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JSJ-DECOMPOSITIONS
OF KNOT AND LINK COMPLEMENTS IN $°

by Ryan BUDNEY

ABSTRACT. This paper is a survey of some of the most elementary consequences
of the JSJ-decomposition and geometrization for knot and link complements in §°.
Formulated in the language of graphs, the result is the construction of a bijective
correspondence between the isotopy classes of links in §° and a class of vertex-
labelled, finite acyclic graphs, called companionship graphs. This construction can be
thought of as a uniqueness theorem for Schubert’s ‘satellite operations’. We 1dentify
precisely which graphs are companionship graphs of knots and links respectively. We
also describe how a large family of operations on knots and links affects companionship
graphs. This family of operations is called ‘splicing” and includes, among others,
the operations of: cabling, connect-sum, Whitehead doubling and the deletion of a
component.

1. INTRODUCTION

Although the JSJ-decomposition is well-known and frequently used to
study 3-manifolds, it has been less frequently used to study knot complements
in $*, perhaps because in this setting it overlaps with Schubert’s ‘satellite’
constructions for knots. This paper studies the global nature of the JSJ-
decomposition for knot and link complements in $°. Much of this article is
‘survey’ in nature, in the sense that many of the primary results here appear
elsewhere in the literature, but not in one place. Frequently we offer new
proofs of old results, and we attempt to refer to the first-known appearance
of theorems.
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Schubert [30] was the first to study incompressible tori in knot comple-
ments, which he described in the language of ‘satellite operations’. Among
other results, Schubert showed that satellite operations could be used to re-
cover his connected-sum decomposition of knots [29]. Unlike the case of the
connected-sum, Schubert did not give a full uniqueness theorem for general
satellite knots. Waldhausen [35] eventually set up a general theory of incom-
pressible surfaces in 3 -manifolds, which led to Jaco, Shalen and Johannson’s
development of the eponymously named JSJ-decomposition [16, 18] where an
appropriate uniqueness theorem was proven. The JSJ-decomposition theorem
states that every prime 3-manifold M contains a collecion of embedded,
incompressible tori 7 C M so that if one removes an open tubular neigh-
bourhood of 7' from M, the resulting manifold M |7 is a disjoint union
of Seifert-fibred and atoroidal manifolds. Moreover, if one takes a minimal
collection of such tori, they are unique up to isotopy. It is the purpose of
this paper to work out the explicit consequences of this theorem and the later
developments in Geometrization, for knot and link complements in S>.

Given a link L C $°, with complement C; = $* \ U (where U is an
open tubular neighbourhood of L), a collection of natural questions one might
ask is:

1. Which Seifert-fibred manifolds can be realised as components of Cj |T
for T the JSJ-decomposition of a knot or link complement Cj, ?

2. Which non Seifert-fibred manifolds arise in the same way ?

3. How are the above manifolds embedded in S* ?

4. How do they all “fit together’ globally, and what combinations are possible ?

We partially answer item 3 first. We prove in Proposition 2 that if M is a
compact submanifold of 3 with M a disjoint union of n embedded tori, if
we let p and g be the number of solid tori components and non-trivial knot
complement components of $° \ int(M) respectively, where p + g = n, then
there exists an embedding f: M — §° so that f(M) is the complement of an
open tubular neighbourhood of an n-component link L C $° which contains
a g-component unlink as a sublink. This brings Brunnian properties into the
picture. We go on to prove in Proposition 3 that there is a canonical choice
for £, thus the study of submanifolds of $° with torus boundary reduces in
a natural way to link theory in $°.

Section 3, Proposition 4 answers question 1 by computing which Seifert-
fibred manifolds embed in $°. This allows us to determine the links in $3
which have Seifert-fibred complements in Proposition 5. Proposition 7 gives
conditions on when two Seifert-fibred manifolds can be adjacent in the JSJ-
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decomposition of a link complement. We end Section 3 with a discussion of
the geometric structures on Seifert-fibred link complements.

Section 4 1s the heart of the paper where we investigate item 4. The
components of Cy |7 naturally form the vertex-set of a partially-directed
acyclic graph G, , called the JSJ-graph of L (Definition 5). In Definition 6 we
construct the companionship graph G; of a link L by labelling the vertices
of Gy with natural ‘companion links” to L. We show that G, 1s a complete
1sotopy invariant of L in Proposition 9. From here we investigate the properties
of the graphs G;. The most basic property of G; 1is that it is a ‘splicing
diagram’ (Definition 8). Roughly, this means that G, is a finite, acyclic graph,
some of whose edges are oriented, where each vertex is labelled by a link,
and each edge of the graph corresponds to a matched pair of components of
the links decorating the endpoints of the edge.

We complete the study of compamonship graphs of knots first, giving
a characterisation of their companionship graphs in Theorem 2, showing,
among other things, that the companionship graphs are naturally rooted trees.
To characterise compamonship trees of knots, we use a notion of splicing
(Definition 10) that allows us to inductively construct knots with arbitrarily
complicated companionship trees. Returning to links, we show that G, satisfies
a local Brunnian property (Proposition 15). Splicing diagrams that satisfy this
property we call ‘valid’. We show in Proposition 16 that valid splicing diagrams
correspond bijectively to isotopy classes of collections of disjoint embedded
tori in link complements. This allows us to identify in Proposition 18 which
valid splice diagrams are companionship graphs. Similarly to the case of links,
we use splicing to inductively construct arbitrary companionship graphs. In
Proposition 19 we determine the companionship graph of the splice of two
arbitrary links.

Thurston’s Hyperbolisation Theorem answers question 2, telling us that the
interiors of non-Seifert-fibred components of C, |7 are complete hyperbolic
manifolds of fimite volume. At the end of Section 4 we briefly mention
algorithms for finding the JSJ-decomposition and the geometric structures on
the components.

Our definitions and conventions regarding knots and links are:

* A knot is a compact, connected, boundaryless, oriented, 1-dimensional
sub-manifold of $°. Thus a knot is diffeomorphic to S!.

* Given a knot K let +K = K and let —K be the oppositely-oriented
knot, meaning as unoriented manifolds —K and K are the same, thus
—(—K)=K but —K #£K.
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* (iven a finite set A, a link L indexed by A is a disjoint collection of
knots {L,:a € A}. Given A’ C A, Ly denotes the sublink of L indexed
by A'.

* Given two links L and L' with index-set A, an isotopy from L to L' is
an orientation-preserving diffeomorphism f: $° — $* such that f(L,) = L/,
for all @ € A. This notion agrees with the traditional notion of isotopy
because all orientation-preserving diffeomorphisms of $> are isotopic to
the identity by Cer [8].

* Given two links L and L' with index sets A and A’, we say L and L' are
unoriented-isotopic if they are isotopic as unoriented submanifolds of S>.
Stated another way, an orientation-preserving diffeomorphism f: §° — §°
is called an wunoriented isotopy from L to L' if there is a bijection
o:A— A" and a function ¢: A — {+,—} such f(L.,) = e(a)L,, for
all a € A.

« D'={xeR": |x|] <1} is the compact unit n-disc.

* Given a solid torus M ~ S x D? in §°, there are two canonical isotopy
classes of unoriented curves in dM, the meridian and longitude respectively.
The meridian is the essential curve in OM that bounds a disc in M. The
longitude 1s the essential curve in M that bounds a 2-sided surface in
S3\ int(M) (a Seifert surface). If M is a closed tubular neighbourhood of
a knot K, the longitude of M is parallel to K thus we give it the induced
orientation. We give the meridian m the orientation so that k(K m) = +1.

* For such standard definitions as connected-sum, splittability, etc, we will
follow the notation of Kawauchi [22].

* Following the conventions of Kanenobu [20] and Debrunner [9], given a
link L indexed by A we define U; C 24 by the rule U; = {S C A:
Lg is not split}. We say that {; is the Brunnian property of L.

« U, ={SCA: Lgis an |S|-component unlink} we will call the strong
Brunnian property of L.

Our definitions and conventions regarding 3 -manifolds are:

*  3-manifolds are taken to be oriented and are allowed boundary.

* For standard definitions of connected-sum, prime, irreducible, Seifert-fibred,
incompressible surface, etc, we will use the conventions of Hatcher [14].

* Given a 3-manifold M and a properly-embedded 2-sided surface S C M,
define M |S = {V C M :V =W where W is a path-component of M \ S}.
We call the elements of M|S «the components of M |S» or «the com-
ponents of M split along S». If §' is a component of S, then § is a
submanifold of at most two components of M |S.
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There are several treatments of the JSJ-decompositions of 3-manifolds.
There’s the original work of Jaco and Shalen [16] and the simultaneous
work of Johannson [18]. Some more recent expositions are available as well.
There is Hatcher’s notes [14], which this article follows, and also the notes
of Neumann and Swarup [26]. As Neumann and Swarup [26] point out
(Proposition 4.1) all versions of the decomposition are closely related. In
the case of 3-manifolds M with y(M) = O such as link complements in
$%, all versions of the JSJ-decomposition are the same. When y(M) # 0
one can get various different incompressible annuli in the decompositions,
depending on whose conventions are followed. This difference is important as
the original JSJ-decomposition is more closely related to Thurston’s geometric
decomposition of 3-manifolds.

There are also treatments of the JSJ-decomposition of knot and link
complements. The book of Eisenbud and Neumann [10] gives a detailed
analysis of the structure of the JSJ-decomposition of links in homology spheres
whose complements are graph manifolds. Our paper differs from their book in
that we study the class of links in $® with no restriction on the complements.
The aspect of this paper which is new is that the complicating factor is the
Brunnian properties of the resuling companion links.

A once frequently quoted yet unpublished manuscript of Bonahon and
Siebenmann [1] also investigates JSJ-decompositions of link complements
in S, Various results on the Z,-equivariant JSJ-decomposition from the
manuscript of Bonahon and Siebenmann appear in the survey of Kawauchi [22].
This 1s the part of their work that relates to Conway spheres. The current
exposition 1s most closely related to the part of the Bonahon-Siebenmann
manuscript [1] that does not appear in Kawauchi’s survey. This paper in
part duplicates the results of Schubert, Fisenbud, Neumann, Bonahon and
Siebenmann, and we attempt to give full credit to their discoveries.

