadratic form associated to the lattice L. Note that if f and g¢
are projectively equivalent, then /|Dy|C(f) = /|D4|C(g). We now have:
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PROPOSITION 2. Let L be a two-dimensional lattice. The assertion E; > Es
is equivalent with the assertion that the minimal value of \/WC( H/2, as
[ ranges over the primitive binary quadratic forms of negative discriminant,
is assumed for f = X?+ XY + Y2,

Proof. By Proposition 1 we can restrict ourselves to arithmetic lattices. The
quadratic form associated to an arithmetic lattice 1s projectively equivalent with
a primitive positive definite binary quadratic form of negative discriminant.
Vice versa, to a quadratic form having integer coefficients there corresponds
an arithmetic lattice. The proof is then completed on invoking (2.4) and noting
that X2+ XY +Y? is the primitive binary quadratic form associated to =. [

2.1 ON COMPUTING THE POPULATION FRACTION

Proposition 2 ‘reduces’ our geometric problem to a problem in number
theory, namely that of computing C(f). We now discuss some historic results
which are related to the explicit evaluaton of C(f) due to Bernays.

A nonsquare integer D with D =0 or 1 (mod 4) is called a discriminant.
The conductor of the discriminant D 1s the largest positive integer f such that
do := D/f* is a discriminant. If f = 1, then D is said to be a fundamental
discriminant. James [14] proved that the number Bp(x) of positive integers
n < x which are coprime to D and which are represented by some primitive
integral form of discriminant D < —3 satisfies

Bp(x) = J(D)—\/Ii@ + 0(@) ,

where J(D) is the positive constant given by

23) mI(D) = |D|(D)H %
@1 T
and p runs over all primes such that (g) = —1. Here and in the remainder

of the paper implicit constants depend at most on the discriminant D.

Just as for the characteristic function of X?-+Y 2, the characteristic function
corresponding to integers counted for some x by Bp(x) is multiplicative. In
both cases the associated Dirichlet series are very similar and this allowed
James to essentially mimic Tandau’s original proof. In 1975 Williams [38]
reproved James’ result in a more elementary way (essentially along the lines of
Rieger [29], who gave a more elementary proof of Landau’s result). However,
this reproof only gives a weaker error term. We like to point out that an even
easier proofl (but with an even weaker error term) can be obtained on invoking
the following classical result of Wirsing [39].
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THEOREM 2. Suppose that f(n) is a multiplicative function such that
f(n) > 0, for n > 1, and such that there are constants i and 7y, with
Y2 < 2, such that for every prime p and for every v > 2, f(p") < vy .

Assume that as x — 00, M
D~

p<x

where T > 0 Is a constant. Then as x tends to infinity we have

e x o) FPP)
Zf(n)NF(T)long(1+—+ : +)

n<x p<x P P

where ~ Is Euler’s constant and (1) denotes the gamma-function.

Let £&p be the multiplicative function defined as follows:

AT
Ep(p) =141 if (g) =—1and 2| e;
0 otherwise .

Let i be any integer coprime to D. Then £p(m) = 1 if and only if #
1s represented by some primitive positive integral binary quadratic form of
discriminant D. It follows that Bp(x) = > _ &p(n). It is a consequence of
the law of quadratic reciprocity and the prime number theorem for arithmetic
progressions that

X
2.6 = 1 ~ .
2.6) 2= 1~
px px
(&)t
Thus the conditions of Wirsing's theorem are satisfied and we find that
e~ x 1 1
BD(x) w2 H 1 H 1 -
r'(1/2)logx o 1—g o 1— >

G=1  @=
By (6) of [38] we have the following estimate :

1 (1=5) =10 -5)

p<x plD

&)t
1 ’ —-1/2
H (1 _%) 1/2 (1 )f(]:;x_—i_o(logg'l/zx)'
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On combining the latter formulae it then follows that

Bp(x) ~ J(D)

x
Viogx '

Indeed on using standard results from the asymptotic theory of arithmetical
functions it is not difficult to improve on James’™ result. Estimate (2.6) can be
easily sharpened to

X

> &op) = fog  Onliogms)

p<x

for every m > 0. This in combination with e.g. [21, Theorem 6] then shows
the truth of the following result:

THEOREM 3. We have, for every k > 1,

X
Bp(x) = J(D)ﬁJrZ o +1/2 +Ok(170gk+3/2_€x>7

where the constants ci,cz2,... may depend on D.

