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TWO-DIMENSIONAL LATTICES WITH LEW DISTANCES

by Pieter MoREE and Robert OSBUEN

ABSTRACT. We prove that of all two-dimensional lattices of covolume I the

hexagonal lattice has asymptotically the fewest distances. An analogous result for
dimensions 3 to 8 was proved in 1991 by Conway and Sloane. Moreover, we give a

survey of some related literature, in particular progress on a conjecture from 1995 due
to Schmutz Schaller.

1. Introduction

It is an old problem in combinatorial geometry how to place a given number

of distinct points in n -dimensional Euclidean space so as to minimize the total
number of distances they determine. Conway and Sloane [9] conjecture that,

for all N sufficiently large, the optimal set of N points in n-dimensional space

will be a subset of an «-dimensional lattice having minimal Erdös number.

In real Euclidean space R" equipped with inner product (v,iu) — v - w,
a lattice L consists of all integral linear combinations

äfi3=s Allô + • • • T Xnv„, A,- C Z

of n linearly independent vectors v%,..., Vn • The vectors cq v„ form an

integral basis for L, and

/(A) (v, v) AAA*, A t= (Ai,... ,>, A„>, A (ay)., ay (n. vj)

is the corresponding quadratic fonn. The various integral bases for L yield
integrally equivalent quadratic forms. Suppose « > 2. The Erdôs number of
an «-dimensional lattice L is given by

(1-1) EL^FLdl!\.
where d is the determinant of the lattice and FL, its population fraction, is

given by
A /(.\ K log a Nl(x)

Fl — lim il n — 2 Fl — lim il n > 3
A->oo X X^-OO X
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where A'/.(.v) is tlie population function associated to the corresponding
quadratic form, i.e., the number of values not exceeding x taken by the form.
The Erdôs number is the population fraction when the lattice is normalized to
have covolume 1. Conway and Sloane [9] proved that for n > 3 the lattices
with minima] Erdôs number are (up to a scale factor) the even lattices of
minimal determinant. For 2 < n < 10 the even lattices of minimal determinant

are unique :

(1.2) E. .li /)i. /.>!. 1)=,. If. Ej, Es, E%;1§iAi% Es ®À2

Actually Conway and Sloane also claimed the result for n 2, relying
on a preprint (in 1990) of Warren D. Smith [36]. However, the preprint was

never published and this induced Schmutz Schaller [32, p. 200] to write ' the

case n - 2 seems to be open It is the purpose of this paper to dispose

of this case (in Theorem 1) and thus to 'complete' the Conway and Sloane

result. In doing so, we have made use of results that have become available

only very recently. In particular, we use an explicit formula for the number of
genera of discriminant D representing a positive integer n (see Theorem 5)
and an improved lower bound on the Euler phi function f(n) for n odd (see

(5.5)).
Let 2 denote the hexagonal lattice of covolume 1, that is,

->-i
The associated quadratic form is (X2 +XY + Y2)!/\/3.

THEOREM 1. If L is any two-dimensional lattice not isometric to 2, then

Ei, the Erdös number of L, satisfies

(1.3) El > £v 2"3/231/4 TT
1

0.553311775832479 • • •

ta2<mod3) V1 " UP2

In other words, of all the two dimensional lattices of covolume 1, 2 has

asymptotically the fewest distances. Moreover; given any real number r the

set of non-homothetic lattices L such that Ei < r is finite and can be explicitly
determined.

In fact it turns out furthermore that if If is finite, then there is a homothetic
lattice L' such that If - If - and the quadratic form associated to If has

integer coefficients and is primitive (for 2 this is X2 + XY + Y2). Moreover,

El will only depend on the discriminant I) of the associated quadratic form.
To stress this, we write E{D) rather than /:)
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l.l Oil a conjecture of Schmutz Schaller

In [32, p. 20] Schmutz Schaller, motivated by considerations from hyperbolic

geometry, proposed for dimensions 2 to 8 a daring strengthening of
Theorem 1 and (part of) the Conway and Sloane result:

CONJECTURE 1. In dimensions 2 to S the even lattices with minimal
determinant have 'maximal lengths', meaning that their length spectrum
dominates the length spectrum of every other lattice of the same dimension

and covolume at every position.