This article started out as a technical lemma needed to determine the class
of hyperbolic 3-manifolds that appear as components of a knot complement
split along its JSJ-tori. The answer, although known to some, is not ‘well
known’, which motivated the author to put together the present exposition.
I would like to thank Allen Hatcher for several early suggestions on how
to approach the topic. I'd also like to thank Gregor Masbaum for his
suggestion of reformulating what is now Proposition 1, which led to the
connection with Schubert’s paper [30]. I'd like to thank Daniel Moskovich
and David Cimasoni for their comments on the paper, and Francis Bonahon
for encouragement.
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2. DISIOINT KNOT COMPLEMENTS, AND COMPANIONS

This section starts with a technical proposition about disjoint knot comple-

ments in $° which ultimately motivates the notions of splicing and companions
of a knot or link.

PROPOSITION 1. Let Cy,Ca,...,C, be n disjoint submanifolds of $°
such that K; = S?\ C; is a non-trivially embedded solid torus in §°
for all i € {1,2,...,n}. Then there exists n disjointly embedded 3-balls
By,By,...,B, T 8° such that C; C B; for all i € {1,2,... n}. Moreover,
each B; can be chosen to be C; union a 2-handle which is a tubular

neighbourhood of a meridional disc for K;.

Proof. For all i€ {1,2,...,n} let D? be a meridional disc for K;.

Consider the case that we have j disjoint 3-balls By,Bs,...,B; such
that C; C B; for all i € {1,2,...,j} with B; disjoint from C; for all i # I,
ie{l,2,...,jtand ] € {1,2,...,n}. We proceed by induction, the base-case
being the trivial j =0 case.

Consider the intersection of DJZ+1 with 0B, UOB, U -+ U dB; U 0C;4, U
0Cj3 U -+ - UIC,.
* If the intersection is empty, let B;.; be a regular neighbourhood of
CiraUDZ,.
* If on the other hand the intersection is non-empty, let S be an innermost

curve of the intersection bounding an innermost disc D in DJZ ;- Thus §
is a sub-manifold of one of dB;,...,0B; or 0Cj4a,...,0C,.

— If S bounds a disc D/ in some 9B; for i <j or dC; for j+2 < i< n,
then DUD’ bounds a ball in B; or C; respectively, which gives a natural
1sotopy of DJ-Z+1 which lowers the number of components of intersection
with the family 9B, UdB, U-- - U0B;UdC;1, UdC;43 U -+ UIC,.

— If § does not bound a disc in the above family, it must be a meridional
curve in some JC; for j+2 < i< n. In this case, we let B; be a regular
neighbourhood of C; U D.

Thus by re-labelling the tori and balls appropriately, we have completed

the inductive step.

Proposition 1 first appears in the literature as a theorem of Schubert [30]
(8§15.1, p.199). It also appears in Sakuma’s [28] work on the symmetry
properties of knots. A related result was re-discovered by Bonahon and
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Siebenmann in their unpublished manuscript [1] as part of their algorithm
to determine if a ‘splicing tree’ results in the construction of a link embedded
in $°.

PROPOSITION 2. Let M be a compact submanifold of S° with OM a
disjoint union of n tori. By Alexander’s theorem, S3 \ M consists of a disjoint

union of p solid tori and q non-trivial knot complements, where p+ g = n.
There exists an embedding f: M — §° such that f(M) is the complement
of an open tubular neighbourhood of an n-component link L C S° which
contains a g-component unlink as a sublink.

Proof. Let g € {0,1,...,n} be the number of components of $3\ M
which are non-trivial knot complements, and let 3\ M = C;U---UC, where
C; 1s a solid torus for g+ 1 < i < n and a non-trivial knot-complement
for 1 < i< q. By Proposition 1 there exist disjoint 3-balls By,...,B, C $*
such that B; is obtained from C; by an embedded 2-handle attachment,
B; = C;UH?. Dually, C; is obtained from B; by drilling out a neighbourhood
of a knotted properly-embedded interval.

Let Q = {(r,y,2) € R : |(y,2)| < 3} nD* For i € {1,2,....4}
let u;: (D*,A) — (B;,H?) be an orientation-preserving diffeomorphism of
pairs, where A; C D? is a 3-ball such that A, N oD> = QN 9D, For
ie{1,2,...,q} let w;: Q — A; be a diffeomorphism which is the identity
on QNOD? =A;NoD>.

We define an embedding f: M — S° as follows:

uwiow tou l(x) if xeH?.

X if xe M\ UL, H?,
Jx) = { -
By design, f(|J!_, 8C,) bounds a tubular neighbourhood of a g-component
unlink in the complement of f(M). To argue that f(M) is a link com-
plement, notice that in our definition f extends naturally to an embedding

P\, C— 8.

DEFINITION 1. Let M C S° be a 3-manifold, and let T < M be a
torus. Provided C is the component of §3\ M containing 7', an essential
curve ¢ C T 1is called an external (resp. internal) peripheral curve for
M at T if ¢ = 05 for some properly-embedded surface S C C (resp.

Sc 8§\ ).
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PROPOSITION 3. Let M C §° be a 3-manifold whose boundary is a
disjoint union of tori. Up to isotopy, there exists a unique orientation-preserving
embedding f: M — S° such that (1) and (2) are true :

(1) f(M) is the complement of a tubular neighbourhood of a link in S°.

(2) f maps external peripheral curves of OM to external peripheral curves

of I(f(M)).
f will be called the untwisted re-embedding of M.

Proof. We prove existence in the framework of the proof of Proposition 2.
Let Q' = {(x,y,2) € OD> : —? o @} Foreachi € {1,2,...,q} extend
w; to be a homeomorphism w;: QU Q" — A; U@ so that w;(x) = x for all
x € Q. Fix the curves ¢; = {(cos@,sind,0) : # <0 <2z} U {(x,0,0):
—1 <x <1} and ¢; = {(cos®,sinf,0) : T < 0 < %}U{(x, %,O) :
—@ % X & ?} For each i € {1,2,...,4} there is a unique choice of w;
up to isotopy so that lk(w(c1), wi(cz)) = 0, since any two choices of w;
differ by some Dehn twist about a disc in Q separating the components of
QN aD?. With this choice, then external peripheral curves are sent to external
peripheral curves.

To prove uniqueness, let f;: M — $° and f,: M — $° be any two
embeddings of M in $* as link complements sending external peripheral
curves to external peripheral curves. Let M be the Dehn filling of M where
the attaching maps are given by the external peripheral curves of M. Then
#i and f, extend to orientation-preserving diffeomorphisms fi, : M — S°.
Cerf’s theorem [8] states that any two orientation-preserving diffeomorphisms
of §% are isotopic, thus f; and f, are isotopic.

DEFINITION 2. Given L a link in $° let C;, = §°\ U, where Uy
is any open tubular neighbourhood of L. If M C Cp is a manifold with
incompressible torus boundary let f: M — $° be its untwisted re-embedding.
Then f(M) is the complement of some link L/ in $%, unique up to unoriented
isotopy. Any such link will be called a companion link to L. If M is a
component of one of the prime summands of C; split along the tori of 1its
JSJ-decomposition, we call L' a JSJ-companion link to L. A link L will be
called compound if C; 1is reducible or if it 1s irreducible with a non-empty
JSJ-decomposition.

Thus a link is non-compound if and only if its complement 1s prime and
atoroidal.
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3. SEIFERT-FIBRED SUBMANIFOLDS OF §3

In this section we determine which Seifert-fibred manifolds embed in S3,
and the various ways in which they embed. This allows us to classify the
links in $® whose complements are Seifert-fibred, and give basic restrictions
on which Seifert-fibred manifolds can be adjacent in the JSJ-decomposition
of a 3-manifold in $°.

LEMMA 1. If M is a sub-manifold of $° with non-empty boundary a
union of tori, then either M is a solid torus or a component of S\ M is a

solid torus.

Proof. Let C = S>\ M. Since OM consists of a disjoint union of tori,
every component of dM contains an essential curve « which bounds a disc
D in $®. Isotope D so that it intersects M transversely in essential curves.
Then oM N D C D consists of a finite collection of circles, and these circles
bound a nested collection of discs in D. Take an innermost disc D' . If D' C M
then M is a solid torus. If D’ C C then the component of C containing D’
is a solid torus.

We will use the notation in Hatcher’s notes [14] for describing orientable
Seifert-fibred manifolds. In short, let &, ;» denote a compact surface of genus g
with b boundary components. If g < 0, S, 1s the connect-sum of —g copies
of RP? with Sop. M(g,b; %, %, ey %) denotes the Seifert-fibred manifold
fibred over S,;, with at most k singular fibres, and fibre-data o;/f3;. One
constructs M(g,b; %, %, smy %) from the orientable S'-bundle over S, -«
by Dehn filling along & of the boundary components using the attaching slopes

% for i € {1,2,...,k}.

DEFINITION 3. We give a non-standard but flexible notation for defining
unoriented isotopy classes of links in $® which are the union of fibres from
a Seifert fibring of $°. Provided (p,q) € Z* satisfies p £ 0 and ¢ # 0, with
X C {*1,%2}, S(p,q | X) denotes the subspace of $° made up of the union
of three disjoint sets Sy, S», S5 where:

e S1={@,efcC: =71},

o S, ={(z1,0) € $%} provided *, € X, otherwise S, = @ ;

o 83 ={(0,22) € §%} provided *; € X, otherwise S5 = &.
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We mention some shorthand notation for some common links with Seifert-
fibred complements. The Hopf link H' is the 2-component link in $® given
by the union of S, and S; above, alternatively H' = S(2,2 | @). Up to
isotopy (modulo re-indexing) there are two Hopf links, distinguished by the
linking number of the components (see Figure 1).

FIGURE 1

If one takes a connected-sum of p copies of the Hopf link, one obtains the
(p + 1)-component ‘key-chain link™ A?. Modulo re-indexing, there are p + 1
distinet ( p+ 1)-component key-chain links. When orientation matters, we will
use the ‘right handed’ key-chain link where all non-zero linking numbers are

positive (see Figure 2).

FIGURE 2

HP

For any (p,q) € Z* with ptq, g p and GCD(p,q) = 1 the (p,q)-torus
knot is T»? = S(p,q | @). There is only one (p,q)-torus knot, since all
torus knots are are invertible. The conditions ¢ { p and pt g ensure that the
unknot 1s not a torus knot.

For any (p,q) € Z x Z with p {q and GCD(p,q) = 1, the (p, q)-Seifert
link S is defined to be S9 = S(p,q | {#1}). We fix the orientation on #*;

counter-clockwise and orient the remaining component by the parametrisation
q P

(Z_ k.

link 1s not considered to be a Seifert link.

) where z € S'. Our condition p | ¢ is there to ensure that the Hopf
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S§p.d

FIGURE 3

PROPOSITION 4. Let V # 8% be a Seifert-fibred sub-manifold of 5, then
V is diffeomorphic to one of the following :

s M(O,n; %, %) for n>1 and oy + ay08; = £1. These appear only as

the complements of n regular fibres in a Seifert fibring of S°.
e M(O,n; %) Jor n > 1. These appear only as complements of n—1 regular
fibres in a Seifert-fibring of an embedded solid torus in S°.