James” counting function is artificial in the sense that one would like
to drop the condition that #n be coprime to D. This was achieved by
Pall [27], who proved that the number Cp(x) of positive integers n < x
which are represented by some primitive integral form of discriminant D < —3
satisfies

X
Cp(x) = P(D) \/Tw(logx)

where P(D), Pall’s constant, is computed as follows. et p be a prime
dividing D. Let p’ denote the primes which satisfy the following condition:
il p>2and p*>|D or p=2 and D=0 or 4mod 16. Then

P(D) _bol;[(l _1%)_11_[(“%#) :

where in the second product D = p*D’ where p* { D', k > 1, and (%) £—1,




370 P. MOREE AND R. OSBURN

and
= o 10 ) T 5) T -5)
wy/|D| q 7 4 P p|D P
p#p’
where ¢ runs over all primes such that (g) =—-1.
Let us compute a specific example. If D = -3, then
5 g 1 I 3 o
P(-3) :bozg-ﬁ-a-izm,

where { s

o= H (1 — ?) .

g=2 (mod 3)

Thus

1 1 1y\-1/2
P(=3) = —— (1 _ —) .
V2318 q—zl(m_[od 3) q
Using Pall’s result and the fact that h(—3) = 1, it then follows that Ey 1s
as given in (1.3). Pall’s result allows us to compute C(f) in case the order
associated to f has class number one.

Going beyond Pall’s work requires genus theory. Let H(D) denote the
group of strict equivalence classes of primitive, positive-definite, integral,
binary quadratic forms of discriminant D under Gaussian composition. [et
G(D) denote the genus group of H(D), that is, G(D) = H(D)/H(D)*. The
order |G(D)| of G(D) is a power of 2 so that there exists a non-negative
integer #(D) such that |G(D)| = 2'®. The latter quantity is the number of
classes whose order divides 2, that is, the number of ambiguous classes in
H(D). The value of #(D) is given as follows (see [10] or [37]):

w(D) if D=0 (mod 32),
2.7 (D) =< wD -2 if D=4 (mod 16),
w(D)—1 otherwise,

where w(D) denotes the number of distinct prime factors in D. For example,
if D=-3=1mod4, then w(D) =1 and so there is one genus of forms
of discriminant —3. Note that if D is fundamental, then #(D) = w(D) — 1.
We say that n 1s represented by the genus G of G(D) 1if it is represented
by at least one class in G. By g(n, D) we denote the number of genera of
discriminant D representing n. We now turn to the explicit evaluation of C(f)
(see page 59 and 115-116 in [1]) which is due to Bernays. Namely, we have
the following




TWO-DIMENSIONAL LATTICES WITH FEW DISTANCES 371

THEOREM 4 (Bernays” Theorem). Let f be a positive definite binary
quadratic form having discriminant D. Then

J(D D
e Cch =30 3 12

n|Dee

where n | D means that n divides some arbitrary power of D.

It is a classical fact that if n is represented by a class of discriminant D
and (1, D) =1, then g(n,D) = 1. It 1s rather more complicated to determine
the value of g(#, D) in case (1, D) > 1. This was recently achieved by Kaplan
and Williams in [15] and Sun and Williams in [37]. In [15] they showed that
if g(n,D) > 0, then g(n,D) = 2O~ P/™) where m is the largest integer
such that m? | n and m | f. Note that m?* is the largest square dividing (r,f?).
This result together with Theorem 6.1 of [37] then yields the following result.
Here v,(n) denotes the largest power of the prime p dividing the nonzero
integer .