Schmutz Sclialler [31] proved an analogue of this conjecture in the

hyperbolic case. Given any lattice L one can dehne the sequence 0 < cf <
d2 < of distances between lathee points that occur in this lathee (the

length spectrum). (It is very important that in this definition we do not care

about the multiplicities of these lengths.) The number d% is called the k-th
length of L. Given any other length spectrum 0 < /, < /2 < we say that

hie former length spectrum totally dominates hie latter if d, > I for every
i > 1. Tins can be reformulated in terms of A'/ (x) : hie length spectrum Li
totally dominates that of Z.2 if and only if AT,(x) < Nifx) for every x > 0.

Let S — Z|/1 denote the square lattice and H — Z[(C| hie hexagonal lathee.

Schmutz Schaller [32] conjectured that the hexagonal length spectrum should
dominate that of hie square lattice, that is lie conjectured that Nh(x) < N$(x) for

every x > 0, to make hie point that even a partial version of Iiis conjecUire
should be difficult to establish. Indeed, the first author and te Riele [22],

refining techniques from [f9], managed to prove this only after considerable

effort, also numerical effort. Their approach, however, does not seem to offer

any hope of establishing the general conjecture.

From hie work of Korkine and Zolotareff (in hie 19th century) and

Bliclifeldt (cf. [30, Chapter 9] and [4]) it follows that Conjecture 1 is true in the

1-length case, i.e., the lathees in (1.2) have maximal minimal positive length
amongst those of hie same dimension, after scaling to hie same covolume.
For a list of these lengths see, e.g. [30, p. 204].

A two-dimensional lattice is said to be arithmetic if and only if there exists

a real number A such that XL is isometric to a Z-submodule of rank two in
an imaginary quadratic number field, otherwise it is said to be non-arithmetic.
Kühnlein [16] proved that a two-dimensional lattice is arithmetic if and only
if hiere are at least 3 pairwise linearly independent vectors in it having the

same length. As a consequence it is easy to show that A'/ (x) ~ c(L)x for some
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positive constant c(L) in case L is non-arithmetic. It follows from this that

a non-arithmetic lattice does not have a finite Erdôs number. Kühnlein [16]

proved furthermore that the length spectrum of 2 totally dominates the length
spectrum of every non arithmetic lattice of covolume 1. Thus in order to prove
Conjecture 1 for dimension 2 it suffices to prove that the length spectrum
of 2 totally dominates the length spectrum of every arithmetic lathee of
covolume 1.

2. Population fraction of binary quadratic forms

Let f(X, Y) — aX2 + bXY T cY2 be a positive definite binary quadratic
form with discriminant Dj — b1 —kic and a,b and c real numbers. Let Bf(x)
count the number of positive real numbers r < X that can be represented

by /•
In the course of history hie problem of estima ting 1Bf(x) has attracted

considerable interest. A classical result of Landau [17] states that, as .v tends

to infinity,

Bfl(x) m Ct./,) /
V log V

where C(/x) is an explicit constant and f\(X. Y) — X + Y2. Precisely, C(/j)
is of the form

c(/i) H d-p"2rl/2.
^ " p=3 (mod 4)

Note that Bjj (u) — Ns(x).
A similar result was claimed by Srimvasa Ramanujan in lhs celebrated

first letter to Hardy (written in 1912), cf. [21]. The constant C(/i) is now
called the Landau-Ramanujan constant, cf. [11, Section 2.3]. Ramanujan even
claimed that it ought to be true that

rx dt
(2.1) Ns(x) C(/x) / -== + L>(.v' 2:').