* M(O,n;) for n > 2. These appear in two different ways :

— As complements of the singular fibre and n — 1 regular fibres in a
Seifert-fibring an embedded solid torus in S°.

— A manifold whose untwisted re-embedding in S° is the complement of
a key-chain link.
Proof. Consider V ~ M(qg,b; %, ?;—‘;, . %). By design, » = 0 if and
only if V =8~ M(0,0; %) where a1/ + a1 = £1.
Consider the case b > 1. Seifert-fibred manifolds that fibre over a non-
orientable surface do not embed in $° since an orientation-reversing closed
curve in the base lifts to a Klein bottle, which does not embed in S° by the

Generalised Jordan Curve Theorem [13], thus g > 0.

A Seifert-fibred manifold that fibres over a surface of genus g > 0 does
not embed in $* since the base manifold contains two curves that intersect
transversely at a point. If we lift one of these curves to a torus in S°, it
must be non-separating. This again contradicts the Generalised Jordan Curve
Theorem, thus g = 0.
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By Lemma 1, either V is a solid torus V ~ M(0, 1 ; B 2Ly or some component
Y of $3\ V is a solid torus. Consider the latter case. There are two possibilities.

1. The meridians of Y are fibres of V. If there is a singular fibre n V, let 3
be an embedded arc in the base surface associated to the Seifert-fibring
of V which starts at the singular point in the base and ends at the boundary
component corresponding to JY. F lifts to a 2-dimensional CW-complex
in V, and the endpoint of F lifts to a meridian of Y, thus it bounds a
disc. If we append this disc to the lift of 3, we get a CW-complex X
which consists of a 2-disc attached to a circle. The attaching map for
the 2-cell is multiplication by S where % is the slope associated to

the singular fibre. The boundary of a regular neighbourhood of X is a

2-sphere, so we have decomposed $° into a connected sum S$° = LI#Z

where L: 15 a lens space with HlL[w = Zg. Since $° is 1rredu01ble
B = 1, Thus V ~ M(,n;) for some n > 1. Consider the untwisted
re-embedding f: V — §%, and let V' = f(V). V' is the complement of
some link L = (Ly,Ly,...,L,_1) such that (L;,...,L,_1) 1s an unlink
(provided we let Lg correspond to Y). Cp, is obtained from V' by Dehn
filling on Ly,...,L,—; with integral slopes, thus C;, 1s a solid torus.

2. The meridians of Y are not fibres of V. In this case, we can extend the
Seifert fibring of V to a Seifert fibring of VU Y. Either VUY = 8%, or
V UY has boundary.

« If VUY = 5° then we know by the classification of Seifert fibrings
of $° that any fibring of $° has at most two singular fibres. If V is the
complement of a regular fibre of a Seifert fibring of §3, then V is a
torus knot complement V ~ M(0,1; (51, ’;;2) with a1/ + axf5; = 1.
Otherwise, V is the complement of a singular fibre, meaning that V

a solid torus M(0,1; %)‘

* If VUY has boundary, we can repeat the above argument. Either VU Y
1s a solid torus, in which case V ~ M(0,2, %), or a component
of $3 \m 1s a solid torus, so we obtain V from the above
manifolds by removing a Seifert fibre. By induction, we obtain V
from either a Seifert fibring of a solid torus, or a Seifert fibring of $°
by removing fibres. Thus either V ~ M(0,n; %, %‘2) for n > 1 with
o1 +anf = £1, V2 MO,n, & Br Ly for n > 1, or V=~ M(0,n;) for
n > 2. In order, these are the cases where we remove only regular
fibres from a fibring of $°, regular fibres from a fibring of a solid
torus, and regular fibres plus the singular fibre from a fibring of a solid

torus.
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PROPOSITION 3. Each link in $® whose complement admits a Seifert-fibring
is isotopic to some S(p,q | X), excepting only the key-chain links.

Given p,q € Z\{0} let p' = p/GCD(p,q), 4 = q/GCD(p,q) and
let m,l € L satisfy p'm+ lg' = 1, then the complement of S(p,q | X) is
diffeomorphic to:

* M(0,GCD(p,q); 5, [%) provided X = & ,
* MO,14+GCD(p,q): %) provided X = {*} ;
s M(,14+ GCD(p,q); ﬁ) provided X = {x,} ;
* M(0,2+ GCD(p,q);) provided X = {x1,%2}.
The complement of the key-chain link H? is diffeomorphic to M(0,p+1;).
Let A denote an index-set for the components of S(p,q | X) that are
neither x; nor *,. Let X' be the collection of singleton subsets of X. Then
the strong Brunnian property of S(p,q | X) is given by:
o {{x1}} for the unknor S(1,1|);
o {{*1},{*2}} for the Hopf link H' = 5(2,2|);
* {{a}:acAUX ifplqorq|p;
* X' ifptqand qfp.

Proof. Except for the Brunnian properties, this result follows immediately
from Proposition 4. To see the Brunnian properties, observe that the linking
number between regular fibres of S(p,q | X) is p'q’, the linking number
between x; and *, is one, and the linking number between a regular fibre
and either #; or = is p’ or ¢’ respectively.

Proposition 5 first appears in the literature in the paper of Burde and
Murasugi [6], where they classify links in $° whose complements are Seifert-
fibred.

COROLLARY 1. Let L be a link in S® such that C; admits a Seifert
fibring. Provided L is not the unknot or the Hopf link, the fibring is unique
up fto isotopy.

Proof.  S(p,q | X) is the unknot if and only if X = @, GCD(p,q) =1
and either p = £1 or ¢ = £1. S(p,q) | X) is the Hopf link if and only if
either X =@ and p = £¢ = 42 or |X| =1 with p = ¢ = +1. Thus, the
complements of S(p,q | X) which are not unknot complements or Hopf link
complements all have the form M(0, b ; %, %) where the sum of the number
of boundary components plus the number of singular fibres is at least 3 with




332 R. BUDNEY

132 + a8y = 1. That these manifolds have unique Seifert-fibrings up to
orientation-preserving diffeomorphism follows from Theorem 2.3 in Hatcher’s
notes [14]. Consider a horizontal essential annulus S in one of these manifolds.
We have the basic relation among Euler characteristics x(B)— @ => (- é)
where B 1s the base space. Since y(S) = 0, this equation has no solution.
Thus by Proposition 1.11 of [14] all essential annuli are vertical, therefore
any diffeomorphism of these manifolds 1s fibre-preserving.

PROPOSITION 6. Let  be the unique involution of the set {*y,%;}. Let
C=1S(p.q|X): (p,q) € (Z\{0})* X C {#1,%2}}. The equivalence relation
~ of unoriented isotopy on C is generated by the relations :

2
(D) S(piq | X) ~ S(=p,—q | X) ¥(p.g) € (Z\{0})", X C {x1,2}.
2
(2) S(p,q | X)~S(q.p | 0X) Y(p,q) € (Z\{0})", X C {*1,%2}.
3 S(pog | XU {sp) ~ S(p+Lg+ 1| X\ {x}) Vg |p with g >0,
X C {*17*2}-
@ S(p,q | X) ~ S(=p,q | X) if either () X = @, GCD(p,q) = 1 with
p=Fxlorg==x1, (b)) X=09,p,g=F2o0r(c) |X| =1, £p==+qg=1.
This is the case where S(p,q | X) is an unknot or Hopf link.

Proof. Restrict to the sub-class of C consisting of S(p,¢ | X) which
are not unknot or Hopf links. These complements have a unique Seifert-
fibring by Proposition 1. If X = @, p 1 g and ¢ { p, observe that items
(1) and (2) generate ~, this is because the classification of Seifert-fibred
spaces up to fibre-equivalence (Proposition 2.1 in [14]) tells us that ~ is
equivalent to the fibre-equivalence relation, thus we have proven more: up to
1sotopy there is only one orientation-preserving embedding of the complement
of S(p,q | @) in $3. If we broaden the class to include X non-empty, (1)
and (2) still suffice to generate ~ essentially because S(p,q | &) is contained
as a sublink. Consider a general S(p,q | X). Let p’ = p/GCD(p,q) and
q = q/GCD(p,q). We know p’,¢' and p’q’ are the possible linking numbers
of the components of S(p,q | X) thus we can determine whether or not
p = %g¢ via linking numbers. For such a link, the relative sign p/q € {£1}
can be computed by coherently orienting three strands and computing the
linking number of two of them. Thus such links are classified by the number
of their components together with the sign p/g € {£1} which is equivalent
to relations (1), (2) and (3). Consider the case g | p but p { ¢g. In this case
#y € S(p,q | X) if and only some linking number is £1, and the linking
number with %, would be ¢g'. Thus each such is equivalent via relations
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(1) through (3) to some S(gq,p’q | X) where X is either empty or contains
#y, ¢ > 0 and [p’| > 1. g is the number of components of S(g,p'q | X).
Since we have assumed S(g,p’q | X) is not the unknot nor the Hopf link,
g+ |X| > 3 thus we can compute p’ as a linking number of two coherently
oriented strands of $(q,p’q | X) either in the complement of #, if ¢ =2 or
in the complement of another strand, thus relations (1) through (3) suffice.

In the exceptional case of the unknot or the Hopf link, p/q € {1} is
not an invariant, thus the exceptional relation (4).

DEFINITION 4. Given a Seifert-fibred 3-manifold M < $° with
T C OM, a boundary component, the fibre-slope of M at T is % pro-
vided +(ac, + Oc;) € Hi(T,Z) represents the homology class of a Seifert
fibre, where c,,c; C T are external and internal peripheral curves for T such
that lk(c),c;) = +1 where ¢, C int(M) is parallel to c,.

Given a link L indexed by a set A with C; Seifert-fibred, for a € A
define the a-th fibre-slope of L to be the fibre-slope of C; at the boundary
torus corresponding to L.

The proof of the following is immediate.

PROPOSITION 7. If M C §% is Seifert-fibred with T C OM a boundary
torus and f: M — S° the untwisted re-embedding of M, then the fibre-slope
of M at T is the fibre-slope of f(M) at f(T). Moreover, if MUN C §° is
Seifert-fibred with M NN = T, then the fibre-slope of M at T is the inverse
of the fibre-slope of N at T.

The importance of Proposition 7 is that it gives us an obstruction to two
Seifert-fibred manifolds being adjacent in a link complement split along its
JSI-tori.