THEOREM 5. Let D be a discriminant with conductor f, dy = D/f* and
n a natural number. If (n.f*) is not a square, or there exists a prime p
such that vy,(n) is odd and (%0) = —1, then g(n,d) = 0. Suppose (n,f?)
is a square and (%) = 0,1 for every prime p with v,(n) is odd. Then
g(n, D) = 21@)—1D/(nf™)

Using Theorem 5 one can evaluate more explicitly the sum

D
(2.9) oDy =y g(”T’).

n|D>
By Theorem 5 we have

DY —1(D /m*) /1
(2.10) uD)=>" —— 2

7
1
m|f

where the dash indicates that the sum is over those ny dividing D™ such that
(no,f/m) =1 and there is no prime p such that 2 { v,(ng) and (%") = —1.
Note that if g(n,D) > 0 we can write, by Theorem 5, (,f%) = m?, with
m | f and thus we have n = nom?®, where (ng,f/m) = 1. Furthermore note
that 2 { v,(n) if and only if 2 1 v,(19).On evaluating the double sum in (2.10)
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we obtain

A1D)—H(D Jmh)

|D| 1
@1 o) = —= ]
(D)) D 1+1/p Y m2

(-1

1 1
plgm(l p) (%;/[m (1 + p) .
?0:—1

Using (2.7) the sum v(D) can be explicitly computed using this formula.
Note that it always is a positive rational number. Also note that if D 1s a
fundamental discriminant, then

D
Dy= ——.
D)= CaoD

EXAMPLE 1. Take D = —1984 = —2°.31. There are 2" = 4 genera of
discriminant —1984. We have G(—1984) = {I,A.B,AB} = Z, x Z,, where

1= {[1,0,496], [20, +4,25]}

A= {[4,4,125], [5,£4,100]}

B = {[16,0,31], [7, 2,711},
AB = {[16,16,35], [19, +12,28]} .

The divisors n of D> such that g(n,D) > 0 are precisely the numbers of
the form 31¢, 4-31¢, 16-31¢ and 64 -31¢-2", where a,b > 0 are arbitrary
integers. By Theorem 5 we have g(n,D) = 1,2,4 and respectively 4 for
these cases. Indeed, if n = 31¢, then the corresponding genera are I and B,
depending on whether a is even or odd. If n = 4-.31¢, then the corresponding
genera are | and A, and B and AB depending on whether a is even or odd.
In case n = 16-31¢ and n = 64-31%- 2% the corresponding genera are I, A, B
and AB. For example, if n = 4.312%t! then n is represented by [16, 16,35]
on taking x = 31¢ and y = —2-31“ and thus is represented by AB. It follows
that

g(n, D) 2 4 4 S 1\V\=1 31
py=S"%D (i c 2 TN 2 =2
uD) %; 7 (+4+16+64§2b (;31(1 16

Note that formula (2.11) also yields that v(D) = 31/16.
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REMARK 1. Fomenko [12] has given an alternative proof of Bernays’
asymptotic result using the theory of multiplicative functions in which
the constant C(f) 1s explicitly computed in case D is a [undamental
discriminant. Namely, we have (see [12, Theorem 4]) for a fundamental
discriminant D,

PD) x
210 \logx°

where P(D) 1s Pall’s constant. It might be interesting to compute C(f) for
arbitrary discriminant D using Fomenko’s approach.

(2.12) By(x) ~

REMARK 2. It mught also be of some interest to recover C(f) in general
following Iwaniec’s approach to the half-dimensional sieve. Using this sieve
(see [13]), the constant C(f;) was verified for f; = X* + Y2,

3. ON EXPLICITLY COMPUTING THE ERDOS NUMBER

The explicit formula (2.11) for v(D) allows one to explicilly compute the
Erd6s mumber E(D). Note that from (2.4), Theorem 4, (2.5), and (2.9) it
follows that

21(D)+1 P P

@1

3.1 E(D) = v(D) [L(1,xp)e(|D]) H (1_ 1)—1/2,

where v(D) 1s explicitly given by (2.11).