' 2 V^ögt

Note the analogy with the prime number theorem under assumption of the

Riemann Hypothesis. Tins states that ir(x), hie number of primes p < x,
satisfies tt(.v) — |2V dt/ log t + 0(.v' 2+' on assumphon of the Riemann

Hypothesis. It was folklore that Landau's method could be easily adapted

to show that A'v(.v) satisfies an asymptotic series expansion in the sense of
Poincaré :
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(2.2) A\tv) C(/,)
V

1 + + ' ' '

\ log.V \ log 3b log A-

r'" + o( ^+ log"Ll \loë"+ixJ)m

where m > 1 is ail arbitrary integer. A proof of this was hnally written down

by J.-P. Serre [33] for the larger class of so-called Frobenian multiplicative
functions. Note that Ramanujan's conjecture implies, by partial integration of
the main term, that

w a/1)-j^fifT^ + r^ + .-. + r^+o(—;L-V),
\/log A V log A log2 A log A Vlog"'+1A//

with sj — (2j— 1 )!/((./ — l)!22j_I) and m > 1 an arbitrary integer. Ramanujan's
conjecture was shown to be false by Shanks [34] who proved that .v, f r1.
In a celebrated unpublished (during Iiis lifetime) paper on the partition and

tau function [3], Ramanujan made conjectures similar to (2.1) concerning the

divisiblity of the Ramanujan tau function by certain special primes. These

conjectures were all shown to be false by the first author [20]. However,
Rankin had shown earlier that asymptotically these conjectures are correct.

Paul Bernays (of later fame in logic and for many years assistant to

Hilbert [28]) was a PhD student of Landau's at Göttingen. In Iiis 1912 thesis

Bernays [1] studied the question of finding an asymptotic formula similar to

that of Landau's, but now in case / is a primitive positive definite binary
quadratic form having negative discriminant Dj Bemays proved that, as A

tends to infinity,

(23) w C(/)^p + •

where the constant C(f) is positive and depends only on the discriminant W,

of / and <5 < min( I jh. 1 /4), where h denotes the number of reduced quadratic
forms having the same discriminant as /. It turns out that the dependence of

C(f) on Df is not very strong; C(f) — I)"1'1 '.
Bernays' result allows various generalisations : one could ask for

simultaneous representation of n by various quadratic forms or by norm forms.

A lot of work in this direction was carried out by Odotii, cf. [24, 25]. Blomer

recently pointed out that Bemays' method can be used to disprove a conjecture
of Erdqs. The falsity of this conjecUire was claimed earlier by Odoni [26],
but Iiis paper seems to contain some obscurities. Erdös conjecUired that the

number V(a) of integers not exceeding a that aie sums of two squareful
integers satisfies V7(a) x à/ydoga, where an integer n is called squareful
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if p j n implies tliat p2 j n for all primes p. Since every squareful integer «

can uniquely be written as n - a3b2 with p{a) 0, one can write

V(„r) #{1 < n < X :3a — (al,a2) G N2 : afx2 + crfY2 represents «}

Thus one can estimate V7(.v) if one can deal with Bfix) with some unifonnity
in f (or rather the discriminant of /). In Bernays' metlrod the dependence

on I) can be made explicit. This yields B/(x) >, \D\_'.v/y1og ,r uniformly
at least in I) — ö((loglog.v)l,/2). This result can be used to show that Erdös'

conjecture is false. By a more refined method Blomer [5, 6] even showed that

V(.v) — x(logx)_"+e, where a — 1 — 2-1/3 0.206- • • Moreover, Blomer
and Granville [7] conjecture that V(x) >: .r(loglog.r)2 _1(logx)2 ' _1 and

prove the upper bound, failing to obtain the conjectured lower bound only by
a power of log log v.

Bemays' result can be used to infer the following alternative characterisation

of arithmetic lattices.

PROPOSITION 1. A two-dimensional lattice has a finite Erdôs number if
and only if it is arithmetic.