PROPOSITION 8. The fibre-slopes of S(p,q | X) are LCM(p,q)/GCD(p, ¢)
for regular fibres, p/q for %, and q/p for x,.

The Thurston geometries [33] on the Seifert-fibred submanifolds of $* turn
out to be non-unique. We give a sketch of how to construct them. Milnor [25]
has shown that any Seifert-fibred link complement in $° is the total space of a
fibre bundle over $'. If M is Seifert-fibred and fiM— S! is a fibre-bundle,
let F = f~'(1) be the fibre. The monodromy (classifying/gluing map), as an
element of the mapping-class group of F, is always of finite order provided
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F 1s not a torus. This is because F 1is essential in M so we can assume
that either F is a union of Seifert-fibres, or it is transverse everywhere to the
Seifert-fibres [14]. If F is transverse to the Seifert-fibres then as an element
of the mapping class group of F (moDiff (#)) the monodromy has order equal
to [FNc| provided ¢ is a regular fibre. If F is a union of fibres, it is either
St x [0,1] or a torus, and the mapping class group of S' x [0, 1] is finite.
The interior of &, is hyperbolic for 2g + b > 3, thus the monodromy is
an isometry of the fibre for a suitable hyperbolic metric on the fibre [23]. Of
course, the only link complements that fibre over S' with F ~ S, ;, satisfying
2g+ b < 3 are the Hopf link and the unknot. Theorem 4.7.10 of [33] tells us
that on top of having the above finite-volume H?2 x E! -structure, Seifert-fibred
link complements also have an I,)EE(Z,R)—structure.

Here is an example of how one can find the H? x E!-structures on the
complement of a torus knot. Let C, , = S\ 79 Think of 79 as the roots
of the polynomial f(z1,22) = & — z3 where (z1,22) € $* C C*. The fibring

g: Cpy— S is given by g(z1,22) = % Define C, , = C2\f~40). There

is an action of the positive reals R* on C,, given by 1.(z1,22) = (l‘%zl, 1‘1?22).
As a function of ¢, [t.(z1,22)| is strictly increasing, thus C, , ~ B %L, .
The function f: C, . — C\ {0} is a submersion thus a locally-trivial fibre
' R | ~ :
bundle. If we let Cﬁq = (8 C C;,’q then Rt x C;,’,q o~ C;J,q since
C\ {0} ~RT x §'. So C,, and C,, are homotopy-equivalent. Moreover,

fla,22)
[f(a1,22)]

the restriction of g'. This makes the homotopy-equivalence C,, — C,, a
fibre homotopy-equivalence from ¢” to ¢. Since both surfaces are 1-ended,
they are diffeomorphic, moreover the homotopy-equivalence preserves the
peripheral structures of the fibres, so ¢ and ¢"” are smoothly-equivalent
bundles. The fibre of g¢”, ¢"~'(1) is {(z1,22) € C* : & -2 = 1}
so the projection map 7: C* — C given by 7(z(,25) = 2z restricts to
a p-sheeted branched covering space with ¢”~!(1) as the total space,
C the base space, having ¢ branch points in C, all with ramification
number p. This makes g¢”~'(1) a surface of genus (p — (g — 1)/2.
The monodromy ¢”"~!(1) — ¢”~!(1) can be written explicitly as the map
(z1,22) — (¥™/Pz(, ™ /92,). As a covering transformation of ¢”~'(1)
it 1s of order pg, with p + g points of ramification, p of which have
ramification number ¢, ¢ having ramification number p, branched over
a disc with two marked points. The idea for this computation comes
from an example in an appendix of Paul Norbury to the notes of Walter
Neumann [27].

define ¢': C,, — S' and ¢": C), — §' by ¢'(z1,22) = with g
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Other than Seifert-fibred manifolds, a primary source for atoroidal mani-
folds is hyperbolic manifolds. Given an incompressible torus 7 in a complete
hyperbolic 3-manifold M, then one would have an injection

T = mM C Isom(?>)

where Isom(H?) is the group of isometries of hyperbolic 3-space. By the
classification of hyperbolic isometries (see for example Proposition 2.5.17
in Thurston’s book [33]) any subgroup of Isom(H?) isomorphic to Z?
consists entirely of parabolic elements. The Margulis LLemma, when applied
to m 7T — Isom(H?) (see for example [34] or [21]) tells us that M | T consists
of two manifolds, one of which is diffeomorphic to 7" x [0, o0), thus M 1s
atoroidal. Thurston went on to prove a rather sharp converse [32]: the interior
of a compact 3-manifold M with non-empty boundary admits a complete
hyperbolic metric if and only if M is prime, ‘homotopically atoroidal” and
not the orientable /-bundle over a Klein bottle, moreover the metric 1s of
finite volume if and only if M is a disjoint union of tori. ‘Homotopically
atoroidal’ means that subgroups of 7 M isomorphic to Z* are peripheral.
A convenient refinement 1s that if M 1s a compact, irreducible, atoroidal,
3 -manifold with incompressible boundary containing no essential annulus with
T C OM the torus boundary components of M, then M\ 7T admits a unique
complete hyperbolic metric of finite volume with totally-geodesic boundary
[21, 2, 34]. If OM = @ then M is also known to be hyperbolic provided M
contains an incompressible surface. By uniqueness, the hyperbolic geometry
1s a topological invariant and it can be used to distinguish 1sotopy-classes
of knots and links. There is a corresponding theory of orbifolds that allows
one to go further and get strong geometric invariants of smoothly-embedded
graphs in §° [15].

4. COMPANIONSHIP GRAPHS FOR KNOTS AND LINKS, SPLICING

In this section we define two graphs associated to a link. The first,
called the °‘JSJ-graph’ (Definition 5), describes the basic structure of the
JSJ-decomposition of a link’s complement. We decorate the vertices of the
JSJ-graph to get the ‘companionship graph’ of a link (Definition 6), which,
in Proposition 9 we show 1s a complete isotopy invariant of links. We
turn our attention first to knots. Companionship graphs for knots have the
particularly simple form of a rooted tree with vertices labelled by ‘knot
generating links’ (Definition 7). We develop a notion of splicing for knots in
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Definition 10. This allows us to inductively construct knots with prescribed
companionship graphs. We describe the basic combinatorics of companionship
graphs for knots under splicing in Proposition 14. Theorem 2 gives a complete
characterisation of companionship graphs for knots, after which we give various
examples.

We then turn our attention to companionship graphs of links. We de-
fine the notion of a ‘splice diagram’ in Definition 8. A splice diagram
1s not a concept of any real importance of its own, as it simply codifies
some of the most elementary properties of a compamonship graph. The
‘Local Brunmian Property’ (Proposition 15) 1s the first fundamental prop-
erty of companionship graphs. We show in Proposition 16 that splice di-
agrams satisfying the Tocal Brunnian Property essentially encode for col-
lections of disjoint embedded tori in link complements. We proceed to
call these diagrams ‘valid’. In Definition 14 we give a revised notion of
splicing suitable for links. The ‘fibre-slope exclusion property” (Lemma 16)
i1s the other main property satisfied by companionship graphs, as it en-
codes the mimimality condition of the JSJ-decomposition. Proposition 18
gives a complete characterisation of graphs that arise as companionship
graphs of links: they are the valid splice diagrams, labelled by Seifert-
fibred and hyperbolic links satisfying the fibre-slope exclusion property. In
Proposition 19 we describe how companionship graphs behave under splic-
ing, the most complicated case being the case of splicing with the un-
knot.

DEFINITION 5. Given a topological space X, if ~ denotes the equivalence
relation « x ~ y <= there is a path from x to y »,define [x] = {y € X : y ~ x}
and moX = {[x]: x € X}.

Given a non-split link L in $° indexed by a set A, let T be the JSJ-
decomposition of C;, indexed by a set B disjoint from A. The graph G,
is defined to have vertex-set mo(Cy|7T) and edge set moT. We give G, the
structure of a partially-directed graph, in that some edges will have orientation.
Given b € B let M and N be the two components of C; |7 containing 7.
If 7, bounds a solid torus W in S° on only one side, and if M C W, then
we orient the edge my7, so that its terminal point is woM.

For a split link L with index set A, partition A as A= A; LAy LI---LA;
so that C; = CLAI#‘ : .#CLAJ is the prime decomposition of C;. Define G

for a split link L to be ,»j:lGLAf- Gy 1s called the JSJ-graph of L (see
Figures 4 and 5).
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EXAMPLE 1. An example of a knot K and its JSJ-decomposition 7 =
{T},T,,T5,T4}. K is a connected sum of a trefoil, a figure-8 and the Whitehead
double of a figure-8 knot.

FIGURE 4

Notice that the component of Cg |7 containing JCx has as its untwisted
re-embedding the complement of H°. 7 bounds a trefoil complement, 7,
a figure-8 complement, 75 the Whitehead double of the figure-8 knot and
T3 U T4 bounds a manifold which, when re-embedded is the complement of
the Whitehead link. The Whitehead link complement and figure-8 complement
are atoroidal since they are finite-volume hyperbolic manifolds as mentioned
at the end of Section 3.

GK o TQ

O\ﬂ'OTl 7TOT4

mols

FIGURE 5

Graph constructions from the JSJ-decompositions of 3-manifolds were
perhaps first made by Siebenmann [31] in the context of homology spheres.
Eisenbud and Neuman [10] made similar constructions for knots in homology
spheres whose complements are graph-manifolds.
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DEFINITION 6. Given a non-split link L with index-set A, if 7 is the JSJ-
decomposition of Cy, for each v € G, let M(v) € C.|T be the component
corresponding to v. We define G to be the partially-directed graph such that
each vertex v is labelled by a link G(v) satisfying:

1. If we forget the vertex labelling, G; is the JSJ-graph G; .

2. The unorented 1sotopy class of Gy (v) 1s the compamon link to the
component M(v).

3. If A(v) denotes the subset of A corresponding to the components
of M(v) N dCr, and E(v) the subset of edges of G; incident to wv,
then G;(v) 1s naturally indexed by the set A(v) Ll E(v).

4. Given vy and v, adjacent vertices of G, let {e} = E(v;)NE(1,), then the
orientation of G (v1), and G.(vz), 1s chosen so that if f; and f; are the

—

untwisted re-embeddings f;: M(v;) — Cg, ey, then lk( fl_l(ll), fz_l(lz)) =
+1 where /; C Cg, (v, 1s the standard longitude corresponding to G (v;),

respectively, and fz_l(lz) C int(M(vy)) 1s a parallel translate of fz_l(lz).

If L 1s a split link, define G; = |_|f:1 Gy, where C; ~ CLAI#' . -#CLAk is the
prime decomposition of Cj . (Compare with Figures 5 and 6.)