The latter formula unfortunately does not allow one to compute E()) with
more that a few decimals of accuracy. A problem in doing so is that the
Euler product involved on direct evaluation (by multiplying consecutive terms
together) can be evaluated with roughly six digit precision only. However,
it turns out that 1t is possible to express these Euler products in terms of
L-series evaluated at integer arguments.
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To this end note that for R(s) > 1/2,

2
(=1 G0 (=1

By recursion we then find from (3.1) and (3.2) the following formula:

_ D) LA xp)e(D) T ¢2Y L\ 2T

(3 ED) = 350 = gy Ha-a) "
= @0

This approach was already known to Ramanujan [2, pp. 60—66] and, indepen-

dently, Shanks [34, p. 78]. It can also be used to deal with more elementary

Euler products of the form

11(-42).

pP>pmo g(p)

where f and g are polynomials such that deg(f)+ 2 < deg(g), see e.g. [18].
In the latter case only values of ((s) at integers are required.

We note that in case D is a fundamental discriminant v(D) = |D|/¢(|D])
and #(D) = w(D) — 1 and hence

Dl L, xp) T/ €2 _p 2
(3.4) E(D) - 2w(D) ch(|D|) ;11:[1([’(2”’ XD) ([]);[0(1 —q )) .

4. SOME COMPUTATIONS OF SHANKS AND SCHMID REVISITED

We demonstrate our above approach in computing the Erdds number (and
hence by (2.4) the Bernays constant C(f)), by recomputing the eniries in
Table 1 from a paper by Shanks and Schmid [35]. They put C(X2+nY?) = b,
and we will follow their notation. The second column in the following table
corresponds to the values of b, as computed in [35] to nine decimal places
(for n =11, n = 13 and n = 14, approximate values ol b, were given).
The third column in the table is the computation of b, using (2.4) and (3.3).
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n b, b,

1 0.764223654 | 0.7642236535892206629906987311
2 | 0.872887558 | 0.8728875581309146129200636834
3 0.638909405 | 0.6389094054453438822549426747
4 | 0.573167740 | 0.5731677401919154972430240483
5 | 0.535179999 | 0.5351799988649545413027199090
6 | 0.558357114 | 0.5583571140895246274460701041
7 | 0.543539641 | 0.5435396411014846926771211300
8 | 0436443779 | 0.4364437790654573064600318417
9 | 0424568696 | 0.4245686964384559238837215172
10 | 0.473558100 | 0.4735580999381557098419651553
11 ~ 0.677 0.6773880181341740551427831009
12 | 0399318378 | 0.3993183784033399264093391717
13 ~ 0.420 0.4207205175783009914997595500
14 ~ 0.563 0.5634867715862649042931719141
16 | 0.334347848 | 0.3343478484452840400584306948
20 | 0.401384999 | 0.4013849991487159059770399317
24 | 0.279178557 | 0.2791785570447623137230350520
27 | 0.496929538 | 0.4969295375686007973093998581
64 | 0.274642876 | 0.2746428755086261757622823564
96 | 0.209383918 | 0.2093839177835717352922762890
256 | 0.259716632 | 0.2597166322744617096882452719

5. PROOF OF THEOREM 1

395

The idea of the proof is to use a lower bound estimate for (|D|) combined
with an upper bound estimate for w(D) to show that E(D) > E(-3) for
all |D| > Dy, with Dy an explicit number. In the range |D| < Dy one
then determines those D for which the quickly computed lower bound for
E(D)* given in (5.2) does not exceed E(—3)>. For these values of D one
then computes E(D) using (3.3) and compares with E(—3). We now prove
Theorem 1.