Proof. We have already seen that a non-arithmetic lattice does not have

a finite Erdôs number. If the lattice is arithmetic then, possibly after scaling,
the associated quadratic form has integer coefficients. The result then follows
from Bemays' theorem and the definition (1.1) for n 2.

We say that the quadratic form / \a. b, e] is projectively equivalent
with g - \a'. <' \ if the vectors (a. b. c) and (a',b', c') are projectively
equivalent. If g is projectively equivalent to a binary quadratic form With

integer coefficients and negative discriminant, say g - [Ac/', Xb', Ar'|, and

f — \a'. /;'. c' I with A > 0, then Bemays' result (2.3) implies that, as x tends

to infinity,

Bg{x) C(g) iv log x

It is easy to see that if L is any arithmetic lattice, then

(2.4) E, ^JSIo./),

where / is a quadratic form associated to the lattice L. Note that if / and g
are projectively equivalent, then v'' If C(f) — \J l),t C(g). We now have:
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PROPOSITION 2. Let L be a two-dimensional lattice. The assertion El > /A
is equivalent with the assertion that the minimal value of y/|Df |C(/)/2, as

f ranges over the primitive binary quadratic forms of negative discriminant,
is assumed for f — X2 + XY + Y2.

Proof. By Proposition 1 we can restrict ourselves to arithmetic lattices. The

quadratic form associated to an arithmetic lattice is projectively equivalent with
a primitive positive definite binary quadratic form of negative discriminant.
Vice versa, to a quadratic form having integer coefficients there corresponds

an arithmetic lattice. The proof is then completed on invoking (2.4) and noting
that X2 +XY+Y2 is the primitive binary quadratic form associated to 2.

2.1 ON COMPUTING THE POPULATION FRACTION

Proposition 2 'reduces' our geometric problem to a problem in number

theory, namely that of computing C(f). We now discuss some historic results

Which are related to the explicit evaluation of C(f due to Bernays.

A nonsquare integer D with D 0 or 1 (mod 4) is called a discriminant.
The conductor of the discriminant D is the largest positive integer / such that

do : — D/f2 is a discriminant. If / - 1, then D is said to be a. fundamental
discriminant. James [14] proved that tire number 13/fx) of positive integers

n < x which are coprime to D and which are represented by some primitive
integral form of discriminant D < —3 satisfies

Bd{x) /(D)- + O (-M
v log.v Vlogvv

where /(D) is the positive constant given by

(2.5) 7rJ(D)2 ^^L(l,XD) J] —Î-X,
I I

(f)=_x V
and p runs over all primes such that A i — — 1. Here and in the remainder

of tire paper implicit constants depend at most on the discriminant D.
Just as for the characteristic function of A2— Y2, the characteristic function

corresponding to integers counted for some x by 13/fx) is multiplicative. In
both cases the associated Dirichlet series are very similar and this allowed
James to essentially mimic Landau's original proof. In 1975 Williams [38]

reproved James' result in a more elementary way (essentially along the lines of
Rieger [29], who gave a more elementary proof of Landau's result). However,
this reproof only gives a weaker error term. We like to point out that an even
easier proof (but with an even weaker error tenu) can be obtained on invoking
the following classical result of Wirsing [39].
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THEOREM 2. Suppose that f(n) is a multiplicative function such that

f(n) > 0, for n > 1, and such that there are constants *% and 72, with

j2 < 2> such that for every prime p and for every v > 2, f{pu) < 7fr7Î->
Assume that as x —t 00, EXf(p) ~ T-

logAaT 0

where r > 0 /.v a constant. Then as x tends to infinity we have

°~1T r " / f(p) f(p2)

r(T>lo^jiT p
'

p2

where f is Eider's constant and T(r) denotes the gamma-function.

Let fi) be the multiplicative function defined as follows :

&(//)= <(l if -1 and 1 f èi
otlierwise.