Thus the union of the index sets for the links {G.(v) : v € G} consist
of A together with the edges of G,. Counting with multiplicity, exactly one
component of the links {G.(v) : v € G} is indexed by any element of A,
and precisely two (corresponding to adjacent vertices) are labelled by an
edge of G, . Components decorated by elements of A are called ‘externally-
labelled’. Components labelled by the edge-set of G, are ‘internally labelled’.
If K is a knot, we consider it to be a link with index-set {x}.

Given an edge e of G; with endpoints v; and vy, il we reverse both
of the orientations of G/ (vy), and G (v2)., this would also satisfy the above
defimton, and G; is well defined modulo this choice.

DEFINITION 7. A KGL indexed by (A,b) 1s a link L with index-set
AU{b} such that L, is an unlink. When it does not cause confusion, we will
frequently let b =0 and A= {1,2,...,n}.

Some elementary observations one can make about Gy :

* Gy is connected if and only if L is not split.
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FIGURE 6

* G, 1s acyclic, i.e. each component is a tree. This follows from the
Generalised Jordan Curve Theorem [13], since an embedded torus in $3
separates.

» If K is a knot then Gk is a rooted tree, since only one component of Ck | T
contains JCx . By Proposition 2, for each vertex v € Gg, Gg(v) is a KGL..
If we let Gg(v) be indexed by (A, b), then the edges of G corresponding
to A terminate at v. Provided v is not the root of Gy, b corresponds to
an edge that starts at v and terminates at its parent. Thus, all the edges
of Gk are oriented and all sufficiently-long directed paths in Gg terminate
at the root.

DEFINITION 8. Given a finite set A, a splicing diagram with external la-
bels A 1s an acyclic, partially-directed graph G such that each vertex v € G 1s
labelled by a link G(v) whose index-set is a subset of (the edge-set of G)UA.
We demand that if e € G 1s an edge with v;,v; € G 1its endpoints, then
one component of both G(v;) and G(v,) is labelled by e. These components
of G(v1) and G(vp) are called ‘internally-labelled’. We demand that for each
a € A there exists a unique v € G such that G(v) has a component indexed
by a. We denote this vertex by v,, and we say G(v,), 1s ‘externally-labelled’.

Given splicing diagrams G and G’ with external index-sets A and A’
respectively, we say G and G’ are equivalent (G ~ G') if A = A’ and there
exists an isomorphism of partially-directed graphs g: G — G’ together with
unoriented isotopies f(v) from G(v) to G'(g(v)) for all v € G such that:

* Given a € A and a component G(v),, then f(W)G(v),) = G'(g(v)),.

s If e € G, ¢ = gle) € G, with v;,v, € G the endpoints of e, and
v] = g(v;) then f(v)(G(v).) = €G’(v]) for some e € {4, —} which does
not depend on i € {1,2}.
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See the conventions regarding unoriented isotopies in Section 1 to make
sense of the above definition.

PROPOSITION 9.  Two links L and Y are isotopic if and only if Gy ~ Gy.

Proof. *‘—" is immediate since ~ is an equivalence relation.

‘=" Let h: §> — §° be an isotopy from L to Y. Thus A = A’ and
h(L,) =Y, for all a € A, moreover h(C;) = Cy. Since the JSJ-decomposition
1S unique up to isotopy, then if 7" is the JSJ-decomposition of C;, we can
assume A(T) C Cy is the JSJ-decomposition of Cy. If we let M € C;|T
then h(M) € Cy | i(T) is isotopic to M, thus by Proposition 3, the companion
link of Cp corresponding to M is unoriented isotopic to the companion link
of Cy|h(T), thus we can let f be this isotopy.

The notion of ‘splicing’ was first described by Siebenmann [31] in his
work on JSJ-decompositions of homology spheres. It was later adapted to the
context of links in homology spheres by FEisenbud and Neumann [10]. We
give a further refinement of splicing, adapted specifically so that it constructs
knots in $°.

DEFINITION 9. A long knot is an embedding f: R x D* — R x D?
satisfying :
o supp(f) C [—1,1] x D?, i.e. f is the identity outside of [—1,1] x D?.
* The linking number of firy©.0) and firxya,0} 18 Zero.

From a long knot f, one can construct a knot in $° in a canonical way.
The mage of firx (.0} 18 standard outside of [—1,1] x D? so its one-point
compactification is a knot in §* = R3. This gives a bijective correspondence
between isotopy classes of long knots, and isotopy classes of knots. The proof
of this appears in many places in the literature ([5, 4] are recent examples)
and essentially amounts to the observation that the unit tangent bundle to §°
is simply-connected.

DEFINITION 10. Let I = [—o0, ], and let L = (Lo, Lq,...,L,) be an
(n+ 1)-component KGL. Let L be a closed tubular neighbourhood of L. Let
C, =82 \Z, and C, = N, Cy,. Let h = (hy,hy,...,h,) be a collection
of disjoint orientation-preserving embeddings /;: I x D> — C;. such that
img(h)) N OC, = img(hyixpp:) with h;({0} x §') an oriented longitude for L;.
We call h a disc-system for L.
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Given J = (J1,J2,...,J,) an n-tuple of non-trivial knots in S°, let
f = (fi.fo,....f) be their associated long knots. The re-embedding func-
tion associated to L, the disc-system A and knots J 1s an embedding
Ry[L,J]: C, — $° defined by:
(hiofio b D) if x € img(hy),
X if xe C,\ L., img(h;).
The splice of J along L is defined as

Rh[LaJ] — {

J 0 L = Ry[L, JI(Lo).

ExAMPLE 2. If we use the figure-8 knot for J; and the knot 65 from
Rolfsen’s knot table for J,, with L the Borromean Rings, then K = J 1 L
is as illustrated in Figure 7.

FIGURE 7

We will show that the 1sotopy-class of R,[L,J] does not depend on £. To
do this, we show that any two disc systems are related by a finite sequence
of ‘elementary moves’, and that disc systems related by a single elementary
move give rise to isotopic re-embedding functions.

DEFINITION 11. Let 2 and /' be disc systems for L. An elementary
move on disc j from h to K is a 1-parameter family of embeddings

H(n:I1xD* = $3\L;, ie{1,2,...,n}, t€[0,1], such that:

* H(0)=h; and H(l) =h} forall i e {1,...,n};

o img(H(1) N OL; = img(H(D o) for all i € {1,...,n},1€[0,1];
* Hi(t) = H;(0) for all i#j and ¢ € [0, 1].
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PROPOSITION 10. If two disc-systems h and h' are related by an
elementary move, then Ryu[L,J] is isotopic to Ry [L,J].

Proof. Assume there is an elementary move on disc j from i to A'.
Extend H;(r)ofio H(t)~" to the unique embedding $3\ L, — $° with support
contained in the image of H;(f). Let £(2): C, — S° be its restriction. Define
RyplL,J] by the formula:

RiIL,J1:= & o (&1 o &) o0 g1 o i o0& 1() 0 £u0)) -

This 1s well-defined and smooth since &;(i)(C,) C C, for all i # j and
€ [0,1]. By design Ry[L,J1 = Ri[L.J] and Ryqy[L,J] = Ry [L,J].

The construction of the above isotopy is formally analogous to the action
of the operad of little 2-cubes on the space of long knots [4].

Given an (n + 1)-component KGI. L = (Lg,Ly,...,L,) we can represent
a disc-system for L by an embedding f: D — §° where D = ||/, D; is
a disjoint union of 2-discs and dD; = L;. This is because a closed regular
neighbourhood of DM C, 1s a genuine disc-system.

PROPOSITION 11.  Any two disc-systems h and W for L are related by a
sequence of elementary moves.

Proof. Assume f: D — S° is a disc system, intersecting D transversely.
Consider the curves of imtersection DN f(D) C D. If DNf(D) = 9D, f is
isotopic to D as a disc-system.

So consider an innermost circle C of DN f(D) in D. C 1s the boundary
of two discs C = dS; and C = 0S5, where S; C D and §; C f(D). S U S,
is a sphere and so there is a unique 3-ball B C $° with 9B = $; U S, with
BNf(D) = 8,. Let’s assume S, = BNf(D;) Thus, there is an isotopy of f(D;),
supported in a neighbourhood of B which lowers the number of intersections
of f(D;) with D. This isotopy is a sequence of elementary moves on f, one
for every component of img(f)Nint(B). By induction, we have the necessary
collection of elementary moves from f to D.

DEFINITION 12. Let G’ be a sub-graph of G, thus it describes some
subset of C; | 7. If M is the union of these submanifolds, and f: M — S3 the
untwisted re-embedding, f(M) is the complement of a tubular neighbourhood
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of some 1-dimensional submanifold X < S3. Moreover, the boundary of M
are tori either of C;, N M, or they are edges ¢ € G, \ G’ incident to G’.
Define G;(G’) to be X, with components indexed by A’ C A corresponding
to C,NM, and the edges of G, \ G’ incident to G’. Moreover, since the
external peripheral curves of these tori are naturally oriented by the definition
of G, this gives the components of G;(G’) a natural orientation. We call
G.(G') the companion link to L for the sub-graph G’ C G,.

PROPOSITION 12. Given a knot K, let L be the KGL decorating the root
of Gk, and let G|,...,G) be the sub-trees of Gy rooted at the children
of L in Gg, then

K ~ (Gx(G}),...,Gx(G)) 1 L.

Moreover, given a vertex v € Gk with G’ the maximal rooted sub-tree of Gg
rooted at v, then Gg,y =G'.

We mention, without proof, a result of Eisenbud and Neumann on spliced
knots.

THEOREM 1. Given a knot K let Ax(f) denote the Alexander polynomial
of K. Given an integer n let p(n) = ’:_;11 for n #£ 0 and define p(0) to be 1.
If K=1J < L where L is a KGL, then

Ax®) = Ay @) - [ | (pk(Lo, LA, (1)) .
=1
Here [k(Ly,L;) is the linking number between Ly and L; where L =
(P By o0 5 5 ybon ).

The proof of the above theorem is an application of Theorem 5.3 [10]
together with the Torres conditions on the multi-variable Alexander polynomial,
which also follows {rom Theorem 5.3.

A small observation on when splicing produces the unknot.

PROPOSITION 13. Let L= (Lo, L1,...,Ly) be a KGL, and J = (J1,...,J)
an n-tuple of non-trivial knots. J > L is the unknot if and only if L is the
unlink.