Proof. Note that A(D) > 2'® (D) > 1 and that the Euler product in
(3.1) exceeds one. Using these trivial lower bounds and (3.1) we infer that
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1/2
1 (D)
(51) E(D) > (ZI(DH_lw(D) |D1/2) ’

where we used that L(1, yp) = 27nh(D)/ (w(D)\/W)‘ It 1s well-known that in
case D is a fundamental discriminant w(D) # 2 if and only if D = -3 or
D = —4. Using the observation that that order for the discriminant D is the
Z-module generated by 1 and f(D ++/D)/2 (cf. [10, Lemma 7.2]), where f
1s the conductor, one sees that w(D) =2 unless D = —4 or D = —3. In the
rest of the proof we assume that |D| > 5. Then

(Db

21MD)+2 / D]

Put g(n) = p(n)/(2¥®/n). Note that g is a multplicative function of 7.
If n=][,q denotes the canonical factorisation of n, then

(5.2) E(DY* >

gln) = quf'/z 1(q,—l)>H (va \/q_).

i=1

We let p; =2, p, =3, ... denote the consecutive primes. Note that /x— ﬁ

1s strictly increasing with x. It thus follows that

g(n) > ﬁ%(\/ﬁ— \/lp—l) :
i=1

If n is odd, then we similarly have

m+1
(5.3) (n) >
gln H (\/_ \/_)
From (2.7) and (5.2) one infers that
5.4 E(D)* > a(D) g(Doaa) ,

where

1/4 if D =12 (mod 16),
a(D) = 1 1/+/8 if D=8 (mod 16) or D = 0 (mod 32),

1/2 if D=1 (mod4), D=0 (mod 16), or D =4 (mod 16),
and D.gq9 denotes the largest odd divisor of D.

First assume that D = 1 (mod 4) (thus «(D) = 1/2 and #(D) = w(D)—1).
Then, from (5.4) and (5.3) we infer that
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w(D—+1
) 1

zor> T 4w 1)
=2 '

If w(D) > 3 it follows from the latter inequality that E(D) > 0.66 > E(—3).
So let us assume that w(D) < 3. It now follows, using

(5.3) p(n) > e 7
loglogn

for all odd integers n > 17 (see [8]), that for |D| > 19 we have

D WD
16,/]D| 16 loglog |D|

From this estimate one infers that E(D) > E(—3) for |D| > 217. For the D
with D=1 (mod 4) and 7 < |D| < 215 one checks that

1/2
@(|D))

except for D = —15. A direct computation shows that FE(—15) =
0.9719612 . .- > E(-3).

The remaining cases are dealt with similarly: on noting that the right
hand side of (5.3) is monotonically increasing for m > 2 one uses (5.4) to
obtain an upper bound for w(D). From this upper bound, (5.2) and (5.5), one
then finds an integer Dy such that if E(D) > E(-3), then |D| < Dy. For
the discriminants D with |D| < Dy one then computes the discriminants D
for which the left hand side of (5.2) does not exceed E(—3)?. For these D
values one then computes E(D) using (3.3). One finds that for all these values
of D one has E(D) > E(—3). In this way it is seen that E(D) is minimal
for D= —-3.

To prove the second assertion note that in the above argument one can
replace £(—3) with any real number r. In the end one is left with a finite
list of D for which E(D) < r. L[]

ExaMmpLE 2. TIf r =1, then one finds the following list.

D E(D)
—3 | 0.5533117758324795595155817776
—4 | 0.7642236535892206629906987311

—7 | 0.9587138120398867707178043483
—15 | 0.9719612596359906049817562980
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Thus the second smallest lattice 1s given by the maximal order with D = —4
(the square lattice) and the third and fourth smallest lattices by D = —7 and
D = —15 respectively.

REMARK 3. The inequality (5.5) is quite subtle. T.et Ny =2-3---p; be
the product of the first & primes, then if the Riemann Hypothesis is true (5.5)
1s false for every integer n with n = N;. On the other hand, if the Riemann
Hypothesis is false then there are infinitely many integers & for which n = N,
does satisty (5.5). See Nicolas [23] for a proof of this interesting result.
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