Let n be any integer coprime to D. Then foin) — 1 if and only if n

is represented by some primitive positive integral binary quadratic form of
discriminant D. It follows that Bq(x) — X]n<*;£n(H)- 'l 's a consequence of
the law of quadratic reciprocity and the prime number theorem for arithmetic

progressions that

(2<S) 5><p)= £ '"isp-p<x p<x
1

Thus the conditions of Wirsing's theorem are satisfied and we find that

e ^^ X 1—r 1 -1—r 1

°x T(i/2)îogx n i_'t n 1
1 •

p<x P p<x P

(®)=1 (f)=-l
By (6) of [38] we have the following estimate :

p<X p\D

<$M
1 X-l/2 L{\iXD)-1'2

TT f i —— 1- on v py s/iögx + viog3^
(?)=-!
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On combining the latter formulae it then follows that

BD(X) ~ J(D)—=
V* log X:

Indeed on using standard results from the asymptotic theory of arithmetical
functions it is not difficult to improve on James' result. Estimate (2.6) can be

easily sharpened to

p<x

for every m > 0. This in combination with e.g. [21, Theorem 6] then shows

the truth of the following result:

THEOREM 3. We have, for every k > 1,

BdM J(Ö)CI35 + g "EÇWÏ;+"'Gog*«/*-,) <

where the constants may depend on D.

James' counting function is artificial in the sense that one would like
to drop the condition that n be coprime to I). This was achieved by
Pall [27], who proved that the number C/fx) of positive integers n < x
which are represented by some primitive integral form of discriminant D < —3

satisfies

CD{x) />(/» + o( ——^
v- log .V \ log IV

where P(D), Pall's constant, is computed as follows. Let p be a prime

dividing D. Let // denote the primes wliich satisfy tlie following condition:

if p > 2 and pz \ D or p — 2 and D 0 or 4 mod 16. Then

w=fon('-i)"n(i+^).
P' ^

where in the second product D — plkDf where p2 \ D', k > 1, and (^-) ^ — 1,
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and
2h(D) rr(i _ -)~Lrrfi ~ -) TTfi--

p+p'

where q runs over all primes such that 7) — —1.

Let us compute a specific example. If D — —3, then

P(-3)z bl \ ~^= - a ~
3 v5 2 2v/3 '

where

«= n
<7=2 (mod 3)

Thus
1 1 T-r / 1 \-i/2

P{ 3)
\/231/4 n (JII V q2

g=2 (mod 3)

Using Pall's result and the fact that h{ 3) — 1, it then follows that £v is

as given in (1.3). Pall's result allows us to compute C(f) in case the order
associated to f has class number one.

Going beyond Pall's work requires genus theory. Let 11(D) denote the

group of strict equivalence classes of primitive, positive-dehnite, integral,
binary quadratic forms of discriminant D under Gaussian composition. Let
G(D) denote the genus group of H(D), that is, G(D) — 11(D)/11(D)2. The

order \G(D)\ of G(D) is a power of 2 so that there exists a non-negative
integer t(D) such that \G(D)\ — 2I(D). The latter quantity is the number of
classes whose order divides 2, that is, the number of ambiguous classes in

H(D). The value of t(D) is given as follows (see [10] or [37]):

{.AD)
if D 0 (mod 32),

„•(/}) - 2 if D 4 (mod 16),

uj(D) — 1 otherwise

where u>(D) denotes the number of distinct prime factors in D. For example,

if D —3 1 mod 4, then oj(D) - 1 and so there is one genus of fonns
of discriminant —3. Note that if D is fundamental, then t(D) - W(D)~ 1.

We say tliat n is represented by the genus G of G(D) if it is represented

by at least one class in G. By g(n. D) we denote the number of genera of
discriminant D representing n. We now turn to the explicit evaluation of C(f)
(see page 59 and 115-116 in [1]) « hieb is due to Bernays. Namely, we have

the following
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THEOREM 4 (Bemays' Theorem). Let f be a positive definite binary
quadratic form having discriminant D. Then

<2S> c</)
n\D°°

where n \ Dx means that n divides some arbitrary power of D.