Proof. ‘=" By design ||, C; naturally embeds in Cjpy. As in
the proof of Proposition 2, a spanning-disc D for J 1 L can be isotoped
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off | |'_, Cj,, giving a spamning disc D’ for Ly disjoint from | ||_ L;. If D/
intersects the spanning discs for | |}, L; one can modify D’ through embedded
surgeries along the spanning discs of | |, L;, resulting in a spanning disc for
Ly disjoint from the spanning discs for | [, L;.

‘=" Let D be a spanning disc for Lo disjoint from ||, L;. Then
Ry[L,JI(D') is a spanning disc for J 1 L.

PROPOSITION 14.  Assume L = (Lg,Ly,...,L,) is a non-compound KGL
and J = (J1,...,J4,) Is an n-tuple of non-trivial knots. Provided both of the
Jollowing statements are false :

* L is a Hopf link;
* L is a key-chain link and at least one of the knots J1,...,J, is not prime;

then the root of Gy is decorated by L, and the maximal sub-trees of Gyuqp
rooted at the children of L are Gy, ..., Gy respectively.

Proof.  First, consider the case that L is not Seifert fibred. In this case,
the complement of J p< L is the union of Ry[J,L](C;) and C; along the
tori JCy, for i € {1,2,...,n}. T; is incompressible in C,; by the Loop
Theorem. It 1s also incompressible in R,[J, L](Cy) since if it were not, an
unknot would split off L but we have assumed L is non-compound. Thus,
the tori 7; are incompressible in Cj.,;, moreover if we take the union of
the collection {77,...,7,} together with the JSJ-decompositions of C,, for
i€41,2,...,n} we get a collection of tori 7 such that C.; |7 consists
of Seifert-fibred and atoroidal manifolds. This is a minimal collection by
assumption.

So we have reduced to the case C; Seifert-fibred. Provided the roots of Gy,
are all decorated by non-Seifert fibred spaces, the above argument applies.
So assume the root of Gy, 1is also Seifert fibred. The fibre-slope of L; is
either p/q if L is S%% or 0 if L is a key-chain link. Consider the possible
fibre-slopes of the relevant component of the link decorating the root of G, .
It could either be oo in the case of a key-chain link, or LCM(r,s)/GCD(r, s)
in the case of a torus knot or Seifert link. Thus, the only way the Seifert-
fibring could extend 1s the key-chain-key-chain case as in all other cases, the
fibre-slopes are not reciprocal (since p { ¢ and LCM(r,s)/GCD(r,s) € N).

THEOREM 2. Given a knot K, the companionship tree Is a connected
splice diagram Gy with external label {x}, such that every edge is oriented,
and every maximal directed path terminates at v., giving Gg the structure
of a rooted tree with root v, .
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(1) Each vertex of Gk is labelled by a link from the list:

(a) Torus knots T'"? for GCD(p,q) =1, ptq and q1p.
(b) Seifert links S for GCD(p,q) =1, ptq.

(c) Right-handed key-chain links H? for p > 2.

(d) Hyperbolic KGLs.

(e) The unknot.

(2) Given a vertex v € G, then Gg(v) is some KGL indexed by (A, b) where
the edges of Gg corresponding to A are oriented towards v. If v is not
the root, then b corresponds to an edge oriented away from v.

(3) If any vertex is decorated by a key-chain link H?P, none of its children are
allowed to be decorated by a key-chain link.

(4) A vertex of the free Gg is allowed to be decorated by the unknot if and
only if the tree Gk consists of only one vertex.

The above properties are complete, in the sense that any graph satisfying
the above properties is realisable as Gy for some knot K. Moreover :

* Two knots K and K' are isotopic if and only if Gg ~ Gg-.

* [If Gy consists of more than one vertex, then K = (J1,...,J,) > L where
the root of Gg is labelled by L and the knots (Jy,...,J,) correspond to
the maximal sub-trees rooted at the children of the root of Gg.

» There exists hyperbolic KGLs with arbitrarily many components. Thus one
can realise any finite, rooted-tree as G for some knot K in S°.

Proof. (1) Proposition 5 lists the Seifert-fibred links and their Brunnian
properties. The only Seifert-fibred KGI. that we excluded from the list
i1s the Hopf link. All remaining non-compound KGI.s are hyperbolic, by
Thurston’s Hyperbolisation Theorem [32]. (2) follows from the defimition.
(3) 1s Proposition 14. (4) The unknot is the only knot whose complement does
not have an incompressible boundary. Given a labelled rooted tree satisfying
(1)—(4), one constructs the knot K inductively on the height of the tree, using
Proposition 14 as the inductive step.

The first two bulleted (*) points follow from Proposition 9, Proposition 2
and Definition 10. The last bulleted point follows from a theorem of
Kanenobu [20], as we will explain. Consider a link L indexed by a set A. Then
the Brunnian property of L, i, C 2 satisfies the ‘Brunnian Conditions’ :

e SSTelyand SNT =20 — SUT € l;.
. @%ML
. {a}géZ/ILVaEA.
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Debrunner [9] proved the converse, that if / C 2% is any collection of subsets
of a finite set A satisfying the Brunnian Conditions, then there exists L indexed
by A such that I, = I/. Kanenobu went further [20]: there exists L such
that Uy = U and for all § €U/, Ly is hyperbolic. Moreover, if A € U/, then
one can assume all the components of L are unknotted.

If we let ¢/ = {A}, then Kanenobu’s theorem gives us a hyperbolic KGL
with |A| components.

Theorem 2 allows one to consider the above class of rooted trees as
an index-set for the path-components of the space of embeddings of S
in $3, mpBEmb(S', $?). It is via this indexing that the homotopy type of each
component of Emb(St, $3) is described in the paper [3].

Knots whose complements have non-trivial JSJ-decompositions are quite
common. If one generates knots via random walks in R® where the direction
vector 1s chosen by a Gaussian distribution, then one typically gets a connect-
sum [19].

The observation that if a knot in $° has a non-trivial JSJ-decomposition
then it is the splice of a link in $° with a knot in $° was first made in
Proposition 2.1 of the FEisenbud-Neumann book [10]. Their point of view
on the subject did not keep track of the Brunnian properties of the links
mvolved, in that there is no analogue of Proposition 1 in their work, as their
work focuses on links in homology spheres.

COROLLARY 2. Here are some elementary characterisations of some basic
knot operations in terms of splicing.

* A knot K is a connected-sum of n non-trivial knots for n > 2 if and only
if K=J < H'TY where H"! is the (n+ 1)-component key-chain link,
and the knots J = (J1,J5,...,J,) are all non-trivial.

s Aknot K is a cable knot if and only if K is a splice knot K = J pa §(P:9
for ptq and GCD(p,q) = 1, where S is the (p,q)-Seifert link.

* A knot K is a (untwisted) Whitehead double if K =J > L where L is
the Whitehead link.

Corollary 2 also appears in Schubert’s work [30].

We give various examples of spliced knots and companionship trees. Let Fg
denote the figure-8 knot.

Let W denote the Whitechead link. Let B = (By,B;,B,) denote the
Borromean rings. Let B(i, /) be the 3-component link in §° obtained from B
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DO

K =T Gg K = (T3, F)paH?)paSE-17)

FIGURE 8

by doing i Dehn twists about the spanning disc of B; and j Dehn twists
about the spanning disc for B;.

FIGURE 9

The graphs we associate to links in $° have more complicated combina-
torics for three reasons:
* Link complements are not prime provided the link 1s split. This results in
our graphs being a union of disjoint trees.
* There are link complements with incompressible tori that separate compo-
nents of the link, thus the associated graphs are not always rooted.
* The tor1 in the JSJ-decomposition of a link complement are not always
knotted.
An example of a link with an unknotted torus in its JSJ-decomposition is
given in Figure 10 overleaf.
The rest of this section will be devoted to describing the class of labelled
graphs that can be realised as Gy for a link L in S, and how the graphs
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behave under splicing. To do this, we identify the local rules that allow us to
determine if a link Y can decorate a vertex in a graph G; for some L.

Given a vertex v € Gz in a companionship graph G, of a link L with
index set A, we partition the components of G (v) into four classes:

(1) Those which correspond to an oriented edge of G; whose terminal point
1S v.

(2) Those which correspond to an oriented edge of G; whose initial point
1S v.

(3) Those that correspond to an unoriented edge of G; incident to v.

(4) The components G (v), of G;(v) which have labels in the set A.

Components of type (1) through (3) are indexed by a subset of B, the
index-set for the tori in the JSJ-decomposition of C;. Components of Gy (v)
of type (4) are indexed by a subset of A.

PROPOSITION 15 (Local Brunnian Property). Let L be a link in $°. Fix a
vertex v of Gy and let A(v) be the index-set for Gp(v). Let Ay, Az, A3 C A(v)
be the indices corresponding to items (1), (2) and (3) above. Then the following
statements hold :

() A € HGL(@) ;
(2) Va € Ay, Ay U {a} ¢ U, ;
(3) Va € Az, Ay U{a} € Ug,un-

Proof. Let V be the submanifold of C; |7 corresponding to v. We index
the tori of 9V by the set A’. For each a € Ay, J,V is a torus which bounds
a knotted solid torus J, in $° containing V. The collection {Jo1a € A}
have disjoint complements, so by Proposition 2, A; € Ug, (-

Fix a' € Ay UA;. Then 8,V bounds a solid torus in $° disjoint from V.
This solid torus is a neighbourhood of some knot K, in $°. Provided
A1 = {al, ar, ... ,an} 5 define L' = (GL(’U)a/, GL(’U)al, ¢ e ,GL(’U)an). Then
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by the definition of our identification V =~ Cg,uy, Ky = J 1 L' where
J=(Jgy,...,J;). By Proposition 13, K, is unknotted if and only if L' is
an unlink, if and only if A; U {a’} € Ug,,. This proves points (2) and (3).

A splice diagram will be called valid if it satisfies the Local Brunnian
Property. Valid splice diagrams essentially keep track of embedded tori in link
complements, as we will show in the next proposition.

DEFINITION 13. Given a link L with index-set A and a family of disjoint
embedded tori 7 C C; indexed by a set B, we define the splice diagram
associated to the pair (L,7) to be the graph whose underlying vertex-set is
mo(Cr | T), edge-set is moI = B, such that each vertex v is decorated by a
link following Definition 6 points (3) and (4). We orient the edges of this
graph following Definition 5. The notation we use for this graph is G 1y.

Notice that if L is not a split link, then G; = G ) provided 7' C C; is
the JSJ-decomposition.