It is a classical fact that if n is represented by a class of discriminant D
and in, D) — 1, then (fin. D) 1. It is rather more complicated to determine
the value of (fin. D) in case in. D) > 1. This was recently achieved by Kaplan
and Williams in [15] and Sun and Williams in [37]. In [15] they showed that

if g(n,D) > 0, then g(n,D) — 2'(/)) # where m is the largest integer
such that m2 I n and m \ f. Note that m2 is the largest square dividing («,/2).
This result together with Theorem 6.1 of [37] then yields the following result.

Here vpi.n) denotes the largest power of the prime p dividing the nonzero

integer n.

THEOREM 5. Let D be a discriminant with conductor f, do - D/f2 and

n a natural number. If (n,f2) is not a square, or there exists a prime p
such that vp(ji) is odd and (y) —1, then g(n,d) 0. Suppose (n,/1)
is a square and ('^) — 0, 1 for every prime p with vp(n) is odd. Then

g(n, D) 2

Using Theorem 5 one can evaluate more explicitly the sum

(2.9) nz.. ^ V
n

n\D°°

By Theorem 5 we have

pt(D)-t(.D/m2) i

(2.10) v(D) Y, ~ 2 E - »r-—' tld *—' «o
i»\f

where the dash indicates that the sum is over those «o dividing D°° such that

(no,f/m) 1 and there is no prime p such that 2 \ vp(nf) and (y) - 1.

Note that if gin. D) > 0 we can write, by Theorem 5, (n,/2) — m2, With

m \ f and thus we have n - n0m2, where (n0,f/m) — 1. Furthermore note

that 2 \ Vpin) if and only if 2 j vp(no).Ou evaluating the double sum in (2.10)
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we obtain

(2.11) %&)
|D| TT

1

H 1 + 1 /p <—> m2
p\D m\f

VÖPI) 1 + 1/p

(i)=-i

n(>-,') n K)-pi// p\f/>"
(*)="!

XJsing (2.7) the sum v(D) can be explicitly computed using this formula.
Note that it always is a positive rational number. Also note that if D is a

fundamental discriminant, then

f(D)
lDl

<P(\D\)

Example 1. Take D —1984 —26 • 31. There are 2'(ö) - 4 genera of
discriminant —1984. We have G(—1984) — {/. A. B, AB} — Z2 x Z2, where

/ {[1,0,496], [20, ±4,25]},
A - {[4,4,125], [5, ±4,100]},
B — {[IS,0,3Lf, [7,±2,71]},

AB — {[16,16,35], [19, ±12,28]}.

The divisors n of Dx such that g(n,D) > 0 are precisely the numbers of
die form 4 -31". 16-31" and 64-31" 2'\ where a,b > 0 are arbitrary
integers. By Theorem 5 we have g(n. D) — 1,2,4 and respectively 4 for
these cases. Indeed, if n 31", then the corresponding genera are I and B,
depending on whether a is even or odd. If « — 4-31", then the corresponding

genera are / and A, and B and AB depending on whedier a is even or odd.

In case n 16-31" and n — 64 -31" -2b the corresponding genera are /. ,4. B

and AB. For example, if n — 4-312"+1, dien n is represented by [16,16,35]
on taking .v 31" and y — -2-31" and thus is represented by AS. It follows
that

g{n,D) (' 2 4 4 Ä AA ] 31
v(D) > ——L i _| J 1 \ > —v ^ n 4 16 61^2ftp31" 16

n\D°° \ b—0 / <2—0

Note that fonnula (2.11) also yields that v(D) 31/16.
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REMARK L Fomenko [12] has given an alternative proof of Bemays'
asymptotic result using the theory of multiplicative functions in which
the constant C(f) is explicitly computed in case D is a fundamental

discriminant. Namely, we have (see [12, Theorem 4]) for a fundamental

discriminant D,

where P{D) is Pall's constant. It might be interesting to compute C(f) for
arbitrary discriminant I) using Fomenko's approach.

REMARK 2. It might also be of some interest to recover C(f) in general

following Iwaniec's approach to the half-dimensional sieve. Using this sieve

(see [13]), the constant C(/i) was verihed for fi — X2 + Y2.

The explicit formula (2.11) for v(D) allows one to explicitly compute the

Erdôs number E(D). Note that from (2.4), Theorem 4, (2.5), and (2.9) it
follows that

where v(D) is explicitly given by (2.11).

The latter formula unfortunately does not allow one to compute l:(D) with
more that a few decimals of accuracy. A problem in doing so is that the

Euler product involved on direct evaluation (by multiplying consecutive terms

together) can be evaluated with roughly six digit precision only. However,
it turns out diat it is possible to express these Euler products in terms of
L-series evaluated at integer arguments.

(2.12)

3. On explicitly computing the Erdôs number

(3.1)
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To this end note that for 'R(.v) >1/2,

(3.2) n c - i'T1=n c - T2-) n d -»'
(?)="! W"V '(?)=0 (?)=-!

By recursion we tlien find from (3.1) and (3.2) the following formula :

<33. «*=if « - *->r.
*

This approach was already known to Ramanujan [2, pp. 60-66] and, independently,

Shanks [34, p. 78]. It can also be used to deal with more elementary
Euler products of die fonn

n ('-!)-
p>Po

where / and g are polynomials such that deg(/) + 2 < deg(g), see e.g. [18].
In die latter case only values of ((.v) at integers are required.

We note that in case D is a fundamental discriminant v(D) — \D hf(\D\)
and t(D) — uj(D) — 1 and hence

\q)

4. Some computations of Shanks and Schmid revisited

We demonstrate our above approach in computing the Erdôs number (and
hence by (2.4) the Bernays constant C(/)), by recomputing the entries in
Table 1 from a paper by Shanks and Schmid [35]. They put C(X2 + r,Y2) — b„
and we will follow dieir notation. The second column in the following table

corresponds to the values of b„ as computed in [35] to nine decimal places

(for n — 11, n 13 and « 14, approximate values of b„ were given).
The tiiird column in the table is the computation of b„ using (2.4) and (3.3).
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n bu h,,

1 0.764223654 0.7642236535892206629906987311

2 0.872887558 0.8728875581309146129200636834
3 0.638909405 0.6389094054453438822549426747
4 0.573167740 0.5731677401919154972430240483
5 0.535179999 0.5351799988649545413027199090
6 0.558357114 0.5583571140895246274460701041
7 0.543539641 0.5435396411014846926771211300
8 0.436443779 0.4364437790654573064600318417
9 0.424568696 0.4245686964384559238837215172
10 0.473558100 0.4735580999381557098419651553
11 « 0.677 0.6773880181341740551427831009
12 0.399318378 0.3993183784033399264093391717
13 « 0.420 0.4207205175783009914997595500
14 « 0.563 0.5634867715862649042931719141
16 0.334347848 0.3343478484452840400584306948

20 0.401384999 0.4013849991487159059770399317

24 0.279178557 0.2791785570447623137230350520
27 0.496929538 0.4969295375686007973093998581

64 0.274642876 0.2746428755086261757622823564
96 0.209383918 0.2093839177835717352922762890
256 0.259716632 0.2597166322744617096882452719

5. Proof of Theorem 1

The idea of the proof is to use a lower bound estimate for f(\D\) combined

with an upper bound estimate for u>(D) to show that E(D) > E{—3) for
all \D\ > Do, with Do an explicit number. In the range \D\ < Do one

then determines those D for which the quickly computed lower bound for

E(Df given in (5.2) does not exceed E(—3)2. For these values of D one

then computes E(D) using (3.3) and compares with £(—3). We now prove
Theorem 1.