DEFINITION 14.  Given links L and L' with index sets A and A’ such
that {a} € U, and @' € A’. Let f: §> — S be an orientation-preserving
diffeomorphism such that f(R[L,,L,](C;,)) is a closed tubular neighbourhood
of L/, such that an oriented longitude of L!, corresponds to an oriented
meridian of C;,. We define the splice of L’ and L to be:

L al?(]a = Lil’\{a’} Uf(LA\{a})
and we index this link by the set (A\{a})U(A’\ {a’}). Provided ANA" = {a}
we simply denote the splice by L' <1 L

Note that if both {a} € U, and {a'} €U, , then L' ba L and L »a Lf
are isotopic, so without any harm we can consider the saplicéing notatigna for
links to be symmetric: L > L' =L" < L.

a a a’ a

PROPOSITION 16. Given a valid splice diagram G, there exist a link L

and tort T C Cp such that Gy 1y ~ G ; moreover, the pair (L,T) is unique

up to isotopy in the sense that if Gy 1y ~ G then there exists an isotopy f
from L to L' such that f(T)=T".

Proof. The proof of uniqueness is essentially the same as that of
Proposition 9. We prove existence by induction. For this we can assume
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that G is connected, and since the initial step is true by design, we proceed
to the inductive step. Let ¢ be an edge of G with endpoints vy and v,. Then
e partitions G into two sub-graphs G’ and G”.

Provided e is unoriented, then both G’ and G” are valid splice diagrams
and therefore can be realised by pairs (L', T') and (L",T") respectively.

If e is oriented, assume its terminal point is v’ and initial point is v”.
Assume v' € G’ and v € G”. Then G” is a valid splice diagram which
can be realised by a pair (L”,7"). G’ may not be a valid splice diagram.
Consider the sub-graph ¥ of G’ defined recursively to be the sub-graph of G’
containing v’ such that if w € ¥ and if f is an oriented edge of G’ whose
initial point is in Y, with 4, U {f} € UG/(“)) then the endpoint of f is also
m Y. If we unorient all the edges of ¥ in G’, we obtain a valid splice
diagram which can be realised by some pair (L', T").

By the definition of L’ s} L”, T' and 7”7 naturally correspond to a

collection of disjoint tori 7 in the complement of L' 1 L”. Morcover,
e e

G=Guwrn-

DEFINITION 15. Given an oriented edge e € G in a valid splice diagram,
the sub-graph ¥ of G rooted at the terminal-point of ¢, constructed in the
proof of Proposition 16 will be called the downward consequences of e.

Given two valid splice diagrams G’ and G” with external index-sets A’, A”
realisable by (L', T") and (L”,T"), provided ' € A" and a” € A", and either
{a'} €Uy or {a"} € Uy, the splice diagram Gy ba 1y constructed in

Proposition 16 will be denoted G’ —G”.

We note a convenient global property of companionship graphs, allowing
one to determine the Brunnian properties of a link via those of its companions.
It also shows how one can determine the edge orientations of G; from the
vertex labels.
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PrOPOSITION 17 (Global Brunnian Property). Given L indexed by A,
any edge e € Gy separates Gy into two sub-graphs G' and G". Let
L' = Gu(G') and L = G (G") be the companions indexed by the sets
A" and A" respectively with A’ N A" = {e} and (A" UA")\ {e} = A. Then
U = {BCA: BNAU{e} €Uy and BNA" € Upr) or (BNA" U {e} €
Uy and BNA € Up)}. If v' € G' and v" € G" are the endpoints of e,
then e is oriented from v to v (resp. v to v') if and only if {e} & Uy
and {e} €Uy (resp. {e} & Uy and {e} € Uy ). Moreover, e is unoriented
if and only if {e} € Uy NU». If e is either unoriented or oriented from v’
to V" (resp. V" to V') then Gy ~ G’ (resp. Gy ~ G" ). If e is oriented
from v to V" (resp. v” to V') then Gp. (resp. Gp/ ) is equivalent to G”
(resp. G') after unorienting the edges of the downward consequences of e.

Proof. let T C Cp, T' C Cpy and T" C Cy» be the tori corresponding
to e. We prove the statement about I/, , the remaining statements are corollaries
of the proof of Proposition 16.

“C’: Given B € Uy, T is compressible in C;,. By the Loop Theorem,

either 7" is compressible in C;- or T" is compressible in Cj» ,
BMA U {e} BMA' e}

If 77 is compressible in CL;WU{ , then since Ly 1s an unlink one can
choose the spanning discs to be disjoint from 7', thus Ly, and Ly, are
unlinks. L], bounds a disc disjoint from Lj. ,, , therefore Lgﬂ AU{e) is also an
unlink. The argument for 77 compressible in C —— 1s formally identical
as it 1s a symmeltric argument.

‘O Let {M' M"} =C,|T with f': M — Cyr and f': M" — C;» the
untwisted re-embeddings. If BN A" U {e} € Uy, and BNA" € U, , then if
D’ and D" are the spamning discs for Lj,.,, and L}, , f/~Y(D)Uf"~"(D")

are spanning discs for Lg. This i1s also a symmetric argument.

Notice that in our proof of the Global Brunman Property, we did not use
the incompressibility of the tori 7', thus it applies equally well to valid splice
diagrams.

EXAMPLE 3. Consider the link L = (Ly,L,) in Figure 12.
Let G’ be the sub-graph of G; obtained by deleting the vertex labelled
by the (left-handed) trefoil indexed by c¢. Compare with Figure 13.

There is another local property satisfied by companionship graphs. Only
certain Seifert-fibred links may be adjacent in G;. As we have seen, given
an edge e € Gp the fibre-slopes of the components of the two adjacent
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SR Soosd

FIGURE 12

FIGURE 13

links corresponding to e are never multiplicative inverses of each other (see

Propositions 7 and 14).

LevmMma 2 (Fibre-slope Exclusion Property). A vertex decorated by an
unknot or a Hopf link can not be adjacent to any other vertex in a

companionship graph Gy for any link L.

Given two adjacent vertices in a companionship graph Gy decorated

by Seifert-fibred links whose unoriented isotopy class representatives are

S(p,q | X) and S(a,b | Z) respectively, there are several combinations that

can not occur for any link L, which we list.

1. S(p,q | {*1}) and S(a,b | X) with edge corresponding to *, € S(p,q |

{*1}) and a regular fibre of S(a,b | X), provided g = %.

2. S(p,g | XU {*1}) and S(a,b | ZU {x;}) with edge corresponding to

and *, respectively, such that % = B,

3. H? and HY for p,q > 2 with edge corresponding to components of H”

and H? having different fibre-slopes, i.e. a ‘key’ and a ‘keyring’ component

respectively.
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The Hopf links and unknots are isolated since one can obtain any rational
number (or oc) as the fibre-slope of some Seifert fibring of the complement.
All other complements have unique Seifert-fibrings (Proposition 1).

Lemma 2 can be recast into a splicing rule.

DEFINITION 16.  Given links of the form S(p,q | X) and S(a,b | Z), let r
denote any regular fibre of S(p,q | X) or S(a,b | Z). Let L be a link with
index-set A, and let O be the unknot with index set {x}. The following is
the list of ‘exceptional splices’:

L S@b | X) p4 S(p.q | {x}) = S

_ LCM(a,b)
— GCD@,b) °

GCD{(a, b) + GCD(p, q) —
GCD(a, b)

Ya,b) | X)

provided g

GCD(a, b) + GCD(p, q)

GCID(a, b) (a,5) |

2 S(p,q | XU {n]) 20 S@b | ZU {m)) =5
X\ {1 HUEZ\ {*2})) provided % = 2

2 kbdg HY = HPt7~! provided k and g represent a ‘key” and a ‘keyring’
of H? and HY respectively.

4. H' = L = L for any choice of components, provided H' is the right-
handed Hopf link. If H! is left-handed, then H' pa L consists is L with
one component’s orientation reversed.

5 L O = Ly (a) for all a € A.

PROPOSITION 18. Given a valid splice diagram G satisfying the fibre-
slope exclusion property such that each vertex v € G is labelled by either
a Seifert-fibred or hyperbolic link G(v), there exists a unique link L (up
to isotopy) such that G; ~ G. Moreover, given any two links L' and L’
with ' € A" and a" € A" satisfving either {a'} € Uy or {a"} € Uy,
G o = Gy, ,——HGL” provided Gy, ,__HGL” satisfies the Fibre-Slope

Exclusion Property.

Proof. This follows immediately from Proposition 16 and the proof of
Proposition 14

We proceed to investigate the companionship tree of I/ 1 L” for
af a//

arbitrary links I/ and L”. To describe the case where one of L' or " is
the unknot, we will need the operations of ‘spliting’ and ‘deletion” for valid

splice diagrams, defined below.
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DEFINITION 17. Consider a valid splice diagram G with external index-
set A, vertex-set V and edge-set E.

If v €V 1s such that G(v) 1s split, we will define a valid splice-diagram
called the splitting of G at v, denoted G | v. Let X be the index-set for G(v),
and let X = |_|f:1 X; be the partition of X so that Cgey =~ Coyy, #  +  #Co)y,
is the prime decomposition of Cg,y. Define G |v to be the splice diagram
whose vertex-set is (V\ {v})L <|_|f:1 ﬂoCG(TJ)Xi) , and whose edge set is £. We

label the vertices w € V\{v} by G(w), and the vertices T0CGwy, bY G(v)x, .

If a € A, we define a valid splice-diagram called the deletion of a in G,
denoted G.a. Let G’ be the maximal sub-graph of G with vertex-set V \ v,.
If A’ is the index-set of G(uv,), let G” = G, - Let E' denote the edges
of G that are not edges of G, then G'LIG” is naturally a valid splice-diagram
once we append the edges E’.

If one thinks in terms of the pair (L,7T) such that Gy 7y = G, splitting
corresponds to finding a 2-sphere in the complement of LU T that separates
components, while G.a corresponds to deletion of the component L, and
adding appending the tori from the JSJ-decomposition of L g4 -

PROPOSITION 19. Given two links L' and L" with index sets A" and
A" respectively such that L' < L' is defined, and provided Gp(va)

al all
GLH(UaH) Is not an exceptiona[ splice, GL’ b LI — GLI — GLH.
at’ ! a’ a’’

In the case of an exceptional splice 1. through 4., one obtains G/ . 1

a’ a

from G —— Gy by replacing the sub-graphs (see Definition 16) :

GCD(a,b) + GCD(p,q) — 1
(D) Sta,b | X) — S(p.q | {x1}) by S( e b (a,b) | X).
GCD(a,b) 4+ GCD(p, q)
@ S(p.q | XU} = S@b | Z0{e}) by S(—o m=ra,b) |

X\ {uHUE\ {22}).

3) HP — HY9 by HPTITL,

@) H' — L by L, or L with the corresponding orientation reversed if H' is
the negatively oriented Hopf link.