Proof. Note that h(D) > 2'(l>), v(D) > 1 and that the Euler product in
(3.1) exceeds one. Using these trivial lower bounds and (3.1) we infer that
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1/2
I 1 naXI CTI V *

(5.1) E(D)>
1 g»y

2'C'1, 1 !((/)) !D|!/2 y

where we used that L( 1. ,\/>) 2irh(D)/{w(D) \/|ö|). It is well-known that in
case D is a fundamental discriminant w(D) g 2 if and only if D —3 or
I) — —4. Using the observation that that order for the discriminant D is the

Z module generated by 1 and f(D+ \/l))/2 (cf. [10, Lemma 7.2]), where /
is the conductor, one sees that ir(D) - 2 unless D —4 or D —3. In the

rest of the proof we assume that D\ >5. Then

ip(M)
(5.2) E(Df >

2Kß)+VTD|
'

Put g(n) - if(ti)/(2UJ<-"^\/ri). Note that g is a multplicative function of n.
If n — fi =i <?/' denotes the canonical factorisation of «, then

Yfl ffi

5(»)=n -1) > n \ (vs-
/=i /=i

We let pi — 2, p2 — 3, denote the consecutive primes. Note that -Jx—
is strictly increasing with x. It thus follows that

1 1

«i+i j j

If n is odd, then we similarly have

m-\-i

(5.3)

From (2.7) and (5.2) one infers that

(5.4) E(D)2>a(D)g(Dodd),

where

{1/4
if I) 12 (mod 16),

1 /V8 ifM m i (mod 16) or I) 0 (mod 32),

1/2 if D 1 (mod 4), D 0 (mod 16), or I) 4 (mod 16),

and Dodd denotes the largest odd divisor of D.
First assume that D 1 (mod 4) (thus a(D) — 1/2 and t(D) — u>(D)— 1).

Then, from (5.4) and (5.3) we infer that
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mvm
2E{D?> [] -(ßi

i—2 Vpî

If u>(D) > 3 it follows from the latter inequality that IAD) > 0.66 > £(—3).
So let us assume that u>(D) < 3. It now follows, using

(5.5) ip(n) > e~7-—y
log log n

for all odd integers n > 17 (see [8]), that for |D| > 19 we have

16X/\D\ 16 log log |D|

From this estimate one infers that IAD) > £(—3) for D\ > 217. For the D
with D 1 (mod 4) and 7 < \D\ < 215 one checks tliat

1/2

I
—jgOgJ) 6 :> E(_3)

except for D — —15. A direct computation shows that £(—15)
0.9719612-•• >£(-3).

The remaining cases are dealt with similarly: on noting that the right
hand side of (5.3) is monotonically increasing for m > 2 one uses (5.4) to

obtain an upper bound for jj(D) From this upper bound, (5.2) and (5.5), one

then finds an integer Dq such that if £(£>) > £(—3), then /) < D(l. For
the discriminants D with D\ < Do one then computes the discriminants D
for which the left hand side of (5.2) does not exceed £(—3)2. For these D
values one then computes IAD) using (3.3). One finds that for all these values

of D one has IAD) > £(—3). In this way it is seen that IAD) is minimal
for D — —3.

To prove the second assertion note that in the above argument one can

replace £(—3) with any real number r. In the end one is left with a finite
list of D for which IAD) < r.

EXAMPLE 2. If r 1. then one finds the following list.

D E(D)

-3
-4
-7
-15

0.5533117758324795595155817776
0.7642236535892206629906987311

0.9587138120398867707178043483
0.9719612596359906049817562980
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Thus tlie second smallest lattice is given by the maximal order with D — —4

(the square lathee) and the third and fourth smallest lathees by I) —7 and

D — —15 respectively.

Remark 3. The inequality (5.5) is quite subtle. Let A) — 2 • 3 • • • pi be

hie product of the first k primes, then if the Riemann Hypothesis is true (5.5)
is false for every integer n with n On hie other hand, if hie Riemami

Hypothesis is false then there are infinitely many integers k for which n —

does satisfy (5.5). See Nicolas [23] for a proof of tins interesting result.
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