We call the operations (1) through (4), together with (5) below, ‘elementary
reductions’.

In the case (5) of an exceptional splice with an unknot L' — O, then
G _ o is obtained from Gy .a by performing (recursively) all possible
elementary reductions and splittings until the there are no more available to
do (compare with Figures 12 and 13).
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Proof.  All cases except case (5) are direct consequences of Lemma 2.
In case (5), G .a’ describes a collection of tori T dividing the complement
of LA,\ (@} into atoroidal and Seifert-fibred spaces. C Ly oy TAY not be prime,
and the tori may be compressible. If § be a sphere in CL;,\{H,} intersecting

T transversely separating components of Lj’q,\ (@} and D is an innermost
disc, then this disc is a spanning disc for a component of one of the links
decorating Gy .a’, thus we can perform a reduction of type (5). If there is
no innermost disc, we can perform a splitting. So after performing enough
type (5) moves and splittings, we are reduced to a disjoint union of diagrams
that describe incompressible tori in irreducible link complements that split
the link complement into Seifert-fibred and atoroidal manifolds. Any minimal
such collection is the JSJ-decomposition, and moves (1) through (4) are by
design what it takes to get to that mimimal collection.

Provided one never needs to use step (5), Proposition 19 gives a rather
simple description of the companionship graph of a splice. A good example
of Proposition 19 is obtained by deleting a component of the link in L in
Example 3.

In the case of a splice with an unknot L' — O where L’ is hyperbolic,
Proposition 19 says nothing. We mention a result of Thurston that gives some
insight into this situation. First, an example.

EXAMPLE 4. The link L’ in Figure 14 contains the link L from Example 3
as a sublink. L' is hyperbolic with hyperbolic volume approximately 42.7594.
The link L from Example 3 has two hyperbolic companion links, both with
hyperbolic volume approximately 3.663. This is not a coincidence, as we will
explain.

FiGUre 14
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DEFINITION 18. Given a link L, the Gromov Norm of L is defined to be
the sum

1) Z Vol(S® \ G (v)) if §7\ G.(v) is hyperbolic,
B 0 if $3\ GL(v) is Seifert-fibred.

veGy,

where Vol() is the hyperbolic volume.

See [12] for a proper definition of Gromov Norm. That the proper definition
reduces to the one above in the case of link complements is a theorem of
Thurston [34]. Thurston also proved that if a link L' is a proper sub-link of
a hyperbolic link L then |L'| < |L|. Thus, if L' is obtained from an arbitrary
link by deleting a component, |L'| < |L| and one has equality if and only if
when constructing G, using the procedure in Proposition 19, one must never
delete a component of a hyperbolic companion to L.

We end with one note on the computability of the companionship
graph Gy . Typically one starts with a diagram for L and then constructs a
(topological) ideal triangulation of its complement, with an algorithm such
as the one implemented in SNAPPEA [37] or ORB [15]. The algorithm
of Jaco, Letscher, Rubinstein [17] computes the JSJ-graph G; from the
ideal triangulation. Link complements, and more generally Haken manifolds
are known to have solvable word problems [36]. These Haken-manifold
techniques extend to an isotopy classification of knots and links that seems
(at present) to be not practical to implement. Commonly-used computer
programs called SNAPPEA [37] and ORB [15] frequently find the hyperbolic
structures on hyperbolisable 3-manifolds (and orbifolds). Once SNAPPEA has
the hyperbolic metric, it then finds the canonical polyhedral decomposition
[11] from which it can determine if two hyperbolic links are isotopic by a
simple combinatorial check of their polyhedral decompositions. So in practise
one can frequently use SNAPPEA to determune whether any two links are
isotopic. It’s unfortunate that there is as of yet no formal justification for the
effectiveness of programs such as SNAPPEA and ORB. The Manning Algorithm
[24] takes a hyperbolisable 3 -manifold with a solution to its word problem and
produces a hyperbolic metric, but this requires the usage of solutions to word
problems for Haken manifolds, which typically have very long run-times. For
recognition of connect-sums, the 3-sphere recognition algorithm of Rubinstein
has been beautifully implemented in the computer software REGINA, by Ben
Burton [7].




(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

JSI-DECOMPOSITIONS 357

REFERENCES

BONAHON, E and L. SIEBENMANN. Geometric splittings of knots and Conway’s
algebraic knots. Unpublished preprint (1987).

BoNaHON, E Geometric structures on 3-manifolds. Handbook of Geomerric
Topology, 93—164. North-Holland, Amsterdam, 2002.

BUDNEY, R. Topology of spaces of knots in dimension 3. Preprint arXiv
[math.GT/0506523].

—— Little cubes and long knots. To appear in 7opology. Preprint arXiv
[math.GT/0309427].

BUDNEY, R. and E COHEN. On the homology of the space of knots. Preprint
arXiv [math.GT/0504206].

BURDE, G. and K. MURASUGI. Links and Seifert fiber spaces. Duke Math. J.
37 (1970), 89-93.

BurTON, B. Regina: normal surface and 3-manifold topology software.
http://regina.sourceforge.net/, 1999-2006.

CERE, . Sur les difféomorphismes de la sphére de dimension trois (I's = 0).
Lecture Notes in Mathematics 53. Springer-Verlag, Berlin, New York,
1968.

DEBRUNNER, H. Uber den Zerfall von Verkettungen. Math. Z. 85 (1964),
154-168.

EISENBUD, D. and W. NEUMANN. Three-dimensional link theory and invariants
of plane curve singularities. Ann. Math. Stud. 110 (1985).

EPSTEIN, D. and R. PENNER. Euclidean decompositions of non compact
hyperbolic manifolds. J. Differential Geom. 27 (1988), 67-80.

GROMOV, M. Hyperbolic Manifolds according to Thurston and Jgrgensen.
Bourbaki Seminar 1979/80. Lecture Notes in Math. 842, 40-53. Springer,
Berlin, New York, 1981.

GUILLEMIN, V. and A. POLLACK. Differential Topology. Prentice-Hall, 1974.

HATCHER, A. Basic Topology of 3-Manifolds. [http://www.math.cornell.edu/
~hatcher/3M/3Mdownloads.html].

HEARD, D. Computation of hyperbolic structures on 3-dimensional orbifolds.
Dissertation, Univ. of Melbourne, 2005. [http://www.ms.unimelb.edu.au/
~snap/orb.html]

Jaco, W. and P SHALEN. A new decomposition theorem for irreducible
sufficiently-large 3-manifolds. Algebraic and geometric topology. Proc.
Sympos. Pure Math., Stanford Univ., Stanford, California, 1976, Part 2,
71-84. Proc. Sympos. Pure Math. 32. Amer. Math. Soc., Providence,
RI., 1978.

Jaco, W., D. LETSCHER, and H. RUBINSTEIN. Algorithms for essential surfaces
in 3-manifolds. Contemp. Math. 314 (2002), 107-124.




358

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

R. BUDNEY

JOHANNSON, K. Homotopy Eguivalences of 3-Manifolds with Boundaries.
Lecture Notes in Mathematics 761. Springer, Berlin, 1979.

JUNGREIS, D. Gaussian random polygons are globally knotted. J. Knor Theory
Ramifications 3 (1994), 455-464.

KANENOBU, T. Hyperbolic links with Brunnian properties. J. Math. Soc. Japan.
38 (1986), 295-308.

KaprovicH, M. Hyperbolic Manifolds and Discrete Groups. Progress in Math-
ematics 783. Birkhduser, Boston, 2001.

KawavucHr, A. A Survey of Knot Theory. Birkhdauser Verlag, 1996

KERCKHOFF, S. The Nielsen realization problem. Bull. Amer. Math. Soc. (N.§.)
2 (1980), 452-454.

MANNING, J. Algorithmic detection and description of hyperbolic structures on
closed 3-manifolds with solvable word problem. Geom. Topol. 6 (2002),
1-25.

MILNCR, J. Singular Points of Complex Hypersurfaces. Annals of Mathematics
Studies 61. Princeton University Press, Princeton. University of Tokyo
Press, Tokyo, 1968.

NEUMANN, W. and G. A. SWARUP. Canonical decompositions of 3-manifolds.
Geom. Topol. 1 (1997), 21-40.

NEUMANN, W. Notes on Geometry and 3-Manifolds. With appendices by Paul
Norbury. Low dimensional topology; Boroczky, Neumann, Stipsicz Eds.
Bolyvai Soc. Math. Stud. 8 (1999), 191-267.

Sakuma, M. Uniqueness of symmetrics of knots. Math. Z. 192 (1986), 225
242.

SCHUBERT, H. Die eindeutige Zerlegbarkeit eines Knotens in Primknoten. S.-B.
Heidelberger Akad. Wiss. Math.-Nat. KI. 1949 (1949), 57-104.

—— Knoten und Vollringe. Acta Math. 90 (1953), 131-286.

SIEBENMANN, L. On vanishing of the Rohlin invariant and nonfinitely am-
phicheiral homology 3-spheres. Proc. Sympos. Univ. Siegen, Siegen,
1979, 172-222. lLecture Notes in Math. 788. Springer, Berlin, 1980.

THURSTON, W. Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry. Bull. Amer. Math. Soc. (N.5.) 6 (1982), 357-381.

—— Three-Dimensional Geometry and Topology. Vol. 1. Ed. Silvio Levy.
Princeton Mathematical Series 35. Princeton University Press, Princeton,
1997.

—— The Geometry and Topology of Three-Manifolds. lLecture notes from
Princeton University, 1978-80. MSRI preprint.

WAILDHAUSEN, E On irreducible 3-manifolds which are sufficiently large. Ann.
of Math. (2) 87 (1968), 56-88.

—— Recent results on sufficiently large 3 -manifolds. Algebraic and geometric
topology. Proc. Sympos. Pure Math., Stanford Univ., Stanford, California,
1976, Part 2, 21-38. Proc. Sympos. Pure Math. 32. Amer. Math. Soc,,
Providence, R.1., 1978.




JSI-DECOMPOSITIONS 359

[37] WEEKS, J. Computation of hyperbolic structures in knot theory. Handbook of
Knot Theory, 461-480. Elsevier, 2005,

(Recu le 9 mai 2006)

Ryan Budney

IHES Le Bois-Marie

35, route de Chartres
F-91440 Bures-sur-Yvette
France

Mathematics and Statistics
University of Victoria

PO Box 3045 STN CSC
Victoria, B.C.

Canada V8W 3P4

e-mail : budney@ihes.fr




Leere Seite
Blank page
Page vide



	JSJ-decompositions of knot and link complements in S³
	